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Quantized Atom-Field Dynamics in Unstable Cavities
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We develop a quantum description for the dynamics of a single atom inside an unstable optical
resonator. For spherical mirrors with a finite Gaussian aperture we find a discrete complete set
of normalizable eigenmodes, their biorthogonal adjoint modes, eigenfrequencies, decay rates, and
overlap integrals. With these modes we formulate a quantum description for the coupled dynamics
of the field and a single atom inside the resonator. We find a strongly geometry and position
dependent nonexponential decay probability. Under certain special conditions one gets a modified
single-mode description incorporating the Petermann excess noise kaeteen on a single-atom level.
[S0031-9007(99)09083-3]

PACS numbers: 42.50.—p, 32.80.—t, 42.25.Bs, 42.60.Da

The phenomenon of excess spontaneous emission noige as depicted in Fig. 1. Surprisingly, even for unstable
inside unstable resonators was theoretically predicted bsesonators, i.e.f < 0, one still finds self-reproducing
Petermann [1] and experimentally observed by measurinfield configurations with finite norm, if the mirrors are
the enhanced linewidth of a gain-guided single-mode semiassumed to have a Gaussian reflectivity profile with width
conductor laser [2]. The excess noise factofgctorywas Lg [13].
introduced as the discrepancy between the theoretically ex- The slowly varying amplitude of these field “modes”
pected natural linewidth using the Schawlow-Townes for-calculated in the paraxial approximation reads within the
mula [3-5] and the experimentally measured linewidth,symmetry plane = 0 as follows:
which in high gain unstable lasers or in gain-guided semi- _ 2 (22
conductor lasers was observed to reach considerable values tn(x) = cnHy(pox)e” /200 7R, 1)

[6,7]. A somehow controversial explanation connectingwith the beam waistwi = 2z0/kn(1 + r3/z3), radius
the K factor with the nonorthogonality of the cavity modes of curvaturer, = ro(1 + z3/r3), and transverse scaling
was first given by Siegman [8] already nine years ago. Foy,, = /ik,/g,. n is a combined longitudinal and trans-
plane wave resonators alternative explanations by a solyerse mode index. The only remaining free parame-
tion of the real space propagation equations were founghy is the complex source poimty = L/2/1 — 4/1 =

by several groups [5,9]. In a recent paper Poizat and c0z + 7, which is directly linked to the cavity parame-
workt_ars_ [10] p0|_nted out that_the effect of EXCeSS NOISe CaRprs: | — L /f + i/N and N = wL%/AL would be the

be mimicked using a simple input-output model involving Fregnel number of a corresponding hard-edged spherical
3 modes. . _ mirror. With respect to the analytical solvability, we fo-

Recently the validity of Siegman’s rule for a trans- o5 on the case of Gaussian apertures instead of the more
versely instable geometry has been extensively experjsopylar case of hard-edged unstable mirrors which gener-
mentally tested in a series of beautiful experlmentsa”y lead to much largek factors.
by Woerdman and co-workers [11,12]. Nevertheless, a Tnese quasimodes are calculated by using a self-
simple physical picture and a clear mathematical justiyeproducing condition after one full cavity round trip,

fication to our knowledge is still missing. The centralj ¢ ' these modes are eigenfunctions of Huygens integral
problem is to find a proper quantum description of the

electromagnetic field in a finite transversly unstable cav-
ity, as there exists no orthonormal mode basis for the field. 4
What means the existence of “photons/vacuum fluctua-
tions” in such modes? Is it possible to reduce the system
to a single effective mode case? Can a spontaneous emis-
sion rate be associated with the atomic decay in such a f
cavity? By reducing the system to the simplest possible
nontrivial case and trying to go analytically as far as pos-
sible we try to shed some light on these questions.

To build up a consistent physical theory we restrict
ourselves to the simplest system containing the essential

properties, namely a quasi-1D resonator with length FiG. 1. Scheme of a possible unstable cavity setup within the
and two symmetric cylindrical mirrors of focal length negative focal length regime.
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operator [14] with eigenvalueg, = (Zg;—iﬁ)zfl“, While a single atom. The normalization is chosen such that
the modulus ofy, is one for a stable cavity, its magnitude (#,,u,) = 1, which automatically implie¢v,,, v,) = K,.
decreases very rapidly for the unstable case. As the fielJote that in the case of symmetric resonators the adjoint
a, = e ™y, must be multiplied with a real and positive modes are proportional to the complex conjugates of the
factor for each round trip to ensure the correct boundarynodes, i.e.p,(x) = ¢'¢"\/K, u;(x). [For stable cavities

conditions on the mirrors we can determine the allowedne hasv,(x) = u,(x) andK, = 1.] Since these mode

wave numbers to find,,, = [m7 + (n + %)argyo]/[,_ pairs fulfill the completeness relation
As one can show, the modes(x) are complete and sz(x)un(x/) = 5(x — 1),
biorthogonal to a unique set of adjoint modes n
vy (x) = &,H, (pg‘x)e“kn/z'?o)xze*<x2/w3>. 2 every field distribution can be expanded uniquely either in

the modes or in the adjoint modes. For our purpose, we
The normalization factors, andé¢, are chosen such that expand the field operators in the following way:

f dx i (Vun(x) =1, Ax,1) = > \Jhi/2€0w, [a,(Du,(x) + bl (0)v}(x)],
f dx v, (xX)up(x) =8um ,
f dx v, (x)v,(x) =K, .

