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The complex Kohn variational principle and the (correlated) hyperspherical harmonics metho
applied to study the proton-deuteron elastic scattering at energies above the deuteron breakup th
Results for the elastic cross section and various elastic polarization observables have been o
by taking into account the long-range effect of the Coulomb interaction and using a realistic nuc
nucleon interaction model. Detailed comparison to the accurate and abundant elastic proton-de
experimental data can now be performed. [S0031-9007(99)09091-2]
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A number of nucleon-nucleonsNNd potentials are now
available which can be used in a nonrelativistic approa
to understand nuclear structure. Those usually referred
as realistic potentials accurately fit the data base selec
by the Nijmegen group [1] with ax2 per datum close to
1. They produce quite reasonable values for the bind
energies of different light nuclei with small deviation
from the experimental values. One way of reducing the
deviations is to add three-nucleons3Nd interaction terms
determined in a semiphenomenological way.

When such potentials are used to calculate scatter
states, some observables, such as the elasticN-d differ-
ential cross sections, are well predicted [2,3]. Howev
the situation is different for a number of observable
which strongly depend on the nuclear interaction
specific waves. Examples of these are spin-depend
observables, such as the vector or the tensor analyz
powers. For these quantities there are significant d
ferences between theoretical estimates and experime
values. This is a strong signal that there are deficie
cies in the theoretical models adopted. Detailed the
retical and experimental investigations are therefo
necessary in order to understand the reasons for
problem.

In this respect, the study of thep-d scattering process
is of particular relevance since very accurate measu
ments exist for a large set of observables and kinemat
regimes. The Faddeev theory has been very succe
fully applied to then-d process [2,4,5] but the exten
sion to thep-d case, taking properly into account th
long-range Coulomb repulsion, presents a number of d
ficulties which have been the object of extensive resea
[6,7]. Accurate calculations ofN-d scattering below the
deuteron breakup threshold (DBT) have also been p
formed in the frame of the so-called pair-correlated hype
spherical harmonic (PHH) expansion technique [8]. T
incorporation of the Coulomb potential in the PHH ap
proach does not present particular difficulties, andp-d
scattering observables have been calculated using real
NN 1 3N potentials (see Refs. [3] and [8]). The tech
0031-9007y99y82(19)y3759(4)$15.00
ch
to

ted

ing
s
se

ing

er,
s

in
ent
ing
if-
ntal
n-
o-
re

this

re-
ical
ss-

-
e
if-

rch

er-
r-

he
-

istic
-

nique used is variational and based on the use of the K
variational principle (KVP). The extension to the study
the four-body (p-3He andn-3H) zero energy scattering
has been given in Ref. [9].

In Ref. [10] the authors used the complex form of t
KVP to describen-d andp-d scattering above the DBT
using a semiphenomenological nuclears-wave potential,
while the Coulomb interaction was included without an
partial wave projection. For then-d case, the results
obtained were in close agreement with the benchma
obtained solving the Faddeev equations in configurat
and momentum space [11].

In this paper the study ofN-d scattering above the
DBT is extended to the case of realisticNN potentials.
Cross sections as well as vector and tensor polariza
observables forn-d and p-d scattering for nucleon
incident energies up to10 MeV have been calculated
using the NN Argonne AV18 potential [12]. These
results are compared to the available experimental d
[13,14]. Some of then-d results are compared with th
values obtained by the Bochum-Cracow group [2].

