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Electronic Properties of Armchair Carbon Nanotubes: Bosonization Approach
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The phase Hamiltonian of armchair carbon nanotubes at half filling and away from it is derived
from the microscopic lattice model by taking the long-range Coulomb interaction into account. We
investigate the low-energy properties of the system using the renormalization group method. At hal
filling, the ground state is a Mott insulator with a spin gap, in which bound states of electrons are
formed at different atomic sublattices. [S0031-9007(98)08039-9]
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Single wall carbon nanotubes (SWNTs) with diamete
of a few atomic distances and lengths of several microm
ters can be considered as the ultimate miniaturization
metallic wires [1]. Recent experiments have demonstrat
electron transport through individual [2] and multiple [3
SWNTs as well as provide evidence of strong Coulom
interaction in these systems. The one-dimensional nat
of the low-energy electronic states in the nanotub
together with the interaction of electrons should result
a variety of correlation effects due to the non-Fermi liqui
ground state of the system [4].

Very recent transport spectroscopy data by Tanset al.
[5] on spin polarization of an individual SWNT cannot be
explained by the constant interaction model and sugge
the interpretation in terms of electron correlations. Th
result, however, was not confirmed by experiments o
ropes of SWNTs [6], which fit the constant interactio
model remarkably well.

Experimental progress urges the development of a th
ory of electron correlations in SWNTs. For a model on
site [7] and on-site plus nearest neighbor [8] interaction
metallic armchair SWNTs become Mott insulator at ha
filling, whereas upon doping they exhibit superconductin
fluctuations. The realistic long-range Coulomb intera
tion was considered in Refs. [9,10]. Kane, Balents, an
Fisher [10] discussed the effects of the Coulomb inte
action in finite-size armchair nanotubes (ANs) in term
of the Tomonaga-Luttinger low-energy theory. The mo
important part of the forward scattering was incorporate
into the Tomonaga-Luttinger-like Hamiltonian, wherea
the other types of scattering were treated as perturb
tions. Egger and Gogolin (EG) developed an effectiv
low-energy theory of ANs starting from a microscopic
model [9], which accounts for all types of scattering pro
cesses. They derived a bosonic phase Hamiltonian a
discussed possible ground states away from half filling.

In this Letter we derive the phase Hamiltonian of AN
and evaluate its parameters from the microscopic latti
model. The difference between our Hamiltonian and th
by EG stems from the distinction in the form of a kinetic
term and the use of oversimplified approximation fo
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the 2kF component of scattering amplitudes in Ref. [9
The renormalization group (RG) method is applied to th
Hamiltonian, and the low-energy states are investigate
At half filling the ground state is the Mott insulator with
spin gap, in agreement with the conclusion of Hubbar
like models [7,8]. In this state, the electronic boun
states are formed between the different sublattices. Aw
from half filling we predict gaps for both symmetric and
antisymmetric spin modes, in contrast to the result
Ref. [9] for the case of equal amplitudes of intrasublattic
and intersublattice forward scattering.

We start from the tight-binding single particle Hamil
tonian [11] on the honeycomb lattice (inset of Fig. 1),

Hk ­
X
s, $k

hjs $kday
2,ss$kda1,ss $kd 1 H.c.j . (1)
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FIG. 1. Solutions of the RG equations forKjd in the case
of half filling with N ­ 10, k ­ 1.4, Rs ­ 100 nm, anda0 ­
ay2. Inset: The honeycomb lattice of carbon atoms. Here$a6

are the two primitive Bravais lattice vectors,j $a6j ­ a. The
hexagon shown by the thick line is the unit cell and the bla
(white) circle denotes the point atp ­ 1 s2d sublattice. The
x axis points along AN.
© 1999 The American Physical Society
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Here ap,ss $kd are the Fermi operators for electrons at th
sublatticep ­ 6 with the spins ­ 6 and the wave vec-
tor $k ­ skx , kyd. The matrix elements are given byjs $kd ­
2tse2ikyay

p
3 1 2eikyay2

p
3 coskxay2d , t being the hop-

ping amplitude between neighboring atoms. The eigenv
ues of the Hamiltonian vanish at two points of the Brillouin
zone,$k ­ saK0, 0d with a ­ 6 andK0 ­ 4py3a, which
constitute the Fermi surface of a graphite layer [7,11].

