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Noise-Sustained Pulsating Patterns and Global Oscillations in Subexcitable Media
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The constructive role of noise in an excitable activator-inhibitor medium is analyzed. Noise acts
parametrically on the excitation threshold of the system, and is seen to support the existence of pulsating
spots in the subexcitable regime. Increasing values of the noise intensity in this regime lead to a
collective state in which all the elements of the system fire synchronously. The spectral characteristics
of the resulting global oscillations are also studied as a function of the noise intensity, showing the
typical fingerprint of stochastic resonance. [S0031-9007(99)09016-X]
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The ordering role of noise in the dynamics of nonequ
librium systems is a well-established fact. Both tempo
ral [1] and spatiotemporal [2] systems have been seen
become influenced in a constructive way by the actio
of external fluctuations. Phenomena such as stocha
resonance [3] and noise-induced transport [4] are we
known examples of the beneficial effects of fluctuations
nonlinear dynamical systems. Additionally, spatial cou
pling has been found to enhance the ordering propert
of external noise. Examples of this fact are noise-induc
nonequilibrium phase transitions [5] and array-enhanc
stochastic resonance [6].

From a deterministic point of view, the spatiotempo
ral behavior of excitable media has attracted much a
tention in recent years. These systems exhibit a ve
rich phenomenology, including traveling pulses, spira
waves, and twisted scrolls [7]. Such structures ha
been observed in a large variety of biological, chemica
and physiological systems [8]. The recent observatio
of noise-supported traveling waves in the photosensiti
Belousov-Zhabotinsky reaction [9] and of noise-induce
spiral waves in cultured networks of rat brain cells [10
have directed the attention towards the relevance of no
in these systems.

The question that we aim to address in this Letter
twofold. First, we intend to delve into the study of the or
dering role of spatiotemporal noise in the important cla
of excitable media. These systems are specially sensit
to external noise [9], but a theoretical understanding of t
mechanisms by which this order arises is still lacking an
requires more experimental and numerical investigation
The phenomena described in what follows could help
shed some light into the origin of these mechanisms. Se
ond, the constructive influence of noise might lead to th
existence of excitation patterns in neural systems such
cortical tissue. There, background fluctuations are mu
more important than in physical or chemical systems [11
Patterns and synchronous behavior of excitation in neu
systems have been observed experimentally [10,12] a
predicted in several models [13,14]. However, only a fe
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investigations [10,15] have pointed out that backgrou
noise in an excitable medium could be responsible
those patterns.

In order to face the questions posed above, we anal
in this paper a model of excitable media with activato
inhibitor dynamics. Activator-inhibitor models have bee
recently used to examine the influence of noise in e
citable systems. The spatially homogeneous FitzHug
Nagumo model has been seen, for instance, to exh
noise-enhanced coherent response both in autonom
situations [16] and in the presence of an additional ext
nal periodic signal [17]. In the following we use instea
a cellular automatonmodel, with the aim of examining
the influence of parametric noise in subexcitable med
Cellular automata (CA) have been frequently used to re
resent the dynamics of excitable media [18] and provide
realistic description of cortical tissue [13]. A CA-base
implementation of an array of stochastic threshold d
vices with excitable properties was proposed by Jung a
Mayer-Kress (JM) [15]. Their results showed that nois
was able to sustain spiral growth, leading to the first e
dence of spatiotemporal stochastic resonance in excita
media [19]. The JM model introduces anad hocrefrac-
tory period and does not account for inhibitor dynamic
Therefore, it cannot describe the rich variety of stru
tures (e.g., spots, Turing patterns) that appears when
inhibitor diffuses faster than the activator [7]. Here w
present a CA model that explicitly describes the dynam
of the two species (activator and inhibitor), allowing bot
of them to diffuse. As we will show in what follows,
parametric noise supports in this model the existence
pulsating patterns [13] and synchronized global oscil
tions in the subexcitable regime. We should remark th
this second scenario, while being a remarkable example
collective behavior induced by noise, could be detrimen
to the operation of a neural system, which usually reli
on localized excitations [11]. It is therefore important t
establish the conditions under which it occurs.

Our model is described by two dynamic variables,uik

andyik , defined in a two-dimensional square lattice wit
© 1999 The American Physical Society 3713
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N 3 N sites si, k ­ 1, . . . , Nd. The variableuik, which
can take only the values 0 or 1, represents the state of
activator at a given cell: When it is equal to 1 the cell is i
an excited state, and when it is equal to 0 it is in a restin
state. The second variable,yik , represents the inhibitor
concentration, as measured by a number of particles th
act on the stateuik inhibitorically.

