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Several Theorems in Time-Dependent Density Functional Theory
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The time dependence of the exchange-correlation energy in density functional theory is giv
terms of the exchange-correlation potential. The virial theorem for the exchange-correlation po
is shown to hold fortime-dependentelectronic systems and is illustrated by an exactly solved mod
Hooke’s atom with a time-dependent force constant. A relation between the coupling constan
functionals evaluated on scaled densities is derived. [S0031-9007(98)08169-1]
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Ground-state electronic density functional theory (DFT
has long been used to perform electronic structure calc
lations of solids and has recently become popular in qua
tum chemistry [1]. Many useful properties can be derive
from calculations of ground-state electronic energies, su
as geometric and vibrational structure and static respon
functions.

An important part of making DFT results useful to the
broad community of users has been in improving the a
curacy of approximations to the exchange-correlation e
ergy functional,EXCfng, the only part of the energy which
must be approximated in a Kohn-Sham calculation [2
A vital part of this approach, in turn, has been the stud
of exact conditions satisfied by density functionals, esp
cially the exchange and correlation energies. A simp
example is that the correlation energy is never positiv
and always finite [3]. Satisfaction of energetically rele
vant conditions is often used to guide construction o
approximations, such as the Perdew-Burke-Ernzerh
generalized gradient approximation [4]. This functional i
now commonly used in electronic structure calculations.

In the past several years, interest has grown intime-
dependentdensity functional theory (TDDFT), which is
now a very active research area [5]. There is a weal
of applications for an accurate theory, such as atom
molecules, and solids in intense laser fields [6], dynam
response properties [7], and electronic spectroscopy [
A fully developed TDDFT would allow, e.g., study of
optical limiting materials [9] or electron dynamics on a
femtosecond time scale [10].

While formal TDDFT was put on solid ground with the
Runge-Gross theorem [11] (the analog of the Hohenber
Kohn theorem), exploration of the exact propertie
of time-dependent functionals is still in its infancy.
Several exact conditions have been found, includin
Newton’s third law [12], which implies that the net
exchange-correlation force must vanish, and transl
tional invariance, which states that the time-depende
exchange-correlation potentialyXCsrtd for a boosted
static density will be that of the unboosted density, evalu
ated at the boosted point. The latter theorem, appli
to a harmonic potential, showed that the Gross-Koh
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approximation [13] for frequency-dependent respons
properties violates the Kohn theorem [14]. This led t
several new approximations [15], which overcome th
difficulty, but remain largely untested.

In this work, we take a different approach from previ
ous workers, in that we consider the energy componen
of the system, even though the total energy is not co
served. We find several simple relations satisfied by the
energy components, which are then restrictions which a
proximate functionals should satisfy. We also derive th
relation between coordinate scaling and the adiabatic co
pling constant.

We begin our proofs with the Heisenberg equatio
of motion for any operator̂A on a quantum-mechanical
system:

ÙA 

*
≠Â
≠t

+
1

i
h̄

kfĤ, Âgl , (1)

where A  kÂl, and the dot denotes a time derivative
We apply this to a system ofN identical particles, with
Ĥ  T̂ 1 V̂ , where T̂ is the kinetic energy operator,
and V̂ is the potential energy operator. For interactin
electronic systems, the potential consists of a tim
dependent one-body contribution,Vextstd, and a two-body
contribution, Vee, the Coulomb interaction between the
electrons. Applying Eq. (1) tôA  Ĥ itself, we find

ÙT 1 ÙVee 1 ÙVext 

*
≠Vext

≠t

+
. (2)

SinceVext 
R

d3r nsrtdyextsrtd,

ÙT 1 ÙVee  2
Z

d3r Ùnsrtdyextsrtd . (3)

So far, we have simply derived a general result fo
time-dependent quantum mechanics. But we now app
this to the Kohn-Sham system, i.e., that fictitious syste
of noninteracting particles which has the same time
dependent densitynsrtd. Thus

ÙTS  2
Z

d3r ÙnsrtdySsrtd , (4)

whereTS is the noninteracting kinetic energy andySsrtd
is the Kohn-Sham potential. Analogous to the groun
© 1999 The American Physical Society
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state [2], we write TC  T 2 TS and EXC  Vee 2

U 1 TC, where U is the Hartree energy, whileyS 
yext 1 yH 1 yXC, where yH is the Hartree potential.
These are all time-dependent quantities here, and ene
is not conserved. SinceÙU 

R
d3r ÙnsrtdyHsrtd, we find,

subtracting Eq. (4) from (3),
dEXC

dt


Z
d3r ÙnsrtdyXCsrtd . (5)

The time dependence of the exchange-correlation ene
is solely determined by the exchange-correlation potenti

Another simple result is the virial theorem. We write
Â 

P
asri , pid, whereri is the position of theith particle

and pi is its momentum, and choosea  sr ? p 1 p ?

rdy2:
1
2

d
dt

ksr ? p 1 p ? rdl  2T 2

*X
i

ri ? =iV

+
. (6)

For a stationary state, the left-hand side vanishes, yieldi
the customary virial theorem [16]. SinceVee is homoge-
neous of degree21 in the coordinates, its virial is equal
to minus itself, yielding

1
2

d
dt

ksr ? p 1 p ? rdl  2T 1 Vee 2 kr ? =yextl .

