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We study both the longitudinal and transverse fluctuations of a semiflexible filament. Using scaling
arguments and numerical simulations, we find several regimes for the longitudinal fluctuations which,
for short times, scale aéérﬁ) ~ {8 and are correlated over a length~ /8. Our results are
pertinent to experiments on cross-linked filament systems and motor-filament assays. The techniques
we develop for the analysis of dynamic correlations should have wide applications in the study of
polymer systems. [S0031-9007(99)09052-3]

PACS numbers: 83.80.Lz, 83.10.Nn, 83.20.Jp

Advances in manipulation techniques of biopolymerstuations, (§r1) ~ L3/, as a function of the filament
allow the experimentalist to study and visualize the modength L < « [4]. Because of the conservation of fila-
tion of semiflexible filaments such as DNA, actin and mi-ment length the transverse fluctuations result in lon-
crotubules under the influence of thermal noise, solvengitudinal quctuations<5rﬁ> ~ L*/k%. The fluctuation
flows, and forces generated by motor proteins [1,2]. Adissipation theorem relates the anisotropic fluctuations to
first step towards the understanding of mechanical propew tensorial response function with eigenvalugs= (8 rﬁ)
ties of elastic filaments are linear response functions whicendx, = (5r%), characterizing the effective bending and
are related to dynamiC ﬂUCtU&tiOﬂS, via the ﬂUCtuation-Compressiona| e|asticities, respective|y_ We shall gener-
dissipation theorem. For flexible polymers, the dynam-jize this statement to the dynamic response.
ics is well described by the Rouse and Zimm models and At linear order, the dynamics of a filament is commonly

governed by the evolution of a single intrinsic length scalejescribed by a Langevin equation for the transverse
[3]. For semiflexible polymers a complete theory of thef|yctuations alone:

anisotropic motion is still lacking.

In this Letter, we present a full characterization of the ary ke atry v s t) (1)
dynamic fluctuations of semiflexible filaments. We show ot ds* e
that the dynamics do not scale in the conventional man- .
ner and that two competing length scales govern the trangi€re, /1 denotes a transverse stochastic force and hy-
verse and longitudinal fluctuations of stiff filaments. Thisdrodynamic interactions are neglected on the ground that
surprising prediction is clearly demonstrated by numericafey induce only logarithmic corrections. ~ After trme
data which we have generated over 12 decades in time uf1€ filament is equilibrated over a lengtf(s) ~ (K’)_/ :
ing a new simulation scheme and data-analysis technique&is results in a scaling law for the transverse motion of a
Finally, we discuss situations where the newly predictednonomer [5] easily observed in dynamic light scattering
regimes for longitudinal motion are dominant. [6] or microrheology [7]:

A standard model of semiflexible polymers is the 2 3, 34, 1/4
wormlike chain (WLC), H = «/2 [& ds[9*F(s)/as*F, (@ri(7) ~ hie)' /i~ £k (2)
of an incompressible elastic rod with bending modulus The longitudinal fluctuations of a filament are more
« and arclengths. For many biopolymers the contour sybtle. Two different approaches exist in the litera-
lengths L of interest are of the order of the persistencetyre: Approximating the incompressibility via a global
length L = « where thermal fluctuations begin to induce [ agrange multiplier for the total length of the filament
appreciable deviations from a straight rod. (Here angg 9] leads to the prediction (2) for both the longi-
in the following, we use units for whicltgT =1, as  tydinal and transverse motions, while taking the local
well asn = 1, wheren is the friction coefficient of the constraint into account leads again to scalingrift,
filament per unit length. In these units time is a volume however, with an amplitude smaller by a facfof« than
For actin,x = 20 umandl s~ 1 um’.) WLCs behave n Eq. (2) [10,11]. The latter result can be found with a
qualitatively different from ordinary flexible polymers simple scaling argument: Each section of length) of

with L > «, which are controlled by entropic tensions. the filament is independent and contributes the static value
In particular, the conformations and fluctuations of WLCS(&rﬁ)(ll) ~ It/k? to the mean square longitudinal fluc-

