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We carry out three-dimensional numerical simulations to investigate the formation rate of semil
strings. We find that the backreaction of the gauge fields on the scalar field evolution is substantia
leads to a significant formation rate in the parameter regime where the semilocal strings are class
stable. The formation rate can be as large as one-third of that for cosmic strings, depending o
model parameters. [S0031-9007(99)09087-0]
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It is expected that the early Universe underwent
series of phase transitions as it cooled down. Typicall
such transitions lead to the formation of a network o
defects [1], which may be of relevance to a number o
phenomena including structure formation in the Univers
and baryogenesis [2]. The best known examples a
topological defects such as cosmic strings, whose stabil
is guaranteed by the topological structure of the symmet
breaking at the phase transition, but it is also possible f
nontopological defects to form. An example of the latte
is semilocal strings [3,4]; the semilocal string model i
simply the Weinberg-Salam model without fermions orW
bosons, in the limit in which the SU(2) coupling constan
is set to zero. The only parameter in the theory isb ;
m2

s ym2
v , the ratio between the scalar and vector mass

(squared). Its vacuum manifold is the three-sphereS3,
and has no noncontractible loops. Despite this, Nielse
Olesen vortices [5] may form, and are classically stab
if b , 1 [3,4]. Semilocal strings are closely related
to electroweak strings [6], which can be formed in th
electroweak phase transition, and so understanding
formation and evolution of these nontopological defec
is an important task.

The semilocal model is characterized by the gaug
fields having insufficient degrees of freedom to be ab
to completely cancel the scalar field gradients, even aw
from the core of any strings which form. While their
stability depends on the parameterb, stable semilocal
strings are stable not only to small perturbations b
also to semiclassical tunneling [7]. Further, althoug
they can, unlike topological strings, come to an end (
what is effectively a global monopole), they will not
decay by breaking into smaller segments [8]. On th
contrary, Hindmarsh [9] has conjectured that the long
range interaction between these monopoles should lead
short pieces of strings growing into longer ones.

We have recently shown [10], using a toy model with
parallel strings, that semilocal strings can be identifie
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by studying the pattern of magnetic flux in a simula
tion. For topological strings, an estimate of the forma
tion rate in systems with planar symmetry is sufficien
to determine the three-dimensional rate, since topolo
prevents the strings from having an end [11]. But non
topological strings can terminate, with the flux spread
ing out. The closest to a three-dimensional analyt
estimate for semilocal string is Hindmarsh’s calculatio
[9] of the average magnetic flux through a correlated ar
at b ­ 0, with the conclusion that vortices are rare. Fo
the electroweak string, Nagasawa and Yokoyama [1
proposed a technique based on studying the scalar fi
alone and concluded that the initial density would b
negligibly small. However, both approaches neglect th
gauge fields, which we have found to play a key role [10

In this paper, we aim to estimate the density o
semilocal strings at formation. The usual argument fo
the formation of (topological) cosmic strings relies on
the vacuum manifold having noncontractible loops whic
can force the existence of closed or infinite lines i
which the Higgs scalar must have zero value, confinin
the magnetic field to these vortex structures where t
symmetry has been restored. The lack of topolog
prevents such arguments being employed for semiloc
strings, and numerical methods must be employed. Th
requires two parts—first, a plausible initial configuration
where the field configuration captures the essence of
thermal phase transition (principally, the existence of
correlation length) and, second, dynamical evolution
allow the strings to “condense out” and be counted. Th
numerical simulation of a network of defects is a difficul
problem because of the large range of scales involved
the dynamics, but it has come within the capability o
modern supercomputers. It is often tacitly assumed th
only topological defects are sufficiently robust to form
in a phase transition through the Kibble mechanism [1
Given that it is not presently known whether semiloca
strings form at a comparable density to cosmic string
© 1999 The American Physical Society
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or with a completely negligible density, our target is a
order-of-magnitude estimate.

The simulations.—We work in flat space-time through-
out. The Lagrangian for the simplest semilocal strin
model [3] is

L ­ s≠m 2 iAmdfy
1 s≠m 1 iAmdf1

1 s≠m 2 iAmdfy
2 s≠m 1 iAmdf2

2
1
4

FmnFmn 2
b

2
sjf1j

2 1 jf2j
2 2 1d2, (1)

wheref1 andf2 are two equally charged complex scala
fields,Am is a U(1) gauge field, andFmn is the associated
gauge field strength. Notice that the gauge coupling a
the vacuum expectation value of the Higgs have been
to one by choosing appropriate units (the inverse vect
mass, for length, and the symmetry breaking scale, f
energy). The only remaining parameter in the theory
b ­ m2

s ym2
v , whose value determines the stability of a

infinitely long, straight, semilocal string with a Nielsen
Olesen profile: It is stable forb , 1, neutrally stable
for b ­ 1, and unstable forb . 1 [3,4,13]. Forb ­ 1,
there is a family of solutions with the same energy an
different core widths, of which only the semilocal string
has complete symmetry restoration in the center [4].