The activator obeys the following threshold dynamics
uikst 1 Dt ­ Hfkustdlik 2 aikg , (1)

where H is the Heaviside step function that is equal t
1 wheneverkustdlik . aik and 0, otherwise. Hence the
parameteraik represents the local excitation threshold o
the system, which is assumed to increase with inhibit
concentration and to be subject to spatiotemporal fluctu
tions, according toaik ­ a0 1 byikstd 1 sjikstd, where
a0 is a constant contribution to the threshold level,b rep-
resents coupling to the inhibitor, ands is the standard
deviation of the noise, which obeys a Gaussian distrib
tion and is uncorrelated both in space and time. No
that a cell fires depending not on its local state, bu
on the value of a local spatial average represented
the bracket notationk· · ·lik . This average is defined by
kustdlik ­

P
i0k0 ui0k0stdKsi0, k0, i, kd, where the sum in the

previous expression runs over all sites in the lattice, an
Ksi0, k0, i, kd is a normalized kernel that depends only o
the Euclidean distance between sitessi, kd andsi0, k0d. We
have chosen an approximately Gaussian kernel (see Fig
of Ref. [18]). The previous average corresponds to a l
cal density of active sites in the neighborhood of a give
cell si, kd. According to rule (1), this cell becomes ex-
cited if the corresponding local density is overcritical a
the previous time instant. A spatial coupling is thus re
alized due to this rule. The characteristic lengthLu of
this coupling (corresponding to the diffusion length of th
activator) is controlled by the width of the Gaussian ke
nel Ksi0, k0, i, kd. The relaxation timetu of the activator
in this model will be given, according to the dynamica
rule (1), by the integration time step,tu ­ Dt.

The definition of the threshold parameteraik given
above establishes the inhibitory character ofyik : the
larger its value, the higher the excitation threshold. A
stated above, this variable corresponds to the number
inhibitory particles, and its dynamics is described by a s
of birth-death rules that update the value ofyik every time
stepDt. Birth processes are governed by a determinist
rule: In all excited sites the number of particles increas
by a constant amountgb2Dt, whereg is a generation rate
per unit area, andb is the lattice spacing. Death processe
follow a probabilistic precept: At every update, a particl
decays with constant probabilityDtyty, wherety is the
decay time ofy. Additionally, the particles exhibit a
random walk on the lattice, realized by several jumpin
processes every time step which in the end approximate
Gaussian distribution of jumps. The characteristic leng
Ly of this random walk is a measure of the diffusion
length of the inhibitor.
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We stress again at this point that the new featu
of the present model with respect to that of JM
the dynamics of the inhibitor, which implies that th
refractory time is no longer a constant parameter
the model, but is determined by the dynamics of th
system itself. Furthermore, the inhibitor is able to diffus
through the lattice, introducing a second mechanism
intercell coupling that gives rise to a much richer varie
of structures [7]. In particular, the presently propose
algorithm is able to reproduce, in the absence of exter
noise ss ­ 0d, all known typical patterns appearing in
excitable media, such as spiral waves, spots, station
periodic and labyrinthic patterns, etc. [20]. The regim
in which the system evolves is basically determined b
the parameterse ; tuyty anda ; DuyDy , whereD ­
L2yt is the diffusion coefficient of the corresponding
species. In particular, two well-established limits [7
can be observed: For smalle and largea the system
develops spiral waves; in the opposite case of largee and
small a standing patterns of spots are observed. In t
intermediate region, nonstationary (turbulent) patterns c
be found.

We are interested in examining the influence of noise
the subexcitable regime, in which no initial structure ca
survive deterministically. Common parameters that w
be used throughout all our investigation areN ­ 128,
Dt ­ 1, a0 ­ 0.14, gty ­ 190, and b ­ 4.2 3 1023.
The choicese ­ 0.25 and a ­ 0.5 correspond to a
subexcitable situation. Periodic boundary conditions a
considered. The typical evolution of a localized initia
condition is shown in Fig. 1 for increasing values of th
noise level s. Different rows correspond to different
values of s; within each row time evolves towards
the right.

For small noise intensities (top row), the initial pertur
bation begins to spread and a ring pattern develops,
the structure finally decays as the system reaches a ste
rest state where all cells are inactive. Asurvival timecan
be defined as the time during which the structure exis
As soon as a small amount of fluctuations is added to t
threshold parameter, a constructive influence of noise c
be observed in the form of an increase in the survival tim
of the structures. This occurs through the breakup of t
initial ring into several spots, one or several of which ca
grow and give rise to further rings that may break up in
other spots, and so on.

