
VOLUME 82, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 3 MAY 1999

nce

ance

ling
ich,

iques
of
Dynamic Fluctuations of Semiflexible Filaments

R. Everaers,1,2 F. Jülicher,1 A. Ajdari,3 and A. C. Maggs3
1Institut Curie, Physico-Chimie Curie, UMR CNRS/IC 168, 26 rue d’Ulm, 75248 Paris Cedex 05, Fra

2Max-Planck-Institut für Polymerforschung, Postfach 3148, D-55021 Mainz, Germany
3Physico-Chimie Théorique, Esa CNRS 7083, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, Fr

(Received 4 August 1998)

We study both the longitudinal and transverse fluctuations of a semiflexible filament. Using sca
arguments and numerical simulations, we find several regimes for the longitudinal fluctuations wh
for short times, scale askdr2

k l , t7y8 and are correlated over a lengthl2 , t1y8. Our results are
pertinent to experiments on cross-linked filament systems and motor-filament assays. The techn
we develop for the analysis of dynamic correlations should have wide applications in the study
polymer systems. [S0031-9007(99)09052-3]
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Advances in manipulation techniques of biopolymer
allow the experimentalist to study and visualize the mo
tion of semiflexible filaments such as DNA, actin and m
crotubules under the influence of thermal noise, solve
flows, and forces generated by motor proteins [1,2].
first step towards the understanding of mechanical prop
ties of elastic filaments are linear response functions whi
are related to dynamic fluctuations, via the fluctuation
dissipation theorem. For flexible polymers, the dynam
ics is well described by the Rouse and Zimm models a
governed by the evolution of a single intrinsic length sca
[3]. For semiflexible polymers a complete theory of th
anisotropic motion is still lacking.

In this Letter, we present a full characterization of th
dynamic fluctuations of semiflexible filaments. We sho
that the dynamics do not scale in the conventional ma
ner and that two competing length scales govern the tra
verse and longitudinal fluctuations of stiff filaments. Thi
surprising prediction is clearly demonstrated by numeric
data which we have generated over 12 decades in time
ing a new simulation scheme and data-analysis techniqu
Finally, we discuss situations where the newly predicte
regimes for longitudinal motion are dominant.

A standard model of semiflexible polymers is th
wormlike chain (WLC),H ­ ky2

RL
0 dsf≠2 $rssdy≠s2g2,

of an incompressible elastic rod with bending modulu
k and arclengths. For many biopolymers the contour
lengthsL of interest are of the order of the persistenc
lengthL . k where thermal fluctuations begin to induce
appreciable deviations from a straight rod. (Here an
in the following, we use units for whichkBT ­ 1, as
well as h ­ 1, whereh is the friction coefficient of the
filament per unit length. In these units time is a volume
For actin,k . 20 mm and1 s ø 1 mm3.) WLCs behave
qualitatively different from ordinary flexible polymers
with L ¿ k, which are controlled by entropic tensions
In particular, the conformations and fluctuations of WLC
are highly anisotropic.

The static anisotropy in the WLC model is characte
ized by the exponent for the growth of transverse flu
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tuations, kdr2
'l , L3yk, as a function of the filament

length L , k [4]. Because of the conservation of fila-
ment length the transverse fluctuations result in lon
gitudinal fluctuationskdr2

k l , L4yk2. The fluctuation
dissipation theorem relates the anisotropic fluctuations
a tensorial response function with eigenvalueslk ­ kdr2

k l
andl' ­ kdr2

'l, characterizing the effective bending and
compressional elasticities, respectively. We shall gene
alize this statement to the dynamic response.

At linear order, the dynamics of a filament is commonl
described by a Langevin equation for the transver
fluctuations alone:

≠r'

≠t
­ 2k

≠4r'

≠s4 1 f'ss, td . (1)

Here, f' denotes a transverse stochastic force and h
drodynamic interactions are neglected on the ground th
they induce only logarithmic corrections. After timet,
the filament is equilibrated over a lengthl1std , sktd1y4.
This results in a scaling law for the transverse motion of
monomer [5] easily observed in dynamic light scatterin
[6] or microrheology [7]:

kdr'std2l , l1std3yk , t3y4yk1y4. (2)