are highly anisotropic. _ tuations of the end of a filament:
The static anisotropy in the WLC model is character-
ized by the exponent for the growth of transverse fluc- (S0 ~ (L/L) (1} /&%) = L4 /¥4, (3)
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The derivation of Eq. (3) neglects longitudinal friction. The tensionsT; play the role of Lagrange multipliers
As demonstrated in [11], this is appropriate in a sheareevhose values are calculated at each time step from the
sample where the longitudinal friction drops out of condition that the bond lengths are equabto
the dynamic equations leading to a scaling rii* in The shortest characteristic time of the model is approxi-
the high frequency shear modulus. For a filament irmatelyr(b) = b*/«, while the relaxation time of a chain
a quiescent solvent, however, longitudinal friction andof » = L/b segments varies as, ~ n*7(b). The total
local incompressibility cannot be neglected [12,13]. Thesimulation time needed to equilibrate a chain is propor-
shortening (or extension) of a filament section of lengthtional to n°>. The equilibration of long chains becomes
[1(z) also requires the longitudinal motion of its neighbors.quickly impossible.
As a consequence, longitudinal friction limits the number We get around the problem of generating independent
of sections which can contribute within a finite time: configurations by simulating long chains for a tirfer
Consider the response of a filament to a weak constarshorter than the equilibration time but then performing en-
longitudinal forcef| applied to the end. Equation (3) semble averages over many short runs (see Fig. 1). These
together with the fluctuation dissipation theorem predictsimulations are useful because we can easily prefpéye
that the end drifts a$r(r) ~ fL>/*/x>/*. However, equilibratedinitial conformations by drawing bond angles
not the whole filament is set into motion at once: 56 = 6; — 6,—; randomly from a Gaussian distribution
The velocity scales as ~ &r/t ~ fL/«*>*t"/4, but  P(86) ~ exp(—5; 662). The choice of the segmentation
clearly the total drad. v cannot be larger than the applied then determines a window of accessible time scales. The
force. For a long filament we can resolve this paradox byelementary time step of the integratorli@ 27(b); times
assuming that the tension propagates a distdsieé ~  shorter tharr(b) are affected by discretization errors. We
1/8x3/8 < L. Only a lengthl, is set into motion with generated data for times up 16°7(») with a computa-
a velocity of the order ofvy ~ fj/l» and the end tional effort proportional to only:'. We chose a sequence
drifts a distancedr(r) ~ f7/®/x>/®. The fluctuation- of segmentations; = 27/« and studied chains of length
dissipation theorem relates this response to the amplitude/8, /4, k /2, « with the number of segments varying
of longitudinal fluctuations: betweenn = 8 andn = 512. The overlap between ad-

<5r2(t)> N t7/8/K5/g ) jacent time windows+, = 247-,1/2) provides a convenie_nt

I ' check on the coarse graining procedure and the scaling of
Our surprising conclusion is that longitudinal and trans-the parameters.

verse dynamics are governed by two different dynamic Imposing a constraint on the bond lengths provides
length scales [14]. This suggests that the fluctuations cdiccess to longer times than simulations done with stiff
the filament ends obey a pair of scaling relations with dif-longitudinal springs without changing the results beyond

ferent scaling arguments: the relaxation time of the high frequency Rouse modes
(7/8 £1/8,5/8 (see Fig. 2) [16]. Indeed, we avoid simulating these fast
(5r||(;)2) = WQ( 3 ) (5)  but uninteresting modes which limit the integration step

in any explicit integration scheme. There are nevertheless
34 <t1/4;<1/4> severe complications [15]; we must add a pseudopotential

(8r (1)) = 7 6) [17], —% log(A) to E and include the corresponding forces
K L in (7): A is the determinant of the Jacobian describing the
The scaling functions® and ‘W are constant for small transformation from Cartesian to bond angle coordinates.
arguments. For large argumentsQ (x) ~ x, W(x) ~ A proper calculation of these forces is essential to ensure
x if the filament can diffuse freely.
In order to test these predictions, we have performed
simulations of a semiflexible polymer in two dimensions
imposing a constraint on the contour length using the
technique described in [15]. The polymer is discretized
as a sequence of beads with positiohsi € 0, ..., n,
with fixed distanceb = |7; — 7;—;| and normalized bond
vectorsd; = (¥; — ¥;—1)/b. The angle®; characterizing
the bond directions are coupled by simple angular springs:
E= % "~ £(6; — 0;+1)>. The beads move against an
isotropic friction —bo7;/dt under theeinfluence of the FIG. 1. Cloud of end points aenerated by simulatha= 100
forces due to the angular springsyE/d7; and stochastic realizations of the dyngmics gtarting fron¥the iIIustrgTed initial

forcesF;*: condition. The moments of this cloud are used to distinguish
97 9E R . . the longitudinal and transverse dynamics. The transverse
— = —— + F® + Tiy1diy, — Tid;. (7) fluctuations are larger in amplitude than the longitudinal
at dr; ! fluctuations.
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FIG. 3. Scaling behavior of the two smallest momefutg of
the 4D clouds. The scaled amplitud@; 4 = Apgr/577/8

FIG. 2. (a) Amplitude of a filament end fluctuations as ajs shown as a function of the tension propagation length
function of time for an incompressible filament (black symbols,lz(t) — (858 for L = k (O), k/2 (+), /4 (D), k/8 (X)

L = k) determined from the moments (r), A»(¢) of the 2D ) h
clouds. The transverse fluctuations scale(&s ) = A;(z) ~ The plot confirms the scaling form of Eq. (5).

