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Noise-Sustained Pulsating Patterns and Global Oscillations in Subexcitable Media
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The constructive role of noise in an excitable activator-inhibitor medium is analyzed. Noise acts
parametrically on the excitation threshold of the system, and is seen to support the existence of pulsating
spots in the subexcitable regime. Increasing values of the noise intensity in this regime lead to a
collective state in which all the elements of the system fire synchronously. The spectral characteristics
of the resulting global oscillations are also studied as a function of the noise intensity, showing the
typical fingerprint of stochastic resonance. [S0031-9007(99)09016-X]

PACS numbers: 82.40.Ck, 05.40.Ca, 47.54.+r

The ordering role of noise in the dynamics of nonequi-investigations [10,15] have pointed out that background
librium systems is a well-established fact. Both tempo-noise in an excitable medium could be responsible for
ral [1] and spatiotemporal [2] systems have been seen tihose patterns.
become influenced in a constructive way by the action In order to face the questions posed above, we analyze
of external fluctuations. Phenomena such as stochastin this paper a model of excitable media with activator-
resonance [3] and noise-induced transport [4] are wellinhibitor dynamics. Activator-inhibitor models have been
known examples of the beneficial effects of fluctuations inrecently used to examine the influence of noise in ex-
nonlinear dynamical systems. Additionally, spatial cou-citable systems. The spatially homogeneous FitzHugh-
pling has been found to enhance the ordering propertieNagumo model has been seen, for instance, to exhibit
of external noise. Examples of this fact are noise-inducedioise-enhanced coherent response both in autonomous
nonequilibrium phase transitions [5] and array-enhancedituations [16] and in the presence of an additional exter-
stochastic resonance [6]. nal periodic signal [17]. In the following we use instead

From a deterministic point of view, the spatiotempo-a cellular automatonmodel, with the aim of examining
ral behavior of excitable media has attracted much atthe influence of parametric noise in subexcitable media.
tention in recent years. These systems exhibit a verZellular automata (CA) have been frequently used to rep-
rich phenomenology, including traveling pulses, spiralresent the dynamics of excitable media [18] and provide a
waves, and twisted scrolls [7]. Such structures haveealistic description of cortical tissue [13]. A CA-based
been observed in a large variety of biological, chemicaljmplementation of an array of stochastic threshold de-
and physiological systems [8]. The recent observationsices with excitable properties was proposed by Jung and
of noise-supported traveling waves in the photosensitivdayer-Kress (JM) [15]. Their results showed that noise
Belousov-Zhabotinsky reaction [9] and of noise-inducedwas able to sustain spiral growth, leading to the first evi-
spiral waves in cultured networks of rat brain cells [10] dence of spatiotemporal stochastic resonance in excitable
have directed the attention towards the relevance of noismedia [19]. The JM model introduces an hocrefrac-
in these systems. tory period and does not account for inhibitor dynamics.

The question that we aim to address in this Letter isTherefore, it cannot describe the rich variety of struc-
twofold. First, we intend to delve into the study of the or- tures (e.g., spots, Turing patterns) that appears when the
dering role of spatiotemporal noise in the important classnhibitor diffuses faster than the activator [7]. Here we
of excitable media. These systems are specially sensitiveresent a CA model that explicitly describes the dynamics
to external noise [9], but a theoretical understanding of thef the two species (activator and inhibitor), allowing both
mechanisms by which this order arises is still lacking andf them to diffuse. As we will show in what follows,
requires more experimental and numerical investigationgparametric noise supports in this model the existence of
The phenomena described in what follows could help tgulsating patterns [13] and synchronized global oscilla-
shed some light into the origin of these mechanisms. Sedions in the subexcitable regime. We should remark that
ond, the constructive influence of noise might lead to thehis second scenario, while being a remarkable example of
existence of excitation patterns in neural systems such a®llective behavior induced by noise, could be detrimental
cortical tissue. There, background fluctuations are mucko the operation of a neural system, which usually relies
more important than in physical or chemical systems [11]on localized excitations [11]. It is therefore important to
Patterns and synchronous behavior of excitation in neuradstablish the conditions under which it occurs.
systems have been observed experimentally [10,12] and Our model is described by two dynamic variableg,
predicted in several models [13,14]. However, only a fewand v, defined in a two-dimensional square lattice with
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N X N sites(i,k = 1,...,N). The variableu;,, which We stress again at this point that the new feature
can take only the values 0 or 1, represents the state of thid the present model with respect to that of JM is
activator at a given cell: When itis equal to 1 the cell is inthe dynamics of the inhibitor, which implies that the
an excited state, and when it is equal to 0 it is in a restingefractory time is no longer a constant parameter of
state. The second variable;;, represents the inhibitor the model, but is determined by the dynamics of the
concentration, as measured by a number of particles thalystem itself. Furthermore, the inhibitor is able to diffuse

act on the stata;; inhibitorically. through the lattice, introducing a second mechanism of
The activator obeys the following threshold dynamics: intercell coupling that gives rise to a much richer variety
wi(t + At = H[{u())ix — aic], (1)  of structures [7]. In particular, the presently proposed

where H is the Heaviside step function that is equal toalgorithm is able to reproduce, in the absence of external
1 wheneveru(t)); > a;; and 0, otherwise. Hence the noise (¢ = 0), all known typical patterns appearing in
parametel;; represents the local excitation threshold ofexcitable media, such as spiral waves, spots, stationary
the system, which is assumed to increase with inhibitoperiodic and labyrinthic patterns, etc. [20]. The regime
concentration and to be subject to spatiotemporal fluctuan which the system evolves is basically determined by
tions, according ta;y = ag + Bvi(t) + oéi(t), where the parameters = 7,/7, ande = D,/D,,, whereD =
ag is a constant contribution to the threshold ley@ltep-  L?/7 is the diffusion coefficient of the corresponding
resents coupling to the inhibitor, and is the standard species. In particular, two well-established limits [7]
deviation of the noise, which obeys a Gaussian distribuean be observed: For smadl and largea the system
tion and is uncorrelated both in space and time. Notalevelops spiral waves; in the opposite case of largad
that a cell fires depending not on its local state, busmall « standing patterns of spots are observed. In the
on the value of a local spatial average represented bitermediate region, nonstationary (turbulent) patterns can
the bracket notatior- - -);x. This average is defined by be found.
W(@)yix = D uine (K (@', k', i, k), where the sum in the We are interested in examining the influence of noise in
previous expression runs over all sites in the lattice, anthe subexcitable regime, in which no initial structure can
K(i',k',i,