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Electronic Properties of Armchair Carbon Nanotubes: Bosonization Approach
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The phase Hamiltonian of armchair carbon nanotubes at half filling and away from it is derived
from the microscopic lattice model by taking the long-range Coulomb interaction into account. We
investigate the low-energy properties of the system using the renormalization group method. At half
filling, the ground state is a Mott insulator with a spin gap, in which bound states of electrons are
formed at different atomic sublattices. [S0031-9007(98)08039-9]

PACS numbers: 71.10.Pm, 71.20.Tx, 72.80.Rj

Single wall carbon nanotubes (SWNTSs) with diameterghe 2kr component of scattering amplitudes in Ref. [9].
of a few atomic distances and lengths of several micromefhe renormalization group (RG) method is applied to the
ters can be considered as the ultimate miniaturization oflamiltonian, and the low-energy states are investigated.
metallic wires [1]. Recent experiments have demonstratedt half filling the ground state is the Mott insulator with
electron transport through individual [2] and multiple [3] spin gap, in agreement with the conclusion of Hubbard-
SWNTs as well as provide evidence of strong Coulomdike models [7,8]. In this state, the electronic bound
interaction in these systems. The one-dimensional naturgates are formed between the different sublattices. Away
of the low-energy electronic states in the nanotube$rom half filling we predict gaps for both symmetric and
together with the interaction of electrons should result inantisymmetric spin modes, in contrast to the result of
a variety of correlation effects due to the non-Fermi liquidRef. [9] for the case of equal amplitudes of intrasublattice
ground state of the system [4]. and intersublattice forward scattering.

Very recent transport spectroscopy data by Taial. We start from the tight-binding single particle Hamil-
[5] on spin polarization of an individual SWNT cannot be tonian [11] on the honeycomb lattice (inset of Fig. 1),
explained by the constant interaction model and suggests
the interpretation in terms of electron correlations. This H, = Z{g(];)ai Y(lz)aﬂ(lz) + H.c}. 1)
result, however, was not confirmed by experiments on ok :
ropes of SWNTs [6], which fit the constant interaction
model remarkably well.

Experimental progress urges the development of a the-
ory of electron correlations in SWNTs. For a model on- 2:0 ‘ ‘ 7
site [7] and on-site plus nearest neighbor [8] interactions, Y
metallic armchair SWNTs become Mott insulator at half
filling, whereas upon doping they exhibit superconducting 1.5 |
fluctuations. The realistic long-range Coulomb interac-
tion was considered in Refs. [9,10]. Kane, Balents, and
Fisher [10] discussed the effects of the Coulomb inter- |~ — - K
action in finite-size armchair nanotubes (ANs) in terms = [ TR~
of the Tomonaga-Luttinger low-energy theory. The most Koo 0
important part of the forward scattering was incorporated N
into the Tomonaga-Luttinger-like Hamiltonian, whereas 0.5} WY
the other types of scattering were treated as perturba- K \
tions. Egger and Gogolin (EG) developed an effective \
low-energy theory of ANs starting from a microscopic g ‘ ‘ ‘
model [9], which accounts for all types of scattering pro- 0.0 2.0 | 4.0 6.0
cesses. They derived a bosonic phase Hamiltonian and
discussed possible ground states away from half filling. FIG. 1. Solutions of the RG equations fdf;; in the case

In this Letter we derive the phase Hamiltonian of ANsof half filling with N =10, x = 1.4, R, = 100 nm, anda, =
and evaluate its parameters from the microscopic latticé/2 Inset: The honeycomb lattice of carbon atoms. Here