We work in temporal gaugeA0 ­ 0. Splitting the
scalar fields into four real scalars viaf1 ­ c1 1 ic2,
f2 ­ c3 1 ic4, the equations of motion are
c̈a 2 =2ca 1 bsc2

1 1 c2
2 1 c2

3 1 c2
4 2 1dca 1

A2ca 1 s21dbs2A ? = 1 = ? Adcb ­ 0 ,

(2)
(where b is the complement ofa—1 $ 2, 3 $ 4, and
dots are time derivatives) for the scalar fields and
Äi 2 =2Ai 1 ≠i= ? A 1 2sc1

$
≠ic2 1 c3

$
≠ic4d 1

2Aisc2
1 1 c2

2 1 c2
3 1 c2

4 d ­ 0 ,

(3)
for the gauge fieldssi ­ 1, 2, 3d, together with Gauss’
law, which here is a constraint derived from the gaug
choice and used to test the stability of the code,

2sc1
$
≠0c2 1 c3

$
≠0c4d 1 ≠i

ÙAi ­ 0 . (4)

The arrows indicate asymmetric derivatives.
This system is discretized using a standard stagge

leapfrog method; however, to reduce its relaxation tim
we also add anad hocdissipation term to each equation
(h Ùci andh ÙAi, respectively). This is to allow the strings
to condense out and be identified. In an expandin
Universe, the expansion rate would play such a rol
though h would typically not be constant. We tested
a range of strengths of dissipation, and checked that
did not significantly affect the number densities obtaine
Further, our results are always compared to the cosm
string case where dissipation would have the same effe
The simulations we display later usedh ­ 0.5.
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We set up initial conditions for the scalar field b
placing the field in vacuum with random phases on
subgrid. We then iteratively interpolate by bisection on
the full grid; after each bisection, the field is shifted int
the vacuum before the next bisection takes place.

Having fixed the initial scalar field configuration, we
need to set the initial gauge field. One possibility is
choose the minimum energy configuration on the (fixe
scalar field background (this does not mean that t
gauge fields will cancel all scalar gradients, as there
insufficient gauge degrees of freedom). This can on
be done exactly numerically, as in Ref. [10], but in th
paper it was also shown that an approximate analy
minimization ignoring the magnetic flux term perform
perfectly well:

Aisxd ­ c1≠ic2 2 c2≠ic1 1 c3≠ic4 2 c4≠ic3 . (5)

All field momenta are set to zero initially.
These initial conditions are one possible choice out

an infinity of possible ways in which one might try to
represent conditions resembling a thermal phase tra
tion. Rather than attempt a highly accurate description
the transition, which is not necessary since we are ai
ing at order-of-magnitude estimates of the formation ra
we need only be confident that reasonable changes to
initial conditions will not significantly alter the results
This we have already tested in two-dimensional simu
tions [14], where we considered a variety of initial cond
tions, including ones which may be closer to the sort
thermal environment considered in Ref. [15].

The formation rate.—To minimize any systematic
errors in our analysis, we always compare our results
the case of cosmic strings, which is obtained by simp
ignoring one of the (complex) scalar fields, settingc3 ­
c4 ­ 0. This makes the defects topological, and th
flux tubes formed now map out the locations of windin
in the scalar field configurations. In these field theo
simulations of cosmic strings, we can follow the ear
stages of cosmic string network evolution by displayin
the density of magnetic flux, and we do the same w
the semilocal string simulations, as was done in tw
dimensions in Ref. [10].

The starting configurations obtained by our describ
procedure initially yield a complicated mess of flux
However, after a few time steps this resolves itself in
loops and open segments of string. We observed a c
interaction between nearby segments which join to fo
longer segments. Figure 1 shows two time slices from
single largeb ­ 0.05 simulation, in a2563 box, carried
out on the Cray T3E at NERSC; these are close-u
showing only part of the simulation box [16]. We see
collection of short string segments and loops; visually th
is very different from a cosmic string simulation wher
strings cannot have ends. As time progresses, the s
segments either disappear or link up to form longer one
3743
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FIG. 1. Part of the large simulation, shown at time 60 an
time 70. Note several joinings of string segments, e.g
two separate joinings on the long central string, and th
disappearance of some loops. The different apparent thickn
of strings is entirely an effect of perspective.