The details of the variational approach used by
can be found in Refs. [8,10,15]. The applicability of th
KVP above the DBT when the Coulomb interaction
taken into account deserves some attention. Here a b
discussion of its validity for the description of elast
scattering is given. A more general discussion will
reported elsewhere [16]. The scattering wave funct
(w.f.) C is written as a sum of two terms. The first term
CC, describes the system when the three nucleons
close to each other. For large interparticle separati
and energies below the DBT, it goes to zero, where
for higher energies it must reproduce a three-outgoi
particle state. It is written as a sum of three Faddeev-l
amplitudes corresponding to even permutations of
particle indices 1, 2, and 3. Each amplitudeCCsxi , yid,
wherexi , yi are the Jacobi coordinates corresponding
the ith permutation, has total angular momentumJJz and
total isospinTTz, and it is decomposed intoNc channels
using theLS coupling, namely,
© 1999 The American Physical Society 3759
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CCsxi , yid ­
NcX
a

fasxi , yidYas jk, id , (1)

Yas jk, id ­ hfY,a
sx̂idYLa

sŷidgLa
fsjk

a si
agSa

jJJz

3 ftjk
a ti

agTTz , (2)

wherexi , yi are the moduli of the Jacobi coordinates an
Ya is the angular spin-isospin function for each channe
The two-dimensional amplitudefa is expanded in terms
of the PHH basis

fasxi , yid ­ r,a1La25y2fasxid

3

"X
K

ua
K srd s2dP

,a ,La

K sfid

#
, (3)

where the hyperspherical variables are defined by t
relationsxi ­ r cosfi andyi ­ r sinfi, fasxid is a pair
correlation function, ands2dP

,,L
K sfd is a hyperspherical

polynomial.
The second term in the variational scatterin

w.f. describes the asymptotic motion of a deutero
relative to the third nucleon. It can also be written a
a sum of three amplitudes in terms of the ingoing an
outgoing solutions of the asymptoticN-d Schrödinger
equation,

V1
LSJsxi , yid ­ Vin

LSJ sxi , yid 2
X
L0S0

JSSS0

LL0V
out
L0S0J sxi , yid ,

(4)

whereJSSS0

LL0 are the elasticS-matrix elements.
The three-nucleon scattering w.f. for an incident sta

with relative angular momentumL, spin S, and total
angular momentumJ is

C1
LSJ ­

X
i­1,3

fCCsxi , yid 1 V1
LSJsxi , yidg , (5)

and its complex conjugate isC2
LSJ . A variational estimate

of the trial parameters in the w.f.C
1
LSJ can be obtained by

requiring that, in accordance with the complex KVP, th
functional

fJSSS0

LL0g ­ JSSS0

LL0 1 ikC2
LSJ jH 2 EjC1

L0S0Jl , (6)

be stationary.
The validity of the KVP above the DBT, and with

charged particles for the elasticS-matrix elements, is
briefly discussed below. Let us consider the w.f.C

1

LSJ
describing thep-d process for an energyE, and a trial
approximation of it,C1

LSJ . Both wave functions can be
written in the form given in Eq. (5), with the assumption
that, for the exact one, the sum in Eq. (3) is not truncat
at any level. The hyperradial functions andS-matrix
coefficients entering the w.f.C

1

LSJ will be specified by
an overline to distinguish them from the correspondin
trial quantities. In the asymptotic regionr ! `, the
hyperradial functions are superpositions of ingoing an
3760
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outgoing waves

r,a1La ua
K srd !

X
a0K 0

se1ix log2QrdKK 0

aa0 Ba0

K 0e2iQr

2
X
a0K 0

se2ix log2QrdKK 0

aa0 Aa0

K 0eiQr , (7)

whereQ2 ­ MN Eyh̄2 and thex matrix originates from
the Coulomb potential. Since we are interested in t
processp 1 d ! sp 1 dd 1 sp 1 p 1 nd, the bound-
ary conditions to be imposed are

Ba
K ­ 0, for all K , a . (8)

For r ! ` we can specify four regions, characterize
by different ranges of values of the hyperangular variab
fV ­ f, x̂, ŷg. The fVbg region is the breakup region
where all of the particles are well separated. The regi
where the particlesj andk are close to each other, while
particle i is very far from them, is hereafter denoted b
fVig. There are three such regions, corresponding to
casesi ­ 1, 2, 3. Let us consider the integral

I ­ kC2

LSJ jsH 2 EdjC1
L0S0J lR

2 kC2
L0S0J jsH 2 EdjC1

LSJlR , (9)

wherek lR stands for the integration in the six-dimension
volume withr # R (andR ! `). Only the differential
operators present inH contribute toI. After integrating
by parts, the contributions come from the hypersurfa
at r ­ R, where the trial and exact wave functions hav
reached their asymptotic behavior.

