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Quantized Atom-Field Dynamics in Unstable Cavities
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We develop a quantum description for the dynamics of a single atom inside an unstable o
resonator. For spherical mirrors with a finite Gaussian aperture we find a discrete comple
of normalizable eigenmodes, their biorthogonal adjoint modes, eigenfrequencies, decay rate
overlap integrals. With these modes we formulate a quantum description for the coupled dyn
of the field and a single atom inside the resonator. We find a strongly geometry and po
dependent nonexponential decay probability. Under certain special conditions one gets a mo
single-mode description incorporating the Petermann excess noise factorK even on a single-atom level.
[S0031-9007(99)09083-3]

PACS numbers: 42.50.–p, 32.80.– t, 42.25.Bs, 42.60.Da
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The phenomenon of excess spontaneous emission n
inside unstable resonators was theoretically predicted
Petermann [1] and experimentally observed by measur
the enhanced linewidth of a gain-guided single-mode sem
conductor laser [2]. The excess noise factor (K factor) was
introduced as the discrepancy between the theoretically
pected natural linewidth using the Schawlow-Townes fo
mula [3–5] and the experimentally measured linewidt
which in high gain unstable lasers or in gain-guided sem
conductor lasers was observed to reach considerable va
[6,7]. A somehow controversial explanation connectin
theK factor with the nonorthogonality of the cavity mode
was first given by Siegman [8] already nine years ago. F
plane wave resonators alternative explanations by a so
tion of the real space propagation equations were fou
by several groups [5,9]. In a recent paper Poizat and c
workers [10] pointed out that the effect of excess noise c
be mimicked using a simple input-output model involvin
3 modes.

Recently the validity of Siegman’s rule for a trans
versely instable geometry has been extensively expe
mentally tested in a series of beautiful experimen
by Woerdman and co-workers [11,12]. Nevertheless,
simple physical picture and a clear mathematical jus
fication to our knowledge is still missing. The centra
problem is to find a proper quantum description of th
electromagnetic field in a finite transversly unstable ca
ity, as there exists no orthonormal mode basis for the fie
What means the existence of “photons/vacuum fluctu
tions” in such modes? Is it possible to reduce the syste
to a single effective mode case? Can a spontaneous em
sion rate be associated with the atomic decay in such
cavity? By reducing the system to the simplest possib
nontrivial case and trying to go analytically as far as po
sible we try to shed some light on these questions.

To build up a consistent physical theory we restri
ourselves to the simplest system containing the essen
properties, namely a quasi-1D resonator with lengthL
and two symmetric cylindrical mirrors of focal length
0031-9007y99y82(19)y3787(4)$15.00
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f, as depicted in Fig. 1. Surprisingly, even for unstab
resonators, i.e.,f , 0, one still finds self-reproducing
field configurations with finite norm, if the mirrors are
assumed to have a Gaussian reflectivity profile with wid
LG [13].

The slowly varying amplitude of these field “modes”
calculated in the paraxial approximation reads within th
symmetry planez ­ 0 as follows:

unsxd ­ cnHnsp0xde2iskny2R0dx2

e2sx2yw2
0 d , (1)

with the beam waistw2
0 ­ 2z0ykns1 1 r2

0 yz2
0d, radius

of curvatureR0 ­ r0s1 1 z2
0yr2

0 d, and transverse scaling
p0 ­

p
iknyq0. n is a combined longitudinal and trans-

verse mode index. The only remaining free param
ter is the complex source pointq0 ­ Ly2

p
1 2 4yl ;

r0 1 iz0, which is directly linked to the cavity parame-
ters; l ­ Lyf 1 iyN and N ­ pL2

GylL would be the
Fresnel number of a corresponding hard-edged spheri
mirror. With respect to the analytical solvability, we fo-
cus on the case of Gaussian apertures instead of the m
popular case of hard-edged unstable mirrors which gen
ally lead to much largerK factors.

These quasimodes are calculated by using a se
reproducing condition after one full cavity round trip,
i.e., these modes are eigenfunctions of Huygens integ

FIG. 1. Scheme of a possible unstable cavity setup within th
negative focal length regime.
© 1999 The American Physical Society 3787
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operator [14] with eigenvaluesgn ­ s q02Ly2
q01Ly2 d2n11. While

the modulus ofgn is one for a stable cavity, its magnitude
decreases very rapidly for the unstable case. As the fi
an ­ e2iknzun must be multiplied with a real and positive
factor for each round trip to ensure the correct bounda
conditions on the mirrors we can determine the allowe
wave numbers to findknm ­ fmp 1 sn 1

1
2 d argg0gyL.