We can immediately conclude from these images th
the formation rate of semilocal strings is not extreme
close to zero; the fact that flux tubes are observed
our simulations implies that the formation rate cannot b
much smaller than one per correlation volume.

Nagasawa and Yokoyama [12] studied the related ca
of electroweak defects and concluded that the initi
density would be totally negligible. However, this is no
in contradiction with our results because our semiloc
strings arise during the evolution due to backreaction o
the gauge fields from the scalar field gradients. Th
enables initially short pieces of string to join up to
form semilocal strings of reasonable size, an effect n
included in their analysis. Further, the electroweak strin
3744
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resides in a part of parameter space where the defects
dynamically unstable, and in this case we find that all t
flux dissipates soon after the phase transition.

In order to quantify the formation rate, we compute th
total length of string in the simulations, always compa
ing the semilocal string density to that of a cosmic strin
simulation with the same properties (including dissip
tion). We determine the length by setting a magnetic flu
threshold and computing the fractional volume of the bo
which exceeds it. In Fig. 2, we plot the length of sem
local string relative to the length found in cosmic strin
simulations, as a function of time and withb ­ 0.05.
We see that, after a transient during which the initi
tangle of flux sorts itself out, the system settles down
a reasonable equilibrium. During that initial period, th
ratio of semilocal strings to cosmic ones grows, as cosm
ones are there right from the start due to topology wh
the semilocal ones need time to form. Even at late tim
there is a modest upward trend; we identify this as b
ing caused by the periodicity of the simulation box, whic
freezes-in any string crossing the box, favoring cosm
string annihilation because of their higher density. W
take the relative densities of semilocal and cosmic strin
to be that at time 50 in these simulations. We shall i
vestigate this trend more thoroughly in future work usin
large simulations. There is a modest dependence on
choice of flux threshold, and we set it at one-half the flu
density of a Nielsen-Olesen vortex.

Figure 3 shows the ratio of semilocal and cosmic strin
lengths, as a function of the stability parameterb. These
results are derived from 700 simulations (50 semiloc
and 50 cosmic at each of sevenb values) carried out in
boxes of dimension643 using a Sun Ultra II workstation.

FIG. 2. This shows the ratio of total string lengths in
semilocal and cosmic string simulation, withb ­ 0.05. The
different lines show different magnetic flux thresholds, from
bottom to top they are 0.6, 0.55, 0.5, 0.45, and 0.4 times t
peak flux of a Nielsen-Olesen vortex.
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FIG. 3. The ratio of lengths of semilocal and cosmic strings

Although the initial correlation length of 16 units is a siz
able fraction of the box size, we are interested only in brie
evolution to allow the strings to become identifiable and s
boundary effects are not important. The error bars includ
the statistical spread between simulations, and an estima
25% systematic error from the length counting algorithm
(see the spread in Fig. 2) and the viscosity. Those la
ter uncertainties are the dominant ones. Recalling that t
formation rate of cosmic strings is estimated to be of ord
one per correlation volume (0.88 in Ref. [11]), these re
sults are in excellent agreement with the two-dimension
results we found in Ref. [10]. They show a significant for
mation rate for lowb, decreasing dramatically asb ! 1,
beyond which there is no evidence of semilocal string fo
mation. The small amount of string seen in some larg
b simulations is an artifact of the viscosity; the flux al
dissipates if the viscosity is turned off, while it persists i
b , 1.

In conclusion, our simulations have shown tha
dynamically stable nontopological defects, such a
semilocal strings, can form with substantial density; th
happens even if the configuration immediately after th
phase transition has no symmetry restoration (recall o
initial conditions place the scalar field in the vacuum
everywhere), and is due to the backreaction of the gau
fields on the scalars. Forb ­ 0.05, we found that
the formation rate was around 0.3 times that of cosm
strings, while, asb is increased towards the stability/
instability transition atb ­ 1, the density drops to zero.

Moreover, we have observed short segments of stri
joining to form long strings and loops, in agreemen
with Refs. [8,9], and collapsing longitudinally, as invoked
in some baryogenesis scenarios [17]. It is important
study such phenomena in the related case of electrowe
strings, where although the monopoles are of finite siz
their cores can become comparable to the separation
.
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sin2uw ! 1. The details of these dynamics and thei
implications deserve further study.
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