The longitudinal fluctuations of a filament are more
subtle. Two different approaches exist in the litera
ture: Approximating the incompressibility via a globa
Lagrange multiplier for the total length of the filamen
[8,9] leads to the prediction (2) for both the longi-
tudinal and transverse motions, while taking the loca
constraint into account leads again to scaling int3y4,
however, with an amplitude smaller by a factorLyk than
in Eq. (2) [10,11]. The latter result can be found with a
simple scaling argument: Each section of lengthl1std of
the filament is independent and contributes the static val
kdr2

k lsl1d , l4
1yk2 to the mean square longitudinal fluc-

tuations of the end of a filament:

kdrkstd2l , sLyl1d sl4
1yk2d ­ Lt3y4yk5y4. (3)
© 1999 The American Physical Society 3717
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The derivation of Eq. (3) neglects longitudinal friction
As demonstrated in [11], this is appropriate in a shear
sample where the longitudinal friction drops out o
the dynamic equations leading to a scaling int3y4 in
the high frequency shear modulus. For a filament
a quiescent solvent, however, longitudinal friction an
local incompressibility cannot be neglected [12,13]. Th
shortening (or extension) of a filament section of leng
l1std also requires the longitudinal motion of its neighbor
As a consequence, longitudinal friction limits the numb
of sections which can contribute within a finite time
Consider the response of a filament to a weak const
longitudinal forcefk applied to the end. Equation (3)
together with the fluctuation dissipation theorem predic
that the end drifts asdrkstd , fkLt3y4yk5y4. However,
not the whole filament is set into motion at once
The velocity scales asyk , drkyt , fkLyk5y4t1y4, but
clearly the total dragLyk cannot be larger than the applied
force. For a long filament we can resolve this paradox
assuming that the tension propagates a distancel2std ,
t1y8k5y8 , L. Only a lengthl2 is set into motion with
a velocity of the order ofyk , fkyl2 and the end
drifts a distancedrkstd , fkt7y8yk5y8. The fluctuation-
dissipation theorem relates this response to the amplitu
of longitudinal fluctuations:

kdr2
k stdl , t7y8yk5y8. (4)

Our surprising conclusion is that longitudinal and tran
verse dynamics are governed by two different dynam
length scales [14]. This suggests that the fluctuations
the filament ends obey a pair of scaling relations with d
ferent scaling arguments:

kdrkstd2l ­
t7y8

k5y8 Q

√
t1y8k5y8

L

!
, (5)

kdr'std2l ­
t3y4

k1y4 W

√
t1y4k1y4

L

!
. (6)

The scaling functionsQ and W are constant for small
arguments. For large argumentsx, Qsxd , x, W sxd ,
x if the filament can diffuse freely.

In order to test these predictions, we have perform
simulations of a semiflexible polymer in two dimension
imposing a constraint on the contour length using th
technique described in [15]. The polymer is discretize
as a sequence of beads with positions$ri, i [ 0, . . . , n,
with fixed distanceb ­ j$ri 2 $ri21j and normalized bond
vectors$di ­ s$ri 2 $ri21dyb. The anglesui characterizing
the bond directions are coupled by simple angular sprin
E ­

1
2

Pn21
i­1

k

b sui 2 ui11d2. The beads move against a
isotropic friction 2b≠$riy≠t under the influence of the
forces due to the angular springs,2≠Ey≠$ri and stochastic
forces $Fra

i :

b
≠$ri

≠t
­ 2

≠E
≠$ri

1 $Fra
i 1 Ti11

$di11 2 Ti
$di . (7)
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The tensionsTi play the role of Lagrange multipliers
whose values are calculated at each time step from
condition that the bond lengths are equal tob.

The shortest characteristic time of the model is appro
matelytsbd ­ b4yk, while the relaxation time of a chain
of n ­ Lyb segments varies astn , n4tsbd. The total
simulation time needed to equilibrate a chain is propo
tional to n5. The equilibration of long chains become
quickly impossible.