(7)

To further simplify the left-hand side above, we conside
Eq. (1) for a  r2, finding mdkr2lydt  kr ? p 1 p ?

rl. Insertion into Eq. (7) yields
m
2

d2

dt2 kr2l  2T 1 Vee 2 kr ? =yextl . (8)

In the Kohn-Sham system, this becomes
m
2

d2

dt2 kr2l  2Ts 2 kr ? =ySl . (9)

Since the left side of Eq. (8) depends only on the densi
it is the same in both the physical and the Kohn-Sha
systems. Since the Hartree energy is also homogene
of degree21, we find

EXCfng std 1 TCfng std

 2
Z

d3r nsrtdr ? =yXCfng srtd . (10)

In deriving Eq. (10), we never requireyXC to be
a functional derivative, thereby avoiding the need t
define an action [5]. Equation (7) also implies an exa
condition on the Kohn-Sham density matrix:Z

d3r r ? =gsrr0tdjr0r 
Z

d3r r ? =gSsrr0tdjr0r .

(11)

A last theorem relates coordinate scaling to the co
pling constant for the electron-electron repulsion [17
The Schrödinger equation forN electrons is(

T̂ 1 V̂ee 2 i
≠

≠t

)
Csr1 . . . rN td  2V̂extCsr1 . . . rNtd .

(12)

[Note that we could have derived Eq. (7) by replacingri

by r0
iyg everywhere and takingdydgjg1 of both sides.]
rgy
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ConsiderClfng to be the solution of Eq. (12), but with
electron-electron repulsionlV̂ee, andyl

extsr, td chosen to
keep the density fixed (at itsl  1 value). Then let
ri ! gr0

i and t ! bt0 and multiply through byg2. If
we define

Cgbsr1 . . . rNtd  g3Ny2Csgr1 · · · grN btd , (13)

we find Eq. (12) becomes(
T̂ 1 lgV̂ee 2 i

g2

b

≠

≠t

)
Cl

gbfng  2g2V̂ l
extC

l
gbfng .

(14)

By choosingb  g2 andg  1yl, we findC
l
1yl,1yl2 fng

satisfies Eq. (12), i.e., is equal toCfng. (By the Runge-
Gross theorem, the potentials must be identical if th
densities are the same for both wave functions.) Thus

Clfng  Cll2 fn1yl,1yl2 g (15)

and, by subtracting out Hartree and Kohn-Sham contrib
tions,

yl
XCfng srtd  l2yXCfn1yl,1yl2 g slr, l2td . (16)

Thus any functional of the density, evaluated at couplin
constantl, can be written in terms of the physical func-
tional, evaluated on a scaled density at the scaled coor
nates. For example, following arguments first applied
the ground state [16],

EXfngg2 g std  gEXfng sg2td . (17)

Highly accurate calculations on time-dependent sy
tems are usually extremely demanding [5], making tes
of exact theorems and approximations very difficult i
TDDFT. We performed exact numerical calculation
on Hooke’s atom, two interacting electrons in paraboli
potential, with a time-dependent force constant,kstd 
mv2std. This model is solvable because

Csr1, r2, td  FsR, tdfsu, td , (18)

where R  sr1 1 r2dy2 and u  r2 2 r1. Each
wave function satisfies a single-particle time-depende
Schrödinger equation, e.g.,√

2
1

2m
=2 1

mv2std
2

u2 1
1
u

!
f  i Ùf , (19)

where m  my2 is the reduced mass. Thenf is ex-
panded in the adiabatic basis of instantaneous eigensta
of its Hamiltonian:

fsu, td 
X

j

bjstdxjfvstd; uge2iej fvstdgt , (20)

where√
2

1
2m

=2 1
mv2

2
u2 1

1
u

!
xjsv; ud  ejsvdxjsv; ud .

(21)
379
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These eigenstates in turn are solved by expanding
wave function in a power series inu times a Gaussian
[18]. The coefficientsbk satisfy

Ùbk  i Ùekbkt 2
X
jfik

bjk jj ÙV stdjkle2isej2ekdtysej 2 ekd ,

(22)

where ÙV  mv Ùvu2, and are solved numerically.
We start our system in the ground sta

at t  0 with v  v0 and then let vstd 
v0 1 sv1 2 v0d hsinfpstyt1 2

1
2 dg 1 1jy2, as shown

in Fig. 1. We show results for the time evolutio
with v0  0.5, v1  1, and t1  1 in atomic units
(e2  m  h̄  1). The first three occupation number
(in u) and the time-dependent frequency are shown
Fig. 1. By t  1.6, the system is about 30% excited
After t  1.6, the number ofu levels in our calculation
(12) were no longer sufficient to guarantee the accura
needed for the calculations shown below.

