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Formation Rate of Semilocal Strings
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We carry out three-dimensional numerical simulations to investigate the formation rate of semilocal
strings. We find that the backreaction of the gauge fields on the scalar field evolution is substantial, and
leads to a significant formation rate in the parameter regime where the semilocal strings are classically
stable. The formation rate can be as large as one-third of that for cosmic strings, depending on the
model parameters. [S0031-9007(99)09087-0]

PACS numbers: 11.27.+d, 11.15.Ex, 98.80.Cq

It is expected that the early Universe underwent ay studying the pattern of magnetic flux in a simula-
series of phase transitions as it cooled down. Typicallytion. For topological strings, an estimate of the forma-
such transitions lead to the formation of a network oftion rate in systems with planar symmetry is sufficient
defects [1], which may be of relevance to a number ofto determine the three-dimensional rate, since topology
phenomena including structure formation in the Universgrevents the strings from having an end [11]. But non-
and baryogenesis [2]. The best known examples artopological strings can terminate, with the flux spread-
topological defects such as cosmic strings, whose stabilitihg out. The closest to a three-dimensional analytic
is guaranteed by the topological structure of the symmetrgstimate for semilocal string is Hindmarsh’s calculation
breaking at the phase transition, but it is also possible fof9] of the average magnetic flux through a correlated area
nontopological defects to form. An example of the latterat 8 = 0, with the conclusion that vortices are rare. For
is semilocal strings [3,4]; the semilocal string model isthe electroweak string, Nagasawa and Yokoyama [12]
simply the Weinberg-Salam model without fermions#®r proposed a technique based on studying the scalar field
bosons, in the limit in which the SU(2) coupling constantalone and concluded that the initial density would be
is set to zero. The only parameter in the theoryBis=  negligibly small. However, both approaches neglect the
m2/m2, the ratio between the scalar and vector massegauge fields, which we have found to play a key role [10].
(squared). Its vacuum manifold is the three-sph&te In this paper, we aim to estimate the density of
and has no noncontractible loops. Despite this, Nielsensemilocal strings at formation. The usual argument for
Olesen vortices [5] may form, and are classically stablehe formation of (topological) cosmic strings relies on
if B <1 [3,4. Semilocal strings are closely related the vacuum manifold having noncontractible loops which
to electroweak strings [6], which can be formed in thecan force the existence of closed or infinite lines in
electroweak phase transition, and so understanding thehich the Higgs scalar must have zero value, confining
formation and evolution of these nontopological defectshe magnetic field to these vortex structures where the
is an important task. symmetry has been restored. The lack of topology

The semilocal model is characterized by the gaug@revents such arguments being employed for semilocal
fields having insufficient degrees of freedom to be ablestrings, and numerical methods must be employed. This
to completely cancel the scalar field gradients, even awasequires two parts—first, a plausible initial configuration
from the core of any strings which form. While their where the field configuration captures the essence of a
stability depends on the parametgr stable semilocal thermal phase transition (principally, the existence of a
strings are stable not only to small perturbations butorrelation length) and, second, dynamical evolution to
also to semiclassical tunneling [7]. Further, althoughallow the strings to “condense out” and be counted. The
they can, unlike topological strings, come to an end (innumerical simulation of a network of defects is a difficult
what is effectively a global monopole), they will not problem because of the large range of scales involved in
decay by breaking into smaller segments [8]. On thehe dynamics, but it has come within the capability of
contrary, Hindmarsh [9] has conjectured that the long-modern supercomputers. It is often tacitly assumed that
range interaction between these monopoles should lead tmly topological defects are sufficiently robust to form
short pieces of strings growing into longer ones. in a phase transition through the Kibble mechanism [1].