As one can show, the modesunsxd are complete and
biorthogonal to a unique set of adjoint modes

ynsxd ­ c̃nHnspp
0xdeiskny2R0dx2

e2sx2yw2
0 d. (2)

The normalization factorscn andc̃n are chosen such thatZ
dx up

nsxdunsxd ­1 ,Z
dx yp

nsxdumsxd ­dnm ,Z
dx yp

nsxdynsxd ­Kn .

We thus have found a countable and normable ba
set for our cavity field including the geometric losse
through finite mirrors. Let us remark here thatKn is
simply the Petermann noise factor as defined by Siegm
[8] and represents the norm of the adjoint modes. F
symmetric cavities it is easy to see that atz ­ 0 the modes
are just proportional to the complex conjugate of the
adjoint modes, i.e.,ynsxd ­ eiwn

p
Kn up

nsxd with a given
phasewn.

It is now interesting to compare the field decay rate

kn ­ 2
c

2L
logjgnj ­

c
L

µ
n 1

1
2

∂
log

wsLy2d
ws2Ly2d

,

where we have generalized thez-depending waist function
w2szd ­ 2z0yknf1 1 sr0 1 zd2yz2

0g, with the transverse
mode spacing modulop

Dv' ­
c
L

argg0 ­
c
L

fCsLy2d 2 Cs2Ly2dg , (3)

expressed in terms of the generalized Gouy phaseCszd ­
arctanr01z

z0
, as illustrated in Fig. 2. For unstable cavitie

sLyf , 0 or Lyf . 4d and a large Gaussian aperture th
transverse modespacing modulop is almost zero, which
gives rise to a large frequency degeneracy. HereDv'

is normally much smaller thank0 and the geometric losses
are dominant. Note that the edges at the two critical poin
are washed out for small Fresnel numbers, but the g
eral dependence is only weakly influenced by the Fres
number. Hence a single transverse mode treatment for
stable resonators is physically very doubtful if not unco
rect. Atoms inside the cavity interact not only with on
single-mode/adjoint mode pair, but are substantially co
pled to a whole set of spectrally overlapping modes. Th
will turn out important to calculate the spontaneous em
sion rate invoking many modes and differentK factors.

We will now use the biorthogonal mode sethun, ynj
to derive a proper quantum description of the transver
field dynamics and apply it to study its interaction wit
3788
eld

ry
d

sis
s

an
or

ir

s
e

ts
en-
nel
un-
r-
e
u-
is

is-

se
h

a single atom. The normalization is chosen such th
sun, und ­ 1, which automatically impliessyn, ynd ­ Kn.
Note that in the case of symmetric resonators the adjoi
modes are proportional to the complex conjugates of th
modes, i.e.,ynsxd ­ eiwn

p
Kn up

nsxd. [For stable cavities
one hasynsxd ­ unsxd and Kn ­ 1.] Since these mode
pairs fulfill the completeness relationX

n
yp

nsxdunsx0d ­ dsx 2 x0d ,

every field distribution can be expanded uniquely either i
the modes or in the adjoint modes. For our purpose, w
expand the field operators in the following way:

Asx, td ­
X
n

q
h̄y2e0vn fanstdunsxd 1 by

n stdyp
nsxdg ,

(4)

Esx, td ­i
X
n

q
h̄vny2e0 fanstdunsxd 2 by

n stdyp
nsxdg ,

(5)

which can be inverted to give

anstd ­ 2i
q

e0y2h̄vn

Z
dxyp

nsxd fEsx, td 1 ivnAsx, tdg ,

(6)

by
n std ­ i

q
e0y2h̄vn

Z
dxunsxd fEsx, td 2 ivnAsx, tdg .

