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We report a numerical analysis of corrections to finite size scaling at the Anderson transition due
to irrelevant scaling variables and nonlinearities of the scaling variables. By taking proper account of
these corrections, the universality of the critical exponent for the orthogonal universality class for three
different distributions of the random potential is convincingly demonstrated. [S0031-9007(98)08164-2]

PACS numbers: 71.30.+h, 71.23.-k, 72.15.Rn

The possibility of the Anderson localization of elec- of [11] that this is actually the case, in this context it is
tron states as a result of disorder was first suggested fomevertheless important to have independent confirmation
decades ago [1]. Following the proposal of the scalinghat our understanding of the AT is correct. At the
theory of localization [2] attention has focused on underpresent time, numerical simulations [3,12—14] offer the
standing the critical properties of the Anderson transitioronly viable alternative.

(AT), the quantum phase transition which occurs at a criti- In this paper we demonstrate an important basic prin-
cal disorder separating a diffusive metallic phase from artiple underlying our understanding of the AT: the univer-
insulating localized phase [3]. sality of the critical properties of the AT. To do this has

Our current understanding of the AT is based onrequired us to address the principle uncertainty in previ-
the nonlinearoc model (NLoM) [4]. This has been ous numerical studies of the critical properties of the AT,
analyzed using an expansion in powers @f where the presence of systematic corrections to scaling in the nu-
d =2 + € is the dimension of the system. According merical data due to the practical limitations on the sizes of
to the NLoM it should be possible to classify the critical the system which can be studied.
behavior using three universality classes: orthogonal, The computer time required in numerical studies of the
unitary, and symplectic depending on the symmetry ofAT increases very rapidly with increasing system size (as
the Hamiltonian with respect to time reversal and spinZ’ for the method used here). This sets a severe limitation
rotation. Here we focus on the orthogonal universalityon the system sizes which can be simulated. However,
class corresponding to systems with both time reversadystematic corrections to scaling are expected in smaller
and spin rotation symmetries. systems, and their neglect leaves important questions

Beyond the suggestion of the appropriate universalityabout the validity of any conclusions drawn from the
classes, there has not been much success in makimmalysis of the numerical data. Here we consider two
detailed predictions about the critical behavior with theways in which such corrections can arise: the presence of
NLoM. The problems are well illustrated by attemptsirrelevant scaling variables and nonlinearity of the scaling
to estimate the critical exponemt which describes the variables [15]. These effects lead to systematic rather
divergence of the correlation length at the AT. In than random deviations from scaling and must be taken
early work it was found that = 1/e [5] which gives into account when estimating both the critical parameters
v = 1 when extrapolated tal = ¢ + 2 =3. When and the likely accuracy of their estimation.
combined with the Wegner scaling law= ve [6] this Our work has also been inspired by the successful
leads to a conductivity exponent= 1. Measurements analyses of corrections to scaling in the quantum Hall
on some, but not all, materials do indeed yield= 1  effect (QHE) transition [16,17]. The present problem is,
[7]. However, calculations at higher ordersdrproduced  however, more difficult since, unlike the QHE, the critical
strong corrections to the leading order when extrapolategoint is not knowra priori on grounds of symmetry.
to e = 1 [8,9], showing that this agreement is fortuitous. The universality of the exponent for the box and Gauss-
There is now no accepted estimate of the exponent baseéah distributions of random potential was demonstrated to
on thee expansion or any other analytic technique. a limited extent in [12] by taking account of corrections

While the preceding problem can be regarded as # scaling in amad hocmanner. Here, taking account of
rather unfortunate technical difficulty, fears have alsocorrections systematically, we confirm that result and ex-
been expressed that there may be an infinite number @énd its validity to include the Lloyd model [18].
relevant operators in the NtM [10] and that the theory The Hamiltonian used in this study describes nonin-
may be unsound. While it now seems unlikely in view teracting electrons on a simple cubic lattice with nearest
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neighbor interactions only w = (W. — W)/W,. where W, is the critical disorder
GFIHIP) = V(7), separating the insulatingy < 0) and conducting phases
. (w > 0).
(FIH|F — %) = —1, - my
FIH|F — ) = -1, xW) =D bow",  gw) =D c,w". (4
n=1 n=0
(FIHIF — 2) = —1. The orders of the expansions atg andm;,, respectively.