We consider the armchairsN , Nd SWNT parallel to
the x axis so that the wrapping vector$w ­ Ns $a1 1 $a2d
points in they direction (inset of Fig. 1). In this case
the Fermi points lie on the allowed quantized transver
wave vectorky ­ 0 for any N . Expanding Eq. (1) near
the Fermi points to the lowest order inq ­ kx 2 aK0
and introducing slowly varying Fermi fieldscpassxd ­
L21y2

P
q eiqxap,ssq 1 aK0, 0d, we obtain

Hk ­ 2iy0

X
p,a,s

a
Z

dx cy
2pas≠xcpas , (2)

y0 ­
p

3 tay2 ø 8 3 105 mys being the Fermi velocity.
It should be noted that the kinetic term (2) differs [12
from the kinetic term used by EG [Eq. (2) of Ref. [9] ].

Following EG, the interaction term reads

Hint ­
1
2

√
a
2

!2 X
l,l0

X
pp0

X
a1...a4

X
ss0

Upp0sxl 2 xl0d

3 eiK0fsa42a1dxl1sa32a2dxl0 g

3 cy
pa1ssxldc

y
p0a2s0 sxl0dcp0a3s0sxl0dcpa4ssxld , (3)

with xl ­ lay2. The effective 1D interaction
between the sublatticesp and p0, Upp0sxld, is
the average of the Coulomb potentialUsx, yd ­

e2yhk
q

a2
0 1 x2 1 4R2 sin2s yy2Rdj over the nodes of a

sublattice along they direction,

Upp0sxld ­
1
N

X
n

Usssxl , a
p

3 sn 1 Dpp0dddd , (4)

with Dpp0 ­ modsl, 2dy2 1 dpp0y3. Herek is an effec-
tive dielectric constant of the system (the estimate [9] fo
the parameters of the experiment [2] givesk ­ 1.4) and
a0 . a characterizes the radius ofpz orbital.

Equation (3) can be separated into the “forward scatte
ing” H0 1 Hf (a1 ­ a4, a2 ­ a3) and “backscatter-
ing” Hb 1 Hb0 (a1 ­ 2a2 ­ a3 ­ 2a4) [13],

H0 ­
V1s0d

2

Z
dx r2sxd ,

Hf ­ 2
dVs0d

2

X
paa0ss0

Z
dx cy

pasc
y
2pa0s0c2pa0s0cpas ,

(5)
e

al-

se

]

r
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Hb ­
V1s2K0d

2

X
pp0ass0

Z
dx cy

pasc
y
p02as0cp0as0cp2as ,

Hb0 ­ 2
dVs2K0d

2

X
pass0

Z
dx cy

pasc
y
2p2as0c2pas0cp2as ,

where rsxd ­
P

pas cy
pascpas is the total elec-

tron density, dVs0d ­ V1s0d 2 V2s0d, and
dVs2K0d ­ V1s2K0d 2 V2s2K0d, with V6sqd ­
say2d

P
l eiqxl Up6psxld.

The forward scatteringH0 has the strongest ampli-
tude,V1s0d ­ s2e2ykd lnsRsyRd, whereRs . minsL, Dd
characterizes the large distance cutoff of the Coulomb in
teraction due to a finite lengthL of the AN and/or the
presence of metallic electrodes at a distanceD [10]. From
Eq. (4), one sees that the amplitudesdVs0d andV1s2K0d
decay as1yR for R ¿ a. It should be noted that the ma-
trix elementNV2s2K0d vanishes identically in the case
of a graphite plane (R ! `) due to theC3 symmetry
of the lattice. For this reason,V2s2K0d is much smaller
than dVs0d and V1s2K0d. All the matrix elements de-
crease with increasinga0. Numerical evaluation fora0 ­
ay2 and R ¿ a gives dVs0d ­ 0.21, V1s2K0d ­ 0.60,
V2s2K0d ­ 9.4 3 1024 in units of ae2y2pkR [V2s2K0d
is estimated forN ­ 10]. This result shows that the
approximation,V1s2K0d ­ V2s2K0d, used in Ref. [9] is
questionable.