. S re the two primitive Bravais lattice vectorli-| = a. The
model. The difference b_etyvegn o_ur Hamiltonian ar_1d tr_mfju\exagon shown by the thick line is the unit cell and the black
by EG stems from the distinction in the form of a kinetic (white) circle denotes the point @t = + (—) sublattice. The
term and the use of oversimplified approximation forx axis points along AN.
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Herea ,X(Iz) are the Fermi operators for electrons at the _ V4 (2Ko) / + 1 .
sukllattfcep = + with the spins = + and the wave vec- Hy 2 Z Ax a5l —asPprasPp—as
tork = (ky, ky). The matrix elements are given Byk) =
—t(e”halV3 4 2¢ka/23 cosk,a/2) | t being the hop-  H, = _8V(2Ko) >
ping amplitude between neighboring atoms. The eigenval- 2 pass’
ues of the Hamiltonian vanish at two points of the Brillouin
zonek = (aKo,0) with @ = + andKo = 47 /3a, which  where p(x) =3 ., ¥}, ¥pas is the total elec-
constitute the Fermi surface of a graphite layer [7,11].  tron density, SV(0) = V4 (0) — V_(0), and
We consider the armchaifv,N) SWNT parallel to 8V(2Ky) = Vi (2Ky) — V_(2Ky), with Vi(g) =
the x axis so that the wrapping vectar = N(a; + a-)  (a/2)>; e U+ ,(x)).
points in they direction (inset of Fig. 1). In this case  The forward scatteringH, has the strongest ampli-
the Fermi points lie on the allowed quantized transverseude, V. (0) = (2¢2/k)In(R;/R), whereR, = min(L, D)
wave vectork, = 0 for any N. Expanding Eq. (1) near characterizes the large distance cutoff of the Coulomb in-
the Fermi points to the lowest order in= k, — aKj teraction due to a finite length of the AN and/or the
and introducing slowly varying Fermi fieldg,.(x) =  presence of metallic electrodes at a distabdd0]. From
L™2Y e'%a, (g + aKo,0), we obtain Eqg. (4), one sees that the amplitud&g(0) and V. (2K)
decay ad /R for R > a. It should be noted that the ma-
. " trix elementNV_(2K,) vanishes identically in the case
Hyi = —ivg D «a f dx 2 pas9x¥pas,  (2)  of a graphite planeR — =) due to theC; symmetry
pras of the lattice. For this reasow,_(2K,) is much smaller
) ) ) than 6V(0) and V4 (2Ky). All the matrix elements de-
vo = v/31a/2 = 8 X 10° m/s being the Fermi velocity. crease with increasingy). Numerical evaluation fos, =
It should be noted that the kinetic term (2) differs [12] ; /2 and R > a gives §V(0) = 0.21, V4 (2K,) = 0.60,
from the kinetic term used by EG [Eq. (2) of Ref. [9]].  y_(2k) = 9.4 X 107* in units of ae?/27 kR [V_(2Ko)

pplass’

+
[dx l/’[-i;ax'vb—p—ax’¢—pas“/’p—as P

Following EG, the interaction term reads is estimated forN = 10]. This result shows that the
5 approximation,V (2Ky) = V_(2Ky), used in Ref. [9] is

1 fa questionable.
Hin = 3(?) %IZP,QZQ %U”p'(x’ — ) In order to bosonizeH; + Hi., we diagonalize

Eqg. (2) by the unitary transformation
X eiKo[(Om—a’l)X/+(a3—a2)xl’] 9 ( ) y y

X ‘r//;als(xl)w;'azs’(-xl’)'ﬁbll’ass’(xl’)'wbllaﬁ(xl)’ (3) Pras = (¢+as + arw_‘”)/\/i’ (6)

which maps the basis of atomic sublatticgs € *) to
the basis of right and left movers & *).
We bosonize the Fermi fieldg, .,

with  x; = la/2. The effective 1D interaction
between the sublatticesp and p’, U,,(x;), is
the average of the Coulomb potentia/(x,y) =

ez/{K\/a(% + x2 + 4R?sir’(y/2R)} over the nodes of a Mras ' ir
sublattice along the direction, ras = \/2’77—an irgrx + E{Hax +rast|, (1)

1 . .
Upp(x) = N Z U(xy,av3(n + A,p)), (4) and decompose the phase varialtlgs ¢, into symmet-
n ric § = + and antisymmetrié = — modes of the charge
) ] p and spin o excitations, 0., = 0,+ + 50,4+ +
with A, = modl,2)/2 + 6,,//3. Herex is an effec- @b, + asO,— and dos = Gps + Sbor + ap, +
tive dielectric constant of the system (the estimate [9] for, 4 . The bosonic fields satisfy the commutation re-
the parameters of the experiment [2] gives= 1.4) and  |atjon, [0,5(x), dji5:(x")] = i(m/2) signix — x')8;;1 855
ap = a characterizes the radius pf orbital. The Majorana fermionsy, o, Satisty [7ras, Mray e =
Equation (3) can be separated into the *forward scattery5 5. ..5,.,. The spin-conserving product§, s, s
ing” 3o + ;—l{j (a1 = a4, @» = a3) and “backscatter- jn the Hamiltonian # can be represented as

ing” H,, + (a1 = —ar = a3 = —ay) [13], O] Aii(r,a,s) = NrasMras = 1, As—(r,a,s) =
V4 (0) NrasNr—as = LAy, A_i(r,a,s) = NrasMN—ras =