Let us write I ­ Ib 1
P3

i­1 Ii, where Ib sIid is the
contribution coming from the regionfVbg sfVigd. In
fVbg, the asymptotic functionsV1

LSJ are vanishingly
small andIb reduces to

Ib ~
X
Ka

Ω
ūa

K srd
d

dr
ua

K srd 2 ua
K srd

d
dr

ūa
K srd

æ
R

. (10)

The above form has been obtained after orthonormaliz
the PHH basis elements atr ­ `. Using the asymptotic
behavior given in Eqs. (7) and (8) for both the exa
and trial hyperradial functions,Ib ! 0 asR ! `. In the
three regionsfVig, the breakup part of the w.f. can be
neglected since it gives contributions which go to ze
as R23y2, therefore

P3
i­1 Ii ~ JS

SS0

LL0 2 JSSS0

LL0 . Finally,
using the fact thatsH 2 EdC1

LSJ ­ 0, it is possible to
show that the functionalfJSSS0

LL0g differs from JSSS0

LL0 only
quadratically in the differencee ­ C 2 C.

The crucial points of the proof are (i) the outgoin
boundary conditions satisfied byCC and (ii) the null
contribution toIi of the breakup part. The presence of th
Coulomb potential introduces a distortion in the outgoin
waves which, essentially, does not change the main po
of the demonstration of the KVP given for the elastic pa
of theS matrix in then-d case [17].
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The variation of the functional with respect to th
hyperradial functions leads to the following set of couple
equations:X

a0,k0

"
Aaa0

kk0 srd
d2

dr2 1 Baa0

kk0 srd
d

dr
1 Caa0

kk0 srd

1
MN

h̄2 ENaa0

kk0 srd

#
ua0

k0 srd ­ Dl
aksrd . (11)

For each asymptotic states2S11dLJ , two different inho-
mogeneous terms can be constructed corresponding to
asymptoticVl

LSJ functions withl ; in, out. The numeri-
cal technique used to solve the above set of equations
posing outgoing boundary conditions at a finite value
the hyperradiusr ­ r0 is given in Ref. [10]. Essentially,
the solutions of Eq. (11) forr . r0 are obtained as a se
ries in 1yr, imposing the outgoing boundary condition
of Eqs. (7) and (8). In the case ofn-d scattering such
solutions evolve as outgoing Hankel functionsHs1dsQrd.
In the regionr # r0 the hyperradial functions have bee
expanded as

r25y2ua
K srd ­

MX
m­0

Am
a,KLs5d

m szd exps2zd

1 AM11
a,K ũa,K srd , (12)

wherez ­ gr andg is a nonlinear parameter. The func
tions L

s5d
m szd are Laguerre polynomials. The paramete

Am and g are determined by the variational procedur
The functions defined above are matched to the outgo
solutions atr0. The value of the matching radiusr0 is
not critical and a value ofr0 ø 100 fm has been found to
be satisfactory.

The functionsũa,ksrd are the solutions of Eq. (11),
where all of the couplings between the differential equ
tions have been neglected (and applying outgoing bou
ary conditions). Their inclusion is necessary since t
functionsua

K srd already show an oscillatory behavior fo
r . 30 fm. To reproduce such a behavior would requi
a rather large value forM in Eq. (12). However, the
inclusion of the terms̃ua,K allows values ofM similar
to those needed for describingN-d scattering below the
DBT [15].