In order to bosonizeHk 1 Hint, we diagonalize
Eq. (2) by the unitary transformation

cras ­ sc1as 1 arc2asdy
p

2 , (6)

which maps the basis of atomic sublattices (p ­ 6) to
the basis of right and left movers (r ­ 6).

We bosonize the Fermi fieldscras,

cras ­
hr ,a,s
p

2pa
exp

"
irqFx 1

ir
2

huas 1 rfasj

#
, (7)

and decompose the phase variablesuas, fas into symmet-
ric d ­ 1 and antisymmetricd ­ 2 modes of the charge
r and spin s excitations, uas ­ ur1 1 sus1 1

aur2 1 asus2 and fas ­ fr1 1 sfs1 1 afr2 1

asfs2. The bosonic fields satisfy the commutation re
lation, fujdsxd, fj0d0sx0dg ­ ispy2d signsx 2 x0ddjj0ddd0.
The Majorana fermionshras satisfy fhras, hr 0a0s0g1 ­
2drr 0daa0dss0. The spin-conserving productshrashr 0a0s

in the Hamiltonian H can be represented as
[9] A11sr , a, sd ­ hrashras ­ 1, A12sr , a, sd ­
hrashr2as ­ iasx , A21sr, a, sd ­ hrash2ras ­
irasz, and A22sr , a, sd ­ hrash2r2as ­ 2irsy with
the standard Pauli matricessi (i ­ x, y, z). The quantity
qF ­ pny4 is related to the deviationn of the average
electron density from half filling and can be controlled by
the gate voltage.

The bosonized Hamiltonian has the form
375
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H ­
X

j­r,s

X
d­6

yjd

2p

Z
dxhK21

jd s≠xujdd2 1 Kjds≠xfjdd2j

1
1

2spad2

Z
dxhfdVs0d 2 2V̄ s2K0dg coss4qFx 1 2ur1d cos2us1 2 dVs0d coss4qFx 1 2ur1d cos2ur2

1 dVs0d coss4qFx 1 2ur1d cos2us2 2 fdVs0d 2 dVs2K0dg cos2ur2 cos2us2

1 dVs0d cos2us1 cos2us2 2 dVs0d cos2us1 cos2ur2

2 2V̄ s2K0d coss4qFx 1 2ur1d cos2fs2 1 2V̄ s2K0d cos2us1 cos2fs2

1 dVs2K0d cos2ur2 cos2fs2 1 dVs2K0d cos2us2 cos2fs2j , (8)
s

l in
].
d

low

-

,
at
-

yjd ­ y0
p

AjdBjd and Kjd ­
q

BjdyAjd being the ve-
locities of excitations and exponents for the modesj, d.
The parametersAjd, Bjd are given by

Ar1 ­ 1 1
4V̄ s0d
py0

2
dVs0d
4py0

2
V̄ s2K0d
2py0

2
dVs2K0d

4py0
,

As1 ­ 1 2
dVs0d
4py0

2
V̄ s2K0d
2py0

2
dVs2K0d

4py0
,

Aj2 ­ 1 2
dVs0d
4py0

1
V̄ s2K0d
2py0

1
dVs2K0d

4py0
,

(9)

Bj6 ­ 1 1
dVs0d
4py0

6
V̄ s2K0d
2py0

7
dVs2K0d

4py0
,

with V̄ sqd ­ fV1sqd 1 V2sqdgy2. The sublattice-
independent forward scatterinḡV s0d strongly renor-
malizes the exponent for the symmetric charge mod
Kr1 ø 0.2 [10], whereas for the other modes the interac
tion is weak,Kjd ­ 1 1 OsayRd [9].