Hy = +—]dxp2(x), irao,, andA,,(r_,a,s)_= NrasN—r—as = —iroy With
2 the standard Pauli matrices (i = x,y,z). The quantity

gr = an/4 is related to the deviation of the average

sV(0) . .
Hy = - Z fdx ¢;as¢ipa,s,¢fpa,s,¢pa“ electron density from half filling and can be controlled by
paalss' the gate voltage.
(5) The bosonized Hamiltonian has the form
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Vs _
Ho= 35| G 008 + Koo
j=p,o é==*
1 _
+ ﬂ[ dx{[6V(0) — 2V(2Ko)]cod4grx + 26,4)Cc0S20,+ — 6V(0)cod4grx + 26,+)C0S20, -
Ta
+ 6V(0)cod4grx + 260,1)c0s20,- — [6V(0) — 6V(2K()]c0s26, - c0S26,, -
+ 6V(0) cos26,+ cos260,- — 6V (0) cos26,,+ C0S26, -

— 2V(2Ko) coddqrx + 260,+)COS2¢p,— + 2V(2K() COS20,,+ COS2h

+ 6V(2Ky) cos26,- coS2¢,- + 6V(2Ky) C0S260,,- COS2¢h 5}, (8)
. |
vis = voJAjsBjs and Kj5 = 4/Bjs/A;s being the ve- K, = —K,_(y; + y; + yo + ¥3)/8,
locities of excitations and exponents for the moges. K. = —K2_ (32 +y2 +y2)/8 + (y2 + 2 + y2)/8,
The parameterd;s, B;s are given by /
4 . 4‘7(0) B 5V (0) B V(ZK()) B SV (2Ko) Y1 = 2- K,+ — Ko)yr — (y2ye + y3ys + Y7y8)/4,
P mvy  4mve  2mvo A7y y3 =02 = Ky+ — Ko )y2 — (y1y6 + y3ys + y7y9)/4,
A 5v(0) V(2K,)  8V(2Ko) y3 =2 — Ko+ — Ko-)ys — (y1ys + y2y4)/4, (10)
o+ — - - - >
4mvy - 27V 4mug ©) Vi =2 =K, — Ko)ys — (3253 + ¥5y6)/4,
A =1- iV(O) n VZ(ZKO) 4 5::(2’(0), Y5 =12 = Ko+ = Ko-)ys — (y1y3 + yaye)/4,
TV TV TV
s (0) ” 0) 5V 0 ) y6 =02 — Kot — Kp-)ys — (y1y2 + yays + ysyo)/4,
4(0) V(2K V(2K _
Bj= =1+ * L : ¥i =2 = Ko+ — K;D)y7 — (yiys + y2v90)/4,
4y 27V 47 v

with 7(g) = [Vi(q) + V_(q)/2. The sublatice- Y& = 2~ Kow = K, Dys = (y1y7 + yeyo)/4,
independent forward scattering/(0) strongly renor- vo =2 = K,- — K, D)yo — (y2y7 + yeys)/4,
malizes the exponent for the symmetric charge mode,

K,+ = 0.2 [10], whereas for the other modes the interac-where ' denotes d/d¢ with d{ = dIn(a/a) (a is
tion is weak,K;5s = 1 + O(a/R) [9]. the new lattice constant). The initial conditions
The bosonized Hamiltonian (8) is different from that for Egs. (10) are K;s5(0) = Kj5, yi1 =[6V(0) —