(7)

han, by
n j are the annihilation and creation operator

for the corresponding mode/adjoint mode pairs, wit
commutators:

fan, by
mg ­

vn 1 vm

2
p

vnvm

Z
dx yp

nsxdumsxd ­ dnm , (8)

fan, ay
mg ­

vn 1 vm

2
p

vnvm

Z
dx yp

nsxdymsxd ø Bnm , (9)

fbn, by
mg ­

vn 1 vm

2
p

vnvm

Z
dx up

nsxdumsxd ø Anm , (10)

FIG. 2. The loss ratek0 (dashed line) and the transverse
mode spacingDv' (solid line) inside an optical resonator
characterized by the ratioLyf and the Fresnel numbersadN ­
5 and sbdN ­ 50. Note thatDv' exeedsk0 only for stable
resonators, whereLyf is localized between0 and 4, but
effectively vanishes in loss dominated unstable cases.
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where Anm and Bnm are overlap integrals between th
various cavity modes. Strictly speaking, this field expa
sion makes sense only for complete frequency degener
vn ­ vm, which is approximately valid in the limit of
large enough transverse extensions.

Using these operators one can write the Hamiltonian
a canonical form (neglecting in general terms oscillatin
with 6svn 1 vmd, which cancel for symmetric cavities)

H ­
e0

2

Z
dx:E2sx, td 1 c2B2sx, td :­

X
n

h̄vnby
n an .

Note that for unstable systems, whereyn fi un and hence
an fi bn the individual contributions to this Hamiltonian
are no longer explicitly Hermitian. However, the non
Hermitian parts cancel approximately within the sum
since the overlap matrices in Eqs. (9) and (10) a
just inverse, i.e.,

P
k AnkBkm ­

P
k BnkAkm ­ dnm as a

consequence of the completeness relation. This impl
a degeneracy between left and right eigenstates given

jn1, n2, . . .d ­
b

yn1
1p
n1!

b
yn2
2p
n2!

. . . j0d , (11)

gsn1, n2, . . . j ­ s0j . . .
a

n2
2p
n2!

a
n1
1p
n1!

, (12)

which are biorthogonal fulfilling senjmd ­ dnm, with
n ­ hn1, n2, . . .j, m ­ hm1, m2, . . .j. The eigenstates have
analogous properties ton-photon Fock states with energy
En ­ h̄sv1n1 1 v2n2 1 . . .d. These eigenstates are no
orthogonal with respect to the standard scalar produ
(SP)s?j?d. It is, however, possible to introduce a suitabl
defined SPk?j?l so that they are mutually orthogonal. Th
respective adjoint operation, denoted by,, has the useful
propertyãn ­ by

n , so thatk?jan?l ­ kby
n ?j?l with respect

to the new SP the left eigenstates are just the adjoint

the right eigenstates, i.e., gsn1, n2, . . . ­ kn1, n2, . . . j and
the Hamiltonian reads

H ­
X
n

h̄vnãnan . (13)

As we are dealing with a lossy system the mode amp
tude decays exponentially with a mean ratekn. Physically
a fraction of the energy is scattered into the continuu
modes outside the cavity, which in a proper quantum tre
ment has to be included by an input-output coupling [15
After some manipulation one finds the following maste
equation for the field density operator, i.e.,

Ùr ­ 2
i
h̄

fH, rg 1
X
n

knh2anrãn 2 ãnanr 2 rãnanj .

This master equation yields familiar results for the tim
evolution of the expectation values of our creation an
annihilation operators

Ùkanl ­ s2ivn 2 knd kanl, k Ùãnl ­ sivn 2 knd kãnl ,

reflecting directly the damped oscillation of the cavit
modes and adjoint modes in time. Similarly ann-photon
e
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staters0d ­ jnkl knkj decays like

Ùrs0d ­ 22nkkrs0d 1 2nkkjn 2 1kl kn 2 1k j .

Finally, let us introduce an atom interacting with th
intracavity electromagnetic field. Starting from a minima
coupling Hamiltonian and reducing the interaction to tw
significant atomic levels with transition frequencyvA a
modified Jaynes-Cummings-Hamiltonian can be found:

HJC ­ H 1
vA

2
sz 2 i

X
n

sgns1an 2 g̃ns2ãnd .