The bosonized Hamiltonian (8) is different from tha
derived by EG [9] for the case away from half filling,
where the nonlinear terms (8) containing the misfi
parameterqF can be neglected due to the breakdown o
the momentum conservation. Despite the equal forwa
scattering parts of both Hamiltonians, there is differenc
in the backscattering parts. Namely, the Hamiltonia
of Ref. [9] can be obtained from ours by substitutin
V̄ s2K0d ! 0 anddVs2K0d ! 2V̄ s2K0d. As was already
pointed out, EG used the kinetic term different from
Eq. (2). Though both the Hamiltonians [Eq. (2) an
Eq. (2) of Ref. [9] ] have the same energy spectra, th
unitary transformations which map the basis of atom
sublattices (p ­ 6) to the basis of right and left movers
(r ­ 6) are different. As a result, the backscatterin
terms Hb and H

0
b expressed in the basis of right and

left movers are different from those derived by EG. I
addition, the approximation,V1s2K0d ­ V2s2K0d, has
been used in Ref. [9]. These factors lead to the differen
in the bosonized form of the Hamiltonian.

The low-energy properties of Eq. (8) can be invest
gated by the RG method [14]. At half filling,qF ­ 0, we
obtain

K 0
r1 ­ 2K2

r1s y2
1 1 y2

2 1 y2
3 1 y2

7dy8 ,

K 0
s1 ­ 2K2

s1s y2
1 1 y2

5 1 y2
6 1 y2

8dy8 ,
76
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K 0
r2 ­ 2K2

r2s y2
2 1 y2

4 1 y2
6 1 y2

9dy8 ,

K 0
s2 ­ 2K2

s2s y2
3 1 y2

4 1 y2
5dy8 1 s y2

7 1 y2
8 1 y2

9dy8 ,

y0
1 ­ s2 2 Kr1 2 Ks1dy1 2 s y2y6 1 y3y5 1 y7y8dy4 ,

y0
2 ­ s2 2 Kr1 2 Kr2dy2 2 s y1y6 1 y3y4 1 y7y9dy4 ,

y0
3 ­ s2 2 Kr1 2 Ks2dy3 2 s y1y5 1 y2y4dy4 , (10)

y0
4 ­ s2 2 Kr2 2 Ks2dy4 2 s y2y3 1 y5y6dy4 ,

y0
5 ­ s2 2 Ks1 2 Ks2dy5 2 s y1y3 1 y4y6dy4 ,

y0
6 ­ s2 2 Ks1 2 Kr2dy6 2 s y1y2 1 y4y5 1 y8y9dy4 ,

y0
7 ­ s2 2 Kr1 2 K21

s2dy7 2 s y1y8 1 y2y9dy4 ,

y0
8 ­ s2 2 Ks1 2 K21

s2dy8 2 s y1y7 1 y6y9dy4 ,

y0
9 ­ s2 2 Kr2 2 K21

s2dy9 2 s y2y7 1 y6y8dy4 ,

where 0 denotes dyd, with d, ­ d lnsãyad (ã is
the new lattice constant). The initial condition
for Eqs. (10) are Kjds0d ­ Kjd, y1 ­ fdVs0d 2

2V̄ s2K0dgypy0, y2 ­ 2y3 ­ 2y5 ­ y6 ­ 2dVs0dy
py0, y4 ­ 2fdVs0d 2 dVs2K0dgypy0, y7 ­ 2y8 ­
22V̄ s2K0dypy0, and y9 ­ dVs2K0dypy0. In deriving
the RG equations, the nonlinear term cos2us2 cos2fs2

is omitted because this operator stays exactly margina
all orders and is thus decoupled from the problem [15
The RG equations away from half filling can be obtaine
from Eqs. (10) by puttingy1, y2, y3, and y7 to zero.
Hereafter we concentrate on the caseN ­ 10, k ­ 1.4,
Rs ­ 100 nm, anda0 ­ ay2 where the initial values of
the parameters correspond to the estimates given be
Eqs. (5).