derived by EG [9] for the case away from half filling, 2V(2Ko)l/7mvo,  y2 = —y3 = —ys = ys = —8V(0)/
where the nonlinear terms (8) containing the misfitmvo, y4 = —[8V(0) — 8V(2Ko)]/mvo, y7 = —ys =
parameterg can be neglected due to the breakdown of—2V(2Ko)/7vo, and yg = 8V(2Ko)/mvy. In deriving
the momentum conservation. Despite the equal forwaréhe RG equations, the nonlinear term 26s- cos2¢,, -
scattering parts of both Hamiltonians, there is differencds omitted because this operator stays exactly marginal in
in the backscattering parts. Namely, the Hamiltoniar@ll orders and is thus decoupled from the problem [15].
of Ref. [9] can be obtained from ours by substituting The RG equations away from half filling can be obtained
V(2Ko) — 0 and 8V (2K,) — 2V(2K,). As was already from Egs. (10) by puttingy;, y2, y3, and y; to zero.
pointed out, EG used the kinetic term different from Hereafter we concentrate on the caée= 10, k = 1.4,
Eq. (2). Though both the Hamiltonians [Eq. (2) andRs; = 100 nm, andag = a/2 where the initial values of
Eq. (2) of Ref. [9]] have the same energy spectra, théhe parameters correspond to the estimates given below
unitary transformations which map the basis of atomicEds. (5).
sublattices p = +) to the basis of right and left movers Away from half filing, the quantities K-,
(r = %) are different. As a result, the backscatteringK,-, and K, renormalize to zero and the coeffi-
terms H, and H, expressed in the basis of right and cient of co26,. cos26,- (cos26,+cos2¢,— and
left movers are different from those derived by EG. InC0S26,- C0S2¢,-) tends to —e= (*). As a re-
addition, the approximationy(2K,) = V_(2K,), has sult, the phase®,+, 6,-, and ¢, are locked at
been used in Ref. [9]. These factors lead to the differenc€o+,0,-, ¢o-) = (0,0,7/2) or (7/2,7/2,0) so
in the bosonized form of the Hamiltonian. that the modesr+ and p— are gapped. In this case,
The low-energy properties of Eq. (8) can be investi-the asymptotic behavior of the correlation functions at
gated by the RG method [14]. At half fillings = 0, we x — = is determined by the correlations of the gap-
obtain less p(—i—) mode(,)(e""ow(")(j"'””w(o)) ~ x K /2 and
/. 2 2 2 2 2 <€im¢”+ X)gime,+ (0 > ~ )C_m2 2K+ (n =1 and 2 corre-
K,, = =K, (b1 +y3 +y3 +y7)/8, spond to2gr and 4¢r density waves andn = 1 for
K = —K2,(y7 4+ y2 + y2 +y3)/8, a superconducting state). Sindg, =~ 0.2, the 2qr
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density wave correlations seem to be dominant. Howinto the gapless and gapped parts. The result by EG
ever, we found that the correlation functions of &y  follows from the special dual symmetg;, - < ¢,— of
density wave decay exponentially at large distances due ttne Hamiltonian and the absence of nonlinear terms in the
the gapped modes. We therefore are looking for the fourp + and o+ sectors. Both these factors are lacking in
particle correlations. Thdgr density waves dominate Eq. (8). On the other hand, the result by EG for a finite
over the superconductivity fak,, < 1/2[16,17]. Such value of §V(0) is qualitatively the same as ours.

density wave states are given by the product of the charge At half filling the solution (Fig. 1) of the RG equa-

n+(x) or spinS=(x) densities at different sublattices, tions (10) indicates that the phase variabtgs., 6, +,
1 0,-, and ¢, are locked and all kinds of excita-
ni(X)n—(x) ~ —>—— coddgrx + 26,+) tion are gapped. In other words, the ground state of
2(ma)

the half filled AN is a Mott insulator with spin gap.
X (2€0820,+ + COS2¢,— — COS20,-),  The same conclusion has been drawn from the model
1 with short-range interactions [7,8]. The locked phases
S+(x)S—(x) ~ —o——; cod4qrx + 20,) (11) are given by (6,+,05+,60,-,¢,-) = (0,0,0,0) or
8(ma) (7 /2,7/2, /2, 7/2) since the coefficients tend tox
X (2€0826,+ — COS2¢p,— + COS26,_), for the first, second, and sixth through ninth nonlin-

where we neglected the unlocked phages,, ¢, .0, €& terms in Eq. (8). The averagés, (x)n-(x)) and
whose contribution decays exponentially at large dis{S+(*)S-(x)) are both finite, which indicates the forma-
tances. Substituting the values of the locked phases wigon of bound states of electrons at different suplatnces.
observe that, (x)n_(x) vanishes, and the dominant state | "€ States derived from the present analysis are char-
is the 4¢r spin density wave with correlation function acteristic for the long-range Coulomb interaction. In fact,
(S+(x)S—(x)S+(0)S_(0)) ~ cosdqpx/x>Kr+ . for the on-site plus nearest neighbor interaction the domi-

The modesos+ and p— remain gapped also in the nant states correspond to the density waves at half fill-
limit V(0) = 0. In this case EG have obtained that "9 @nd to the superconducting state or the density waves
the symmetric modesy + and o+, are gapless, whereas aWway from it [8].

the p— mode is gapped and the— mode separate The gapA, + in the p + mode is estimated by the self-
? consistent harmonic approximation as [18]

1/(1=K,+)
_ K ov(0)?r _ ’
Ape/@upa™) = [—\/ﬁ + VK2 — 5V(O)V(2Ko):| . (12)
TV 2
Using the value of the matrix elements calculated numéri-[4] For a recent review, see J. Voit, Rep. Prog. P%&.977
cally, the charge gap fa¥ = 10 is estimated as-100K (1995).
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