/4, while the longitudinal modes obey initiallysrj) =
Ao(t) ~ 78, The scaling of the crossover to free diffusion _ _ _
at L = I,(r) is treated in Fig. 3. For compressible filaments the average orientation of the whole filament. This tilt

(grey symbols,L = «/4, modulus K = 10'«"") a Rouse- angle between the initial tangent and the average ori-
like scaling A>(r) = (8rf}) ~ 1"/ is found for short times. entation of the chain is of the order df?) ~ L/x.
(b>2'50“09;§ fluctuations of a cross-linked filament pair scale a3 3vation to the average orientation occurs only when
(6ri) ~ t'/3. Different symbols correspond to different levels . . -
of coarse graining. I,(t) ~ L. Fluctuations projected onto the average ori-
entation of the whole filamen(,6r|f> + (¢2><5ri>, are
dominated by the contribution dfansversemotion for
that we start our short runs from initial conformationsshort times. They are an incorrect measure of the under-
which are properly equilibrated. lying longitudinal dynamics. However, fluctuations pro-
The objective of our simulations is the characterizationjected on the initial local tangent vector are dominated by
of the transverse and longitudinal motion and the fullthe longitudinal dynamics and scale 3§’
tensorial response of the chain ends. For this purpose we To better understand the tension propagation, we exam-
performN simulations (typicallyv = 1000) starting from  ined the joint motion of the two end points of a chain. In
an identical preequilibrated conformation; each simulatiora series of¥ simulations, one generates a distribution of
uses an independent series of random forces. We theints in four dimensions (4D}{x(0),x(L), y(0), y(L)]}.
record theN coordinates of one end of the chain as aWe are interested in the evolution of the four moments
function of time which form an evolving two-dimensional {A; > A, > A3 > A4} of the 4D cloud which character-
cloud in the(x, y) plane. The momenta, > A,, and axis ize the dynamics of the whole chain.
of inertia of the point cloud characterize the amplitude Our picture of the propagation of tension fluctuations
and direction of transverse and longitudinal movementas introduced above suggests the following scenario:
respectively, for the given initial conformation (see Fig. 1).As long as ; < L, the movement of the ends are
We prepare a total aff random realizations (typically uncorrelated. The 4D distribution factorizes and reduces
M = 100) of the initial chain over which we can calcu- to a product of the 2D case discussed above: The
late average properties of the cloud performing a total ofwo smaller momentsA; = A4 = <6rﬁ> and scale as
MN = 10° simulations [see Fig. 2(a)]. For short times, 17/8/k5/8; the two larger moments\; = A, = (5r7)
the evolution of the cloud is very anisotropic, and thescale asr®/4/«x!'/4. For longer timesl,(r) > L the two
transverse dynamics corresponds to the larger momeehds see each other as tension propagates along the
A (t) = (8r%) which scales according to Eq. (2). The filament. This lifts the degeneracy betwean and A,
smaller momenfA,(¢) = (6rﬁ) characterizes the longitu- with A4, now characterizing the end to end fluctuations
dinal motions of the filament and for short times varies inso that according to (3\; ~ Lr/*/k>/4, and A3 ~
agreement with our prediction [Eq. (4)]. For long times¢/L characterizing the longitudinal free diffusion of the
with I, > L, a length-dependent crossover to free dif-chain. Figure 3 shows the momems and A, plotted
fusion of the whole filament occurs (see Fig. 3 for thenormalized by:”/8/«5/% as functions oft'/$«5/8 /L, so
crossover scaling). In addition, the analysis shows thathat they clearly follow the scaling form Eq. (5) [18].
the direction of the longitudinal motion is initially parallel ~ How can one observe the motion correspondind i
to the local tangent and relaxes only with time towards which scales as’/®? Naively, one might expect it to
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be subdominant compared th;, in most experimen- semble averages. These techniques have the advantage of
tal situations. However, a case where it dominates is directly separating the nature of the different relaxation
pair of cross-linked filaments confined to a quasi-two-processes in our simulations and will also be useful for
dimensional region (a standard experimental setup foother machine studies of polymer dynamics.

fluorescence microscope studies of actin filaments). The We would like to thank Paul Chaikin, Fred Gittes,
mean-square displacements of the cross-link are deteFred Mackintosh, David Morse, and Jacques Prost for
mined by the sum of thiaverseresponse functions of the discussions on this work.

two chains (the sum of the effective elastic moduli) and is
thus dominated by the stiff longitudinal response. Cross-
link motion should therefore scale &8r2) ~ /8. We
have checked this argument by simulating filament pairs
of length L in two dimensions cross-linked perpendicu- ) _
larly at their midpoints [see Fig. 2(b)]. The motion of the [1] E.io(flttle;d Béz'\?”'"i'i‘;%?;)]_- ﬁe;“eg’e”r’kﬁ:‘sd 5['5 :Ovéarrq?fh\]'a?%”
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