Away from half filling, the quantities Ks1,
Kr2, and K21

s2 renormalize to zero and the coeffi
cient of cos2us1 cos2ur2 (cos2us1 cos2fs2 and
cos2ur2 cos2fs2) tends to 2` (`). As a re-
sult, the phasesus1, ur2, and fs2 are locked at
sus1, ur2, fs2d ­ s0, 0, py2d or spy2, py2, 0d so
that the modess6 and r2 are gapped. In this case
the asymptotic behavior of the correlation functions
x ! ` is determined by the correlations of the gap
less r1 mode, keinur1sxde2inur1s0dl , x2n2Kr1y2 and
keimfr1sxde2imfr1s0dl , x2m2y2Kr1 (n ­ 1 and 2 corre-
spond to 2qF and 4qF density waves andm ­ 1 for
a superconducting state). SinceKr1 ø 0.2, the 2qF
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density wave correlations seem to be dominant. How
ever, we found that the correlation functions of any2qF

density wave decay exponentially at large distances due
the gapped modes. We therefore are looking for the fou
particle correlations. The4qF density waves dominate
over the superconductivity forKr1 , 1y2 [16,17]. Such
density wave states are given by the product of the char
n6sxd or spinS6sxd densities at different sublattices,

n1sxdn2sxd , 2
1

2spad2 coss4qFx 1 2ur1d

3 s2 cos2us1 1 cos2fs2 2 cos2ur2d ,

S1sxdS2sxd , 2
1

8spad2 coss4qFx 1 2ur1d (11)

3 s2 cos2us1 2 cos2fs2 1 cos2ur2d ,

where we neglected the unlocked phasesfs1, fr2, us2

whose contribution decays exponentially at large di
tances. Substituting the values of the locked phases
observe thatn1sxdn2sxd vanishes, and the dominant stat
is the 4qF spin density wave with correlation function
kS1sxdS2sxdS1s0dS2s0dl , cos4qFxyx2Kr1 .

The modess6 and r2 remain gapped also in the
limit dVs0d ­ 0. In this case EG have obtained tha
the symmetric modes,r1 ands1, are gapless, whereas
the r2 mode is gapped and thes2 mode separates
-

to
r-

ge

s-
we
e

t

into the gapless and gapped parts. The result by
follows from the special dual symmetryus2 $ fs2 of
the Hamiltonian and the absence of nonlinear terms in
r1 and s1 sectors. Both these factors are lacking
Eq. (8). On the other hand, the result by EG for a fini
value ofdVs0d is qualitatively the same as ours.

At half filling the solution (Fig. 1) of the RG equa-
tions (10) indicates that the phase variablesur1, us1,
ur2, and fs2 are locked and all kinds of excita-
tion are gapped. In other words, the ground state
the half filled AN is a Mott insulator with spin gap.
The same conclusion has been drawn from the mo
with short-range interactions [7,8]. The locked phas
are given by sur1, us1, ur2, fs2d ­ s0, 0, 0, 0d or
spy2, py2, py2, py2d since the coefficients tend to2`

for the first, second, and sixth through ninth nonlin
ear terms in Eq. (8). The averageskn1sxdn2sxdl and
kS1sxdS2sxdl are both finite, which indicates the forma
tion of bound states of electrons at different sublattices

The states derived from the present analysis are ch
acteristic for the long-range Coulomb interaction. In fac
for the on-site plus nearest neighbor interaction the dom
nant states correspond to the density waves at half
ing and to the superconducting state or the density wa
away from it [8].

The gapDr1 in the r1 mode is estimated by the self
consistent harmonic approximation as [18]
Dr1ys2yr1a21d ­

"
Kr1

py0

s
dVs0d2

2
1 V̄ s2K0d2 2 dVs0dV̄ s2K0d

#1ys12Kr1d

. (12)
.

tt.

g

Using the value of the matrix elements calculated nume
cally, the charge gap forN ­ 10 is estimated as,100K
for a0 ­ ay2 and,10K for a0 ­ a [in the case ofa0 ­
a, dVs0d ­ 5.6 3 1023 and V̄ s2K0d ­ 6.9 3 1022 in
units of ae2y2pkR]. At high temperatures,T ¿ Dr1,
the perturbation theory with respect to the nonlinear ter
of the Hamiltonian (8) gives the following result for the
resistivity r at half filling, r , T2Kr121yN2. On the
other hand,r ~ expsDr1yT d at T ø Dr1 [10]. The
temperature dependence of the resistivity at half fillin
is a characteristic signature of the Mott transition. W
conjecture that this signature can be best detected
multiprobe transport measurements [19].
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