We have recently shown [10], using a toy model withGiven that it is not presently known whether semilocal
parallel strings, that semilocal strings can be identifiedstrings form at a comparable density to cosmic strings,

3742 0031-900799/82(19)/3742(4)$15.00 © 1999 The American Physical Society



VOLUME 82, NUMBER 19 PHYSICAL REVIEW LETTERS 10 My 1999

or with a completely negligible density, our target is an We set up initial conditions for the scalar field by

order-of-magnitude estimate. placing the field in vacuum with random phases on a
The simulations—We work in flat space-time through- subgrid. We then iteratively interpolate by bisection onto

out. The Lagrangian for the simplest semilocal stringthe full grid; after each bisection, the field is shifted into

model [3] is the vacuum before the next bisection takes place.
L=, - iA,L)qblT(a“ + iAM) Having fixed the initial scalar field configuration, we
, " ] need to set the initial gauge field. One possibility is to
+ (9 — 1A ) P2 (0% + iA¥) o choose the minimum energy configuration on the (fixed)
1 B scalar field background (this does not mean that the

2 2 2
= g PP = S (il + 192" = D% (1) gauge fields will cancel all scalar gradients, as there are

whereg, and ¢, are two equally charged complex scalarinsufficient gauge degrges of frgedom). This can only
fields, A, is a U(1) gauge field, an#l,,, is the associated be don_e exactly numerically, as in Ref. [19], but in tha.t
gauge field strength. Notice that the gauge coupling anf@per it was also shown that an approximate analytic
the vacuum expectation value of the Higgs have been s&pinimization ignoring the magnetic flux term performs
to one by choosing appropriate units (the inverse vectoperfectly well:

mass, for length, and the symmetry breaking scale, for

energy). The only remaining parameter in the theory is Ai(X) = ¥19iths — ¢ndith + P30iha — Yudih3. (5)

B = m2/m?, whose value determines the stability of an _ o

infinitely long, straight, semilocal string with a Nielsen- ~ All field momenta are set to zero initially.

Olesen profile: It is stable fog < 1, neutrally stable T_he_se_: initial con.dltlons are one pOSS|bIe ch0|ce out of
for 8 = 1, and unstable fog > 1[3,4,13]. Forg =1, an infinity of p9_55|ble ways in which one might try to _
there is a family of solutions with the same energy and€Present conditions resembling a thermal phase transi-
different core widths, of which only the semilocal string tion. Rather than attempt a highly accurate description of

has complete symmetry restoration in the center [4]. the transition, which is not necessary since we are aim-
We work in temporal gauget, = 0. Splitting the ing at order-of-magnitude estimates of the formation rate,

scalar fields into four real scalars via, = ¢, + iy, We need only be confident that reasonable changes to the
&> = ¢ + iy, the equations of motion are initial conditions will not significantly alter the results.
e — Via + BW? + 02 + 2 + 92 — Dip + Thls we have already tegted in two—qhmensp_ngl smu[a—
¢ ¢ ! 2 3 4 ¢ tions [14], where we considered a variety of initial condi-
A, + (—1)’(2A -V + V- Ay, = 0,  tions, including ones which may be closer to the sort of
thermal environment considered in Ref. [15].
(2) The formation rate—To minimize an i
. . y systematic
(whereb is the complement ot —1 < 2, 3 = 4, and  gqors in our analysis, we always compare our results to
dots are time derivatives) for the scalar fields and the case of cosmic strings, which is obtained by simply
A = VPA; + 0,V - A+ 201 0ihy + b3 0iths) + ignoring one of the (complex) scalar fields, settifig=
(2 2 2 2y _ ¥y, = 0. This makes the defects topological, and the
24T+ s ¥ ) =0, flux tubes formed now map out the locations of winding
(3) in the scalar field configurations. In these field theory
for the gauge fieldgi = 1,2,3), together with Gauss’ simulations of cosmic strings, we can follow the early
law, which here is a constraint derived from the gaugestages of cosmic string network evolution by displaying
choice and used to test the stability of the code, the density of magnetic flux, and we do the same with

- < . the semilocal string simulations, as was done in two
20 oy + 93 doa) + 9iAi = 0. ) dimensions in Ref. [910].
The arrows indicate asymmetric derivatives. The starting configurations obtained by our described