Formally, everything looks completely familiar except fo
the coupling, where we havẽgn fi gp

n, or explicitly:

gn ­

s
h̄vn

2e0
un ? deg; g̃n ­

s
h̄vn

2e0
yp

n ? deg , (14)

with deq being the atomic dipole matrix element. Agai
in the special case of stable cavities, we haveyn ­ un

and g̃n ­ gn. For symmetric unstable cavities we hav
yn ­

p
Kneiwn up

n andg̃n ­
p

Kne2iwn gn.
In the following we explore some key consequences

this dynamics. As the most simple nontrivial example w
prepare a single excited atom inside the empty cavity a
calculate the probabilitypstd for a transition to the ground
state. This yields

pstd ­
X
n

1
h̄2 jg̃nj2dnstd , (15)

dnstd ­
1 1 e22knt 2 2 cosDnte2knt

D2
n 1 k2

n
, (16)

whereDn ­ vn 2 vA denotes the detuning.
Obviously each contribution is proportional to th

corresponding adjoint couplingjg̃nj2, because only the
atomic lowering terms contribute. If for some condition
this sum is dominated by a particular mode contributio
n0, the transition probability directly involves itsK factor.
Indeed, for certain parameters (off the critical quasiplan
or quasiconcentric case and moderate detunings)dnstd is
sharply peaked around the ground moden0 (cf. Fig. 3),
because the damping factork2

n in the denominator is
small only for the lowest order modes. In particula

FIG. 3. The factor dnstd at a fixed time t ­ 20 Lyc is
decreasing quite rapidly with the transverse mode index at le
within the unstable regimefL ­ 25, N ­ 100 near resonance
D0yDv' ­ 5.
3789
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FIG. 4. The transition probabilitypstd ~
P

n dnstd for param-
eters as in Fig. 3 shows an overdamped time depende
D

2
0yk

2
0 ­ 0.06 after growing first approximately linear.

the lowest loss ratek0 is already three (or even five, if
the atom is localized along the optical axis where od
modes are identically zero) times smaller than for th
next participating modessn1, n2d. For modes with other
longitudinal wave numbers the large detuningD2

n in the
denominator prevents a significant contribution.

Let us now try to extract a spontaneous emission ra
from this formula. Approximating the couplingjg̃nj2

by a constant over the contributing modes (for larg
longitudinal mode numbers as for infrared or optica
frequencies the modes are varying smoothly with th
transverse mode index), we obtain

pstd ø
1
h̄2 jg̃n0 j

2
X
n

dnstd . (17)

Assuming moderate values for the excess noise facto
spontaneous emission rate, which could be inferred fro
the slope of the transition probability at timet ø 0, reads

g ­
1
h̄2 jg̃n0 j

2GsvAd, GsvAd ­
d

dt

X
n

dnstd

É
tø0

,

(18)
where theGsvAd is determined by the geometric cavity
properties. Note that the derivative of each term is ze
at time t ­ 0. The notation d

dt should be understood
in the sense that the accumulated transition probabil
effectively grows linear for small times and the respectiv
slope is to be used here as shown in Fig. 4.

As outlined above for symmetric cavities we hav
ynsxd ­ eiwn

p
Knup

nsxd and the spontaneous emissio
rate within these approximations reads

g ­ GsvAd
vA

2h̄e0
jun0 ? degj2Kn0 . (19)

Indeed it is enhanced by the excess noise factorKn0 of
the lowest order transverse moden0 with the smallest
3790
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detuning. The validity of all these last approximation
is, as one can see, rather limited, which renders
excess noise factorK a rather superficial quantity in this
context. One can only expect it to give some qualitati
estimates. However, in the case of an active mediu
as, e.g., a laser, where gain compensates the losses
a particular selected mode, the situation can be differ
and Siegman’s predictions should be also quantitativ
accurate.

In conclusion, we have shown that a quantum d
scription of the field in an unstable cavity in terms o
quasimodes implies important modifications compared
standard cavity QED. Although we have investigate
only a small fraction of its implications, we have foun
new and somehow surprising dynamical consequenc
We believe to have shown that under certain well-defin
conditions as mentioned in our work the concept of theK
factor does have a meaning even for a single atom. T
has created some controversy in the past and we think
our work shows the applicability as well as the limitation
of this kind of physical picture. In general, manyK fac-
tors will show up in the dynamics and only one gets som
effective average effect. This work was supported by t
Austrian FWF under Grants No. S6506 and No. S1343
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