The survival time (and the number of spots that e
perience growth and breakup) increases with the no
level s. Beyond a certain critical value of this paramete
ss1 ø 4.5 3 1022d, the structures were not observed t
decay in our longer simulation times (10 000 time step
This situation is shown in the second row from the to
in Fig. 1. If fluctuations are switched off, the spots dis
appear within the survival time corresponding tos ­ 0.
Therefore, these pulsating structures (also observed i
physiological context [13]) aresustainedby noise. Three
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FIG. 1. Time sequences for different scenarios (time flows from left to right). From top: first sequence—subcritical
ss ­ 1.6 3 1022d; second sequence—noise-sustained structuresss ­ 4.7 3 1022d; third sequence—spontaneous nucleation an
global oscillationsss ­ 5.7 3 1022d; fourth sequence—synchronized oscillationsss ­ 6.3 3 1022d. Black denotes excitation
suik ­ 1d and the gray level corresponds to inhibitor concentration (the darker the cell, the higher the concentration). Note t
time interval between consecutive snapshots differs in general.
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remarks should be made concerning these noise-sustai
spots. First, an inhomogeneous initial condition is re
quired for these structures, since noise is not large enou
to induce spontaneous nucleation that seeds the sp
Second, the spots require a minimal system size to d
velop; they do not survive for small system sizes. Third
the noise-sustained structures exist provided noise acts
dependently in the different sites of the lattice (spatiall
uncorrelated noise). Aglobal noise, affecting in an iden-
tical way all lattice cells every time instant, is not able to
sustain structures in this system (spatial correlation is w
known to reduce the constructive effect of noise; see, f
instance, [2]).

Beyond a second thresholds2 ø 5.5 3 1022, sponta-
neous nucleation occurs (third row from the top in Fig. 1
In this regime no particular initial condition is required
for the structures to appear, since noise is large enough
generate perturbations that seed the spots. Furthermo
one can observe in this scenario the existence of osc
lations of the global signalUstd ­

P
ik uikstdyN2. The

power spectrum of this global signal is shown in the le
plot of Fig. 2. The oscillations are seen to possess a we
defined main frequency; both this frequency and the o
cillation amplitude increase with the noise levels. The
local signaluikstd, on the other hand, does not show
regular oscillatory behavior (its power spectrum does n
reveal any particular dominant frequency; see right plot
Fig. 2).

Finally, for noise levels larger thans3 ø 6.0 3 1022

(lower row of Fig. 1), nucleation processes become mo
frequent, leading to a high degree of synchronization b
tween firing events in the different sites of the lattice
Therefore, even though the deterministic system is locat
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in a subexcitable regime, noise induces the medium
become oscillatory. In the case shown in the bottom ro
of Fig. 1, synchronization is not complete, and sever
nucleation processes all through the lattice can be dist
guished in the prefiring step (third snapshot). Synchr
nization improves for increasing noise until finally, when
the nucleation time becomes much smaller than the intri
sic refractory time of the system, all cells fire and com
back to rest basically at the same time (see Fig. 3). In th
regime, also the local signal oscillates with a well-define
frequency.

The dependence of the oscillatory properties of the sy
tem on the noise amplitudes is shown in Fig. 4, in
terms of the height and position of the global-signal spe
tral peak shown in the left plot of Fig. 2. The former
quantity measures the amplitude of the oscillations, whic
exhibits a maximum for a certain optimal noise, corre
sponding to perfect synchronization of the firing event
For larger noise levels, synchronization is destroyed b

FIG. 2. Power spectraSs fd of the global (left) and local
(right) signals at the onset of the oscillatory regimess ­
5.7 3 1022 —third row from the top in Fig. 1).
3715
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FIG. 3. Time sequence for a large noise levelss ­ 0.12d. As
in Fig. 1, time flows from left to right, and the sequence repea
again after the third snapshot.

fluctuations. On the other hand, the frequency of th
oscillations (as measured by the position of the spect
peak—right plot of Fig. 4) is seen to increase monoto
nously with noise strength, reaching a saturation level th
decreases with the inhibitor’s decay timety (compare
diamonds and crosses in the right plot of Fig. 4).

Figure 4 also displays the results corresponding to t
power spectrum of the local signaluikstd (squares), which
basically coincide with those of the global output dis
cussed above. This means that basically in the who
range of noise strengths presented in this figure (pr
cisely for s . s3 ­ 6.0 3 1022, i.e., all points in the
figure except the leftmost ones), synchronization ensur
that both the local and the global fields oscillate with th
same well-defined frequency. We should also note th
the previous results do not depend on the ability of th
inhibitor to diffuse: they hold even in the limiting case
Ly ­ 0. However, the scenarios shown in Figs. 1 an
3 are not observed in models with fixed refractory time
such as the JM model. This fact leads to the conclusio
that it is the local dynamics of the inhibitor and the asso
ciateddynamicalrefractory time of the system that gives
rise to the noise-sustained spots, global oscillations, a
noise-induced synchronization phenomena that have be

FIG. 4. Amplitude (left) and frequency (right) of the oscillat-
ing global (diamonds and crosses) and local (squares) sig
as a function of the noise levels. Diamonds and squares:
e ­ 0.25; crosses:e ­ 0.12.
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described above. However, a quantitative explanation
these phenomena is still needed.
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