This system is discretized using a standard staggergstocedure initially yield a complicated mess of flux.
leapfrog method; however, to reduce its relaxation timeHowever, after a few time steps this resolves itself into
we also add amd hocdissipation term to each equation loops and open segments of string. We observed a clear
(ny; andnA;, respectively). This is to allow the strings interaction between nearby segments which join to form
to condense out and be identified. In an expandindonger segments. Figure 1 shows two time slices from a
Universe, the expansion rate would play such a rolesingle large8 = 0.05 simulation, in a256° box, carried
though n would typically not be constant. We tested out on the Cray T3E at NERSC; these are close-ups
a range of strengths of dissipation, and checked that ghowing only part of the simulation box [16]. We see a
did not significantly affect the number densities obtainedcollection of short string segments and loops; visually this
Further, our results are always compared to the cosmiis very different from a cosmic string simulation where
string case where dissipation would have the same effecstrings cannot have ends. As time progresses, the short
The simulations we display later used= 0.5. segments either disappear or link up to form longer ones.
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resides in a part of parameter space where the defects are
dynamically unstable, and in this case we find that all the
flux dissipates soon after the phase transition.

In order to quantify the formation rate, we compute the
total length of string in the simulations, always compar-
ing the semilocal string density to that of a cosmic string
simulation with the same properties (including dissipa-
tion). We determine the length by setting a magnetic flux
threshold and computing the fractional volume of the box
which exceeds it. In Fig. 2, we plot the length of semi-
local string relative to the length found in cosmic string
simulations, as a function of time and wii = 0.05.

We see that, after a transient during which the initial
tangle of flux sorts itself out, the system settles down to
a reasonable equilibrium. During that initial period, the
ratio of semilocal strings to cosmic ones grows, as cosmic
ones are there right from the start due to topology while
the semilocal ones need time to form. Even at late times
there is a modest upward trend; we identify this as be-
ing caused by the periodicity of the simulation box, which
freezes-in any string crossing the box, favoring cosmic
string annihilation because of their higher density. We
take the relative densities of semilocal and cosmic strings
to be that at time 50 in these simulations. We shall in-
vestigate this trend more thoroughly in future work using
large simulations. There is a modest dependence on the
choice of flux threshold, and we set it at one-half the flux
density of a Nielsen-Olesen vortex.

Figure 3 shows the ratio of semilocal and cosmic string
lengths, as a function of the stability parameger These
results are derived from 700 simulations (50 semilocal
and 50 cosmic at each of sevghvalues) carried out in
boxes of dimensio64’ using a Sun Ultra Il workstation.

FIG. 1. Part of the large simulation, shown at time 60 and
time 70. Note several joinings of string segments, e.g., <+
two separate joinings on the long central string, and the ol -
disappearance of some loops. The different apparent thickness
of strings is entirely an effect of perspective.

We can immediately conclude from these images that &
the formation rate of semilocal strings is not extremely o
close to zero; the fact that flux tubes are observed in
our simulations implies that the formation rate cannot be
much smaller than one per correlation volume.

Nagasawa and Yokoyama [12] studied the related case
of electroweak defects and concluded that the initial ©
density would be totally negligible. However, this is not
in contradiction with our results because our semilocal
strings arise during the evolution due to backreaction on ) ) ) )
the gauge fields from the scalar field gradients. Thi{ é%”géang;lsd ig‘;"n‘ﬁc t;‘tfinaag?mg‘;atti%tﬁ' Vj&gﬂg éeoggth$h§ a
enables ',n't'a”y S_hort pieces of S”'”Q to JOIN UpP 10 gitterent lines show different magnetic’ flux threéhdlds, from
form semilocal strings of reasonable size, an effect nopottom to top they are 0.6, 0.55, 0.5, 0.45, and 0.4 times the
included in their analysis. Further, the electroweak stringeak flux of a Nielsen-Olesen vortex.
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sin’d,, — 1. The details of these dynamics and their
implications deserve further study.
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