Here %, $, and Z are the lattice basis vectors. The Notice thaty(0) = 0. The absolute scales of the argu-
potential V is independently and identically distributed ments in (1) are undefined; we fix them by settifig =
with probability p(V)dV. We studied three models of F;, =1 in (3). The total number of fitting parame-

the potential distribution: The box distribution tersisN, = (n; + 1)(ng + 1) + mg + my + 2.
p(V)=1/W |V|=W/2, The qualitative nature of the corrections can be under-
. stood by looking at some special cases. First, let us sup-
=0 otherwise pose that nonlinearities are absemiz(= 1 andm; = 0)
the Gaussian distribution and truncate (2) at; = 1
2
p(V) = exp<_"_>, A = Fo(yL"") + ¢ L F(yL'").
ﬂnfz 20‘2

From this equation we can infer that the estimate of the

critical disorder, and possibly also the critical exponent,

will appear to shift in a systematic way as the size of
(V) = 4 ‘ the system increases. To exhibit scaling it is necessary

(W2 + V2) to subtract the corrections due to the irrelevant scaling

For this distribution all moments higher than the mearnvariable. Whem; = 1 we define

are divergent and the paramet8f is proportional to . , v

the full W%’[h at half ma>F<)imum of the gist?ibution. For Acomeced = A = YLV F1(x L"), )

these three models we analyzed the finite size scaling [1%}ith the obvious generalization when > 1. We then

of the localization lengtm for electrons on a quadid  have

dimensional bar of cross sectidn X L. The lengtha <

with o> = W?2/12, and the Lloyd model in whiclv has
a Lorentz distribution

L
_ : ) (6)

standard transfer matrix technique [19,20].

The starting point of our analysis is the renormalizationThe  functions F. are defined by F+(x) =

group equation which expresses the dimensionless qualis[=(£+x)"/*]. In this case the correlation lengtt

was determined to within a specified accuracy using a Acorrected = F+

tity A = A/L as a function of the scaling variables has a simple power law dependence on the dimension-
L U» less disorderé = £+|w|™”. The constants. are not
A= f(;s xb slﬁby) - normally determined in finite size scaling studies.

On the other hand, if we neglect the irrelevant variable
and consider only nonlinearity in the scaling variable

leading irrelevant scaling variable. We should fingc 0~ We find A = F.(L/£) without the need to subtract
if y is irrelevant. An appropriate choice of the factor Ny corrections. No systematic shift of the estimated
[15] leads to critical point should occur as the system size is increased.

However, the correlation lengté¥ no longer has a

In this equatiorb is the scale factor in the renormalization
group, y is the relevant scaling variable, anfd is the

— 1/v y .
. A F(YL'" yL), 1) simple power law dependence om but behaves as
whereF is a function related t¢. &= Exxl.
For L finite there is no phase transition ard is The critical exponentr, the irrelevant exponent,

a smooth function of its arguments. Assuming theand the functions”, are expected to be universal, while
irrelevant scaling variable is not dangerous, we make ghe coefficients{b,} and {c,} are not. Though we

Taylor expansion up to ordex; have explicitly considered corrections due to the leading
. ) : ; ; ;
_ 0y ny /v irrelevant scaling variable only, the analysis can easily be
A Z YLV Fa(x L"), (2) extended to several such variables.

n=0
and obtain a series of functiong,. Each F, is then
expanded as a Taylor series up to ordgr

In the simulationA was evaluated as a function of dis-
order W for a range of system sizds The best fit was
P determined by minimizing the? statistic [21]. This is
F,(xL'") = Z X" L™ Frp . (3) Justified if we suppose a uniform prior probability for
m=0 all parameters, that the deviations between the model and
To take account of nonlinearities in the scaling variableghe simulation data are purely random in origin and dis-
we expand both in terms of the dimensionless disordetributed following a Gaussian distribution [21]. This last
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TABLE I. The disorder distribution (B: box; G: Gaussian; L: 0.66

Lorentz), the type of fit, the range of disordBf, the number

of dataN,, the number of parameterg,, the value ofy? for 0.64

the best fit, and goodness of ff. The system sizes used were

L =4,5,6,8, 10,12, and 14. 0.62

Disorder ng n; mgp mjp w Ny Np X2 Q

B 3 1 2 0 1518 224 12 214 05 %

G 2 1 2 0 202,222 175 10 174 0.3 058

L 2 2 1 0 41,45 224 12 203 0.7 i '
< 056

assumption is also important in determining the likely 0.54

accuracy to which the critical parameters have been esti- ™

mated. Since the inclusion of corrections to scaling al- .,

lows for systematic rather than just random deviations ]
from scaling in the numerical data, this assumption is ggg
more reasonable here than when corrections to scaling are
neglected. Therefore we expect the estimates of the ac- ' L ' L . L .
curacy of the critical exponent, etc., to be more reliable. 41 42 4.3 44 45
The model (2)—(4) is nonlinear in some parameters so the
goodness of fiQ has been checked using a Monte CarloFIG. 1. A as a function of disorder for the three dimensional
technique and the confidence intervals evaluated by re-loyd model. The solid lines are the fit (2)—(4).
sampling [22,23].