We thus have found a countable and normable basighich can be inverted to give

set for our cavity field including the geometric losses

through finite mirrors. Let us remark here th&l is  a,(t) = —i\/eo/ZIiwnfdxv,j(x) [E(x,t) + iw,Alx,1)],
simply the Petermann noise factor as defined by Siegman ©6)
[8] and represents the norm of the adjoint modes. For
symmetric cavities it is easy to see that at 0 the modes b’;r(t) = i,/eo/zﬁwn / dxu,(x)[E(x,1) — iw,Alx,1)].
are just proportional to the complex conjugate of their

(4)

E(x,1) =i ) \/liw,/2€ [an(t)u,(x) — bl (0)v;(x)],
n (5)

adjoint modes, i.e.,(x) = ¢'*"/K, u}(x) with a given (7)
phasegp,,. {a,,b!} are the annihilation and creation operators
It is now interesting to compare the field decay rate  for the corresponding mode/adjoint mode pairs, with
c ¢ 1 w(L/2) commutators:
n=—=—1lo n=_<+_>| T A w, t oy *
o =~ lodlyal = o Jlog s [an,by] = S5 =—=="| dxv;(utn(x) = Sum,  (8)
. . . . 2 wnwm
where we have generalized thelepending waist function o + o

w2(z) = 2z0/ks[1 + (ro + 2)?/23], with the transverse  [a,,al] =
mode spacing module N

Moo= Jag = T[W(L/2) = VL/D], @) [bubf]= L

2w om
expressed in terms of the generalized Gouy phlage =
arctan"’%, as illustrated in Fig. 2. For unstable cavities 35
(L/f <0orL/f > 4)and alarge Gaussian aperture the
transverse modespacing modutois almost zero, which
gives rise to a large frequency degeneracy. Hetwe,
is normally much smaller thag, and the geometric losses
are dominant. Note that the edges at the two critical points
are washed out for small Fresnel numbers, but the gen-
eral dependence is only weakly influenced by the Fresnel
number. Hence a single transverse mode treatment for un-
stable resonators is physically very doubtful if not uncor-
rect. Atoms inside the cavity interact not only with one
single-mode/adjoint mode pair, but are substantially cou-
pled to a whole set of spectrally overlapping modes. This
will turn out important to calculate the spontaneous emisFIG. 2. The loss ratex, (dashed line) and the transverse

; ; ; ; mode spacingAw, (solid line) inside an optical resonator
SI?/r\]/ rate_l:nvokmg matlﬁy rg_odte;]s and cillfferzm‘actors' characterized by the ratib/f and the Fresnel numbén)N =
e will now use the biorthogonal mode sgt,. v, 5 and (b)N = 50. Note thatAw, exeedsk, only for stable

to derive a proper quantum description of the transversgssonators, wherd./f is localized betweerd and 4, but
field dynamics and apply it to study its interaction with effectively vanishes in loss dominated unstable cases.

f dx VX (X)um(x) = Bums  (9)

dx ), (xX)up(x) = Ay, (10)
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where A,,, and B,,, are overlap integrals between the statep(0) = |n;) (ni| decays like
various cavity modes. Strictly speaking, this field expan- SN _ _
sion makes sense only for complete frequency degeneracy pO) = =2nwip(0) + 2nsciln = 1 Gn = 1l
w, = w,, Which is approximately valid in the limit of Finally, let us introduce an atom interacting with the
large enough transverse extensions. intracavity electromagnetic field. Starting from a minimal
Using these operators one can write the Hamiltonian irfoupling Hamiltonian and reducing the interaction to two
a canonical form (neglecting in general terms oscillatingsignificant atomic levels with transition frequenay, a
with +(w, + ®,), which cancel for symmetric cavities) modified Jaynes-Cummings-Hamiltonian can be found:

— wa o N
H = %fdx:EZ(x, 1)+ 2B x,1) == > hw,b)a,. Hic = H + =% o l;(gna'+an 2n_idiy).
n