In Fig. 2, we plot T , Vext, and Vee as a function of
time, as well as12 md2kr2lydt2. Herekr ? =yextl  2Vext.
We find the virial theorem of Eq. (8) to be satisfied t
within 0.1 millihartree. If we contrast our results with a
adiabatic situation (in which the system remains in t
instantaneous ground state for all times), we see thaT
remains remarkably low, as the wave function takes tim
to respond to the stimulus.Vext grows, but then drops
after t  0.9, while v is still increasing. The Coulomb
repulsion barely changes during the entire run. Final
the large value of2sT 2 Vextd 1 Vee contrasts with its
vanishing in any single eigenstate.

Next, we calculate the exact Kohn-Sham potent
for this two-electron system. We have a single orbita
doubly occupied, but the calculation is more involve
than for a ground state, as the phase of the wa
function becomes important. We writefsrtd  eia

p
ny2

and insert this form into the time-dependent Kohn-Sha
equation. Requiring that the imaginary part ofySsrtd be

FIG. 1. Occupation numbers for theu wave function andvstd
(atomic units).
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zero yields

a0  2
1

nsr , tdr2

Z r

0
Ùnsr 0, tdr 02dr 0, (23)

where the prime indicatesdydr, and

yS 
1

2r

√
n0

n

!
1

n00

4n
2

1
8

√
n0

n

!2

2
1
2

a02 2 Ùa .

(24)

The last two terms arise purely from the time dependen
of the density. Even for a noninteracting system, they
nonzero. The exchange-correlation contribution is th
found by subtracting the external and Hartree potential

In Fig. 3, we plotyCsrtd at several times during the ex
citation. We do not plotyXsrtd, as this is just2yHsrtdy2
for two electrons. These curves are qualitatively sim
lar to those in the adiabatic ground states. The stra
behavior beyondr  3 for t  1.5 is due to numerical
inaccuracy. We tested Eq. (5) on these potentials, find
it satisfied within the accuracy of the calculations.

Next, we plot the quantities appearing in Eq. (1
in Fig. 4. We subtract out the exchange contributio
which trivially satisfies the virial theorem in this cas
(EX  2Uy2). The line denoted virial is just the viria
of the correlation potential and is indistinguishable fro
EC 1 TC until aboutt  1.4, where numerical inaccura
cies arise. As noted above,Vee is very unresponsive to
the external potential, and this is reflected inEC. The ki-
netic correlation energy followsT and starts to grow at
aboutt  0.8. What is remarkable is that this means th
the sumEC 1 TC, which has never been found to be po
itive in any ground state, becomespositive around1.2.
This shows that time-dependent energy components
behave very differently from their ground-state analogs

To illustrate our scaling theorem, Eq. (15), consider t
plasmon frequency of a uniform gas,vp where v2

p 
4pe2nym. Under scaling,n ! g3n andv ! vyg2, so

FIG. 2. Energy components for the time-dependent Hook
atom (hartrees); virial 2sT 2 Vextd 1 Vee.
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FIG. 3. Time-dependent correlation potentials (atomic units

that, according to Eq. (15),svl
pd2  4pe2g3nysmg4d 

lv2
p , correctly. The importance of Eq. (16) is that i

applies to all inhomogeneous systems also.
Last, we discuss the implications of Eqs. (5) and (1

for the construction of approximate time-dependent fun
tionals. These are usually written as approximations
the exchange-correlation potential. If an approximatio
implies an assumption about energy components, th
Eqs. (5) and (10) should be checked. If not, then Eqs.
and (10) can be used to construct energy compone
An adiabatic approximation employs only the instant
neous density to approximate the potential at any giv
time. Such an approximation satisfies Eqs. (5) and (1
if it satisfies them in the ground state. If it is an ac
curate approximation for the energy components, it w
then be accurate for the virial of the potential, provid
ing a constraint on the approximate potential. This m
explain the “surprising” accuracy of approximate poten
tials in Ref. [19]. The oldest and most commonly use
[20] is adiabatic local-density approximation (ALDA)

FIG. 4. Time-dependent energy components (hartrees).
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which simply constructs properties, such as the tim
dependent exchange-correlation potential, using grou
state uniform gas functions, at the given instant in tim
On the other hand, in regions where the time-depend
energy components differ qualitatively from their ground
state counterparts, such approximations will fail badl
For example,EALDA

C 1 TALDA
C , 0 always.
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