We get around the problem of generating independe
configurations by simulating long chains for a timefar
shorter than the equilibration time but then performing e
semble averages over many short runs (see Fig. 1). Th
simulations are useful because we can easily preparefully
equilibratedinitial conformations by drawing bond angles
du ­ ui 2 ui21 randomly from a Gaussian distribution
Psdud , exp

°
2

k

2b du2
¢
. The choice of the segmentation

then determines a window of accessible time scales. T
elementary time step of the integrator is1022tsbd; times
shorter thantsbd are affected by discretization errors. W
generated data for times up to103tsbd with a computa-
tional effort proportional to onlyn1. We chose a sequence
of segmentationsbj ­ 22jk and studied chains of length
ky8, ky4, ky2, k with the number of segments varying
betweenn ­ 8 and n ­ 512. The overlap between ad-
jacent time windows (tn ­ 24tny2) provides a convenient
check on the coarse graining procedure and the scaling
the parameters.

Imposing a constraint on the bond lengths provid
access to longer times than simulations done with st
longitudinal springs without changing the results beyon
the relaxation time of the high frequency Rouse mod
(see Fig. 2) [16]. Indeed, we avoid simulating these fa
but uninteresting modes which limit the integration ste
in any explicit integration scheme. There are neverthele
severe complications [15]; we must add a pseudopoten
[17], 2

1
2 logsDd to E and include the corresponding force

in (7): D is the determinant of the Jacobian describing th
transformation from Cartesian to bond angle coordinat
A proper calculation of these forces is essential to ensu

FIG. 1. Cloud of end points generated by simulatingN ­ 100
realizations of the dynamics starting from the illustrated initia
condition. The moments of this cloud are used to distingui
the longitudinal and transverse dynamics. The transve
fluctuations are larger in amplitude than the longitudin
fluctuations.
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FIG. 2. (a) Amplitude of a filament end fluctuations as
function of time for an incompressible filament (black symbols
L ­ k) determined from the momentsl1std, l2std of the 2D
clouds. The transverse fluctuations scale askdr2

'l ­ l1std ,
t3y4, while the longitudinal modes obey initiallykdr2

k l ­
l2std , t7y8. The scaling of the crossover to free diffusion
at L ­ l2std is treated in Fig. 3. For compressible filament
(grey symbols,L ­ ky4, modulus K ­ 107k21) a Rouse-
like scaling l2std ­ kdr2

k l , t1y2 is found for short times.
(b) Isotropic fluctuations of a cross-linked filament pair scale
kdr2

3l , t7y8. Different symbols correspond to different levels
of coarse graining.

that we start our short runs from initial conformation
which are properly equilibrated.

The objective of our simulations is the characterizatio
of the transverse and longitudinal motion and the fu
tensorial response of the chain ends. For this purpose
performN simulations (typicallyN ­ 1000) starting from
an identical preequilibrated conformation; each simulatio
uses an independent series of random forces. We th
record theN coordinates of one end of the chain as
function of time which form an evolving two-dimensiona
cloud in thesx, yd plane. The moments,l1 . l2, and axis
of inertia of the point cloud characterize the amplitud
and direction of transverse and longitudinal movemen
respectively, for the given initial conformation (see Fig. 1

We prepare a total ofM random realizations (typically
M ­ 100) of the initial chain over which we can calcu-
late average properties of the cloud performing a total
MN ­ 105 simulations [see Fig. 2(a)]. For short times
the evolution of the cloud is very anisotropic, and th
transverse dynamics corresponds to the larger mom
l1std ­ kdr2

'l which scales according to Eq. (2). The
smaller momentl2std ­ kdr2

k l characterizes the longitu-
dinal motions of the filament and for short times varies i
agreement with our prediction [Eq. (4)]. For long time
with l2 . L, a length-dependent crossover to free di
fusion of the whole filament occurs (see Fig. 3 for th
crossover scaling). In addition, the analysis shows th
the direction of the longitudinal motion is initially parallel
to the local tangent and relaxes only with time toward
a
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FIG. 3. Scaling behavior of the two smallest momentsL3,4 of
the 4D clouds. The scaled amplitudeQh3,4j ­ Lh3,4jk

5y8t27y8

is shown as a function of the tension propagation leng
l2std ­ t1y8k5y8 for L ­ k (e), ky2 (1), ky4 (h), ky8 (3).
The plot confirms the scaling form of Eq. (5).

the average orientation of the whole filament. This t
angle between the initial tangent and the average o
entation of the chain is of the order ofkc2l , Lyk.
Relaxation to the average orientation occurs only wh
l1std , L. Fluctuations projected onto the average or
entation of the whole filament,kdr2

k l 1 kc2l kdr2
'l, are

dominated by the contribution oftransversemotion for
short times. They are an incorrect measure of the und
lying longitudinal dynamics. However, fluctuations pro
jected on the initial local tangent vector are dominated
the longitudinal dynamics and scale ast7y8.