The inclusion of the corrections in (2)—(4) leads to aA.. This is strong evidence in favor of the universality of
rapid increase in the number of fitting parameters, andhe critical exponent and other critical parameters.
high quality data are essential if meaningful fits are to How do the results of the present analysis compare with
be obtained. All data used here have an accuracy dthose obtained when corrections to scaling are neglected?
either0.1% or 0.05%. To achieve this accuracy between In Table Il we give the results obtained for the same po-
10° and 107 iterations in the transfer matrix method tentials neglecting corrections. The first thing to notice is
were required. When deciding which correction termsthat the range of system sizes (and in the box distribution,
to include we attempted to maximize the goodness othe range ofW) for which an acceptable fitg > 0.1)
fit @ while keeping the number of correction terms to acan be achieved is very limited. After discarding data for

minimum. the smaller system sizes, reasonable agreement is obtained
The details of the simulations and the types of fit usedoetween Tables Il and Ill. However, given the more

are listed in Table I. The estimated critical parameters

and their confidence intervals are given in Table Il. Some 0.66

typical data are displayed in Fig. 1. To exhibit scaling f
the data are replotted after subtraction of the appropriate 0.64
corrections in Fig. 2. The corrected data now fall on a I
single curve clearly exhibiting scaling in agreement with I
(6). The magnitude of the corrections needed to obtain 0.60
the scaling shown in Fig. 2 are of the order2s or so

0.62

for the smallest system size decreasing to ardud@ for 3 058 7
the largest system size. § 0.56 ]
The most important point to be drawn from Table Il is <8 '

that the estimates of the exponentor the three different 054 |
disorder distributions are in almost perfect agreement.
The same is true for the estimates of the critical parameter 0.52

0.50 -

TABLE Il. The best fit estimates of the critical disorder and
the critical exponent and theft5% confidence intervals. The 48 T Y
quantity A, = F(0) is expected to be universal. 0.00001  0.0001 0.001 0.01 0.1

W, A, v y L/
B 16.54(53,56) 0.576(74,78) 1.57(55,59)2.8(3.3,2.3) FIG._ 2. The data in Fig. 1_after subtraction of_ corrections to
G 21.29(28,31) 0.576(74,77) 1.58(55,61)3.9(5.9,2.7) scaling [see (5)] together with the scaling functions (6). Here

L 4.265(52,72) 0.579(76,88) 1.58(47,65)-2.5(3.2,1.3) & = &=lx|"”. The upper branch corresponds to the metallic
( ) ( ) ( r25( ) phase and the lower branch to the insulating phase.
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TABLE lll. Best estimates of the critical parameters when While in this paper we have concentrated on the
corrections to scaling are neglected. scaling of the correlation length in the three dimensional
L W W, A, v Anderson model, corrections of a similar nature may

5 =8 1617 16514(07.22) 057908,80) 1563 690 L, O E B e el satstcs. The

G =8 20.2,22.2 21.28(26,29) 0.577(76,78) 1.58(54,62) . . . e

L =10 41,45 4.275(72,78) 0.574(73,75) l.58(53,62)method we have described here_ is applicable in these
cases and, indeed, to any continuous quantum phase

transition.

limited range of system sizes, the estimates of the Part of this work has been carried out on supercomputer

accuracy to which the critical parameters have been ddacilities at the Institute for Solid State Physics, University

termined when corrections are neglected are too optief Tokyo.

mistic. The problem is more evident when looking at

less accurate, e.g0.2% data [24] for the box distri-

bution. Ignoring corrections to scaling, it was found

thatW, = 16.45 * 0.01, A, = 0.586 = 0.001, andv =

1.59 = 0.03. The estimates o, and A. are not con-

sistent with Table Il. The effect which gives rise to

this inconsistency can also be seen in the data for thes) £ Aprahamset al., Phys. Rev. Lettd2, 673 (1979).

Lloyd model dlspla_y_ed n Fig. 1. A systematic shift [3] For a review see B. Kramer and A. MacKinnon, Rep.
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