Formally, everything looks completely familiar except for

Note that for unstable systems, where # u,, and hence ) . .
the coupling, where we havg, # g, or explicitly:

a, # b, the individual contributions to this Hamiltonian
are no longer explicitly Hermitian. However, the non-
Hermitian parts cancel approximately within the sum g, = Uy * degs gn = e, Un deg, (14)
since the overlap matrices in Egs. (9) and (10) are €o
just inverse, i.e.> ; AuBim = > BuAim = 6um @S a with d., being the atomic dipole matrix element. Again
consequence of the completeness relation. This implie® the special case of stable cavities, we haye= u,
a degeneracy between left and right eigenstates given byand g, = g,. For symmetric unstable cavities we have
b‘rnl b]‘nz Up = Kne“pnl’_‘: andgn = Kneil(pngn-
lny,na,...) = ——= —2—...|0), (11) _In the foI_Iowmg we explore_some key consequences of
NCRNT this dynamics. As the most simple nontrivial example we
prepare a single excited atom inside the empty cavity and
. , 12 calculate the probability (r) for a transition to the ground
Vol /n! (12 state. This yields
which are biorthogonal fulfilling (2]m) = 8,,,, with 1.
n = {ni,ny..},m = {my,m,..}. The eigenstates have p(t) = ; 2 184178, (1), (15)
analogous properties to-photon Fock states with energy |+ =20 — 2 COSA . fo—fot
E, = h(w1n; + wyny + ...). These eigenstates are not 5,(1) = € nte
orthogonal with respect to the standard scalar product A7+ K
(SP)(:I)). Itis, however, possible to introduce a suitably whereA, = w, — w,4 denotes the detuning.
defined SR:|-) so that they are mutually orthogonal. The  Qpviously each contribution is proportional to the
respective adjoint operation, denotedbyhas the useful corresponding adjoint couplingg,|?, because only the
propertya, = b\, so that_(-la,,-) = (b} |> with respect  atomic lowering terms contribute. If for some conditions
to the new SP the left eigenstates are just the adjoint ahis sum is dominated by a particular mode contribution

ho, how,

260

—~ a;z a']’ll
(I’l],nz,...l = (Ol

. (16)

the right eigenstates, i.e(s,ns,... = {n1,ns,...| and  ny, the transition probability directly involves i#§ factor.
the Hamiltonian reads Indeed, for certain parameters (off the critical quasiplanar

. or quasiconcentric case and moderate detunidgg) is

H = gh“’"a"“"' (13) " sharply peaked around the ground mode(cf. Fig. 3),

because the damping factes? in the denominator is

As we are dealing with a lossy system the mode amp"'small only for the lowest order modes. In particular,

tude decays exponentially with a mean rate Physically

a fraction of the energy is scattered into the continuum 2 —
modes outside the cavity, which in a proper quantum treat- 18 5.(1)
ment has to be included by an input-output coupling [15]. 16

After some manipulation one finds the following master
equation for the field density operator, i.e.,

. i - - ~
P = _E[H,P] + ZKH{Zanpan — dn@np — panan}.
n

This master equation yields familiar results for the time
evolution of the expectation values of our creation and o
annihilation operators mode index n
(a,) = (—iw, — K,){ay), (@) = (iw, — k,){@,), FIG.3. The factors,(r at a fixed times=20L/c is

) ] o _decreasing quite rapidly with the transverse mode index at least
reﬂeCtlng dlreCtIy the damp6d oscillation of the CaV|tywithin the unstable regimé = —5, N = 100 near resonance

modes and adjoint modes in time. Similarly aiphoton  Ag/Aw, = 5.
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wWe————————— detuning. The validity of all these last approximations
is, as one can see, rather limited, which renders the

B L8, excess noise factdk a rather superficial quantity in this

20l context. One can only expect it to give some qualitative
estimates. However, in the case of an active medium,

15} as, e.g., a laser, where gain compensates the losses for
a particular selected mode, the situation can be different

101 1 and Siegman’s predictions should be also quantitatively
accurate.

di In conclusion, we have shown that a quantum de-
scription of the field in an unstable cavity in terms of

R t[f}c] 2116 1820 guasimodes implies important modifications compared to
standard cavity QED. Although we have investigated
FIG. 4. The transition probability (1) = 3., 8,(t) for param-  only a small fraction of its implications, we have found
(therSZa_s |n6F|]9. 3 shows ff'm overda.mpedl t:.me dependengg,; and somehow surprising dynamical consequences.
o/ = 0.06 after growing first approximately linear. We believe to have shown that under certain well-defined
) _ . conditions as mentioned in our work the concept of khe
the lowest loss rata, is already three (or even five, if factor does have a meaning even for a single atom. This
the atom is localized along the optical axis where odthag created some controversy in the past and we think that
modes are identically zero) times smaller than for they,r work shows the applicability as well as the limitations
next participating moder;, ;). For modes with other  of this kind of physical picture. In general, madyfac-
longitudinal wave numbers the large detunifg in the o5 will show up in the dynamics and only one gets some
denominator prevents a significant contribution. effective average effect. This work was supported by the

Let us now fry to extract a spontaneous emission rat@syrian FWF under Grants No. S6506 and No. S13435.
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