To better understand the tension propagation, we exa
ined the joint motion of the two end points of a chain. I
a series ofM simulations, one generates a distribution o
points in four dimensions (4D):hfxs0d, xsLd, ys0d, ysLdgj.
We are interested in the evolution of the four momen
hL1 . L2 . L3 . L4j of the 4D cloud which character-
ize the dynamics of the whole chain.

Our picture of the propagation of tension fluctuation
as introduced above suggests the following scenar
As long as l2 , L, the movement of the ends are
uncorrelated. The 4D distribution factorizes and reduc
to a product of the 2D case discussed above: T
two smaller momentsL3 . L4 . kdr2

k l and scale as
t7y8yk5y8; the two larger momentsL1 . L2 . kdr2

'l
scale ast3y4yk1y4. For longer timesl2std . L the two
ends see each other as tension propagates along
filament. This lifts the degeneracy betweenL3 and L4,
with L4 now characterizing the end to end fluctuation
so that according to (3)L4 , Lt3y4yk5y4, and L3 ,
tyL characterizing the longitudinal free diffusion of the
chain. Figure 3 shows the momentsL3 and L4 plotted
normalized byt7y8yk5y8 as functions oft1y8k5y8yL, so
that they clearly follow the scaling form Eq. (5) [18].

How can one observe the motion corresponding toL3,4

which scales ast7y8? Naively, one might expect it to
3719
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be subdominant compared toL1,2 in most experimen-
tal situations. However, a case where it dominates is
pair of cross-linked filaments confined to a quasi-two
dimensional region (a standard experimental setup f
fluorescence microscope studies of actin filaments). T
mean-square displacements of the cross-link are det
mined by the sum of theinverseresponse functions of the
two chains (the sum of the effective elastic moduli) and
thus dominated by the stiff longitudinal response. Cros
link motion should therefore scale askdr2

3l , t7y8. We
have checked this argument by simulating filament pa
of length L in two dimensions cross-linked perpendicu
larly at their midpoints [see Fig. 2(b)]. The motion of the
cross-link is isotropic, and its amplitudekdr2

3l is indeed
numerically almost identical tokdr2

k l for a single filament.
This example of the cross-link demonstrates that the fu
response function is needed to estimate effective elast
ties in cross-linked geometries, the knowledge of a sing
component of the tensor being insufficient.

Anisotropic response functions are also expected to
important for understanding filament pulling experimen
using micromanipulation techniques or for studies of th
action of myosin molecular motors. Myosin molecule
can generate forces and displacements parallel to
local tangent of actin filaments. The resulting filamen
motion is then determined by the longitudinal respons
function discussed above. In some micromanipulatio
experiments on myosin function, actin filaments are us
as force transducers [2]: The motion of one of the en
is an indicator for forces induced somewhere along th
filament. The first response should be due to tensi
propagation and our prediction forl2std should thus
characterize the transmission of information in a dynam
filament. Indeed tension propagation leads to an effecti
low-frequency filter since filament motion observed at
distanceL is characterized by the longitudinal respons
function which is zero for times shorter thanL8yk5.

The anisotropic scaling of the dynamics predicted he
could also be observable in incoherent neutron scatter
experiments on stiff synthetic polymers. Recent wor
has shown that effects of semiflexibility are observab
in these systems [9]. We expect that for long times th
incoherent structure factor shows a behavior characteriz
by longitudinal modes.

Finally, we have presented a novel scheme of sim
lation and data analysis. Rather than following a sing
trajectory in configuration space for a very long time, w
perform short, independent runs from equilibrated initia
configurations and gain access to a wide range of tim
scales by varying the discretization of the model. T
properly account for the anisotropy, we obtain the dy
namic correlations by averaging over independent ru
from identical initial configuration,beforecalculating en-
3720
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semble averages. These techniques have the advantag
directly separating the nature of the different relaxatio
processes in our simulations and will also be useful f
other machine studies of polymer dynamics.
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Fred Mackintosh, David Morse, and Jacques Prost
discussions on this work.
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