In order to check the convergence properties of t
PHH expansion for energies above the DBT, we fir
solved the same problem treated in Ref. [10] usin
the present technique. All phase-shift and inelastic
parameters were reproduced with the same previo
accuracy, i.e., with a precision of four figures. A
compared with Ref. [10], the dimensions of the matric
involved in the eigenvalue problem came out reduced
1 order of magnitude.

Let us start studyingN-d scattering above the DBT
using the AV18 interaction. The nuclear elasticS ma-
trix has been calculated up to total angular momentu
statesJ ­ 11y21. This includes all partial waves with
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relative angular momentumL # 4. Higher partial waves
(up to L ­ 8) were included in the calculation of the ob-
servables using the Born approximation [3]. For eac
Jp state all channels with,a 1 La # K0 have been in-
cluded. The number of hyperradial functions has bee
increased until convergence was reached. The maximu
value K0 ­ 6 was found appropriate to obtain the elas
tic scattering observables within an accuracy of1%. The
pattern of convergence in terms ofK0 was studied in
Ref. [18] for energies below the DBT and a similar be
havior has been observed here.

High quality measurements ofp-d scattering have been
presented in Ref. [13]. Cross sections and proton analy
ing powers have been measured up toElab ­ 18 MeV,
and deuteron analyzing powers and tensor analyzing po
ers up toElab ­ 9 MeV sEd ­ 18 MeVd. In Fig. 1 our
theoretical predictions for these observables are compar
to the data atElab ­ 5 MeV. In Fig. 2 the same set of
observables atElab ­ 10 MeV are compared to the data
of Ref. [14]. In addition to thep-d calculations (solid
line), then-d results (dashed line) are also shown for th
sake of comparison. A good agreement between theo
and experiment is observed for the differential cross se
tion. The already known puzzle has been found again f
the vector analyzing powersAy andiT11 which are under-
predicted by about30%. The tensor analyzing powers are
rather well described, with small underpredictions at th
second minimum inT20, the second maximum inT21, and
the minimum inT22. These differences increase with en
ergy. The origin of these discrepancies can be analyz
in terms of phase-shift and mixing parameters. For ex
ample, in Ref. [3] phase-shift analyses were performed
Elab ­ 2.5 and 3.0 MeV with the conclusion that small
differences in theP-wave phase-shift and mixing param-
eters were responsible for the discrepancy in theAy and
iT11 observables. This problem with theP-wave parame-
ters seems to also persist at higher energies. The sm
discrepancies in the tensor observables could origina
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FIG. 1. Differential cross sectiondsydV, proton analyzing
powerAy , deuteron analyzing poweriT11, and tensor analyzing
powers T20, T21, and T22 calculated atElab ­ 5 MeV and
compared with the data of Ref. [13] (circles with error bars)
The solid (dashed) lines are thep-d sn-dd results.
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FIG. 2. The same as in Fig. 1, but forElab ­ 10 MeV. The
data reported here are from Ref. [14].

from higher partial waves. In fact, the tensor obser
ables are particularly sensitive to phase-shift and mixi
parameters forL $ 2. At Elab # 3.0 MeV, just below
the DBT, these parameters are small due to centrifu
barrier effects, but at the energies considered here th
contribution becomes appreciable.

Faddeev calculations in momentum space forn-d elas-
tic scattering atElab ­ 5 and 10 MeV have been pre-
sented in Ref. [2] for several potential models includin
the AV18 potential. Our corresponding results are
complete agreement with those reference calculations.

In conclusion,p-d elastic cross sections and pola
ization observables have been calculated with a rea
tic interaction for energies above the DBT up toElab ­
10 MeV and taking into account Coulomb interaction e
fects. Accurate calculations ofp-d observables and their
comparison with the available experimental data may g
stringent tests of the existing models ofNN and3N inter-
actions. The extension of the present technique to hig
3762
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energies and to the breakup cross sections will be the s
ject of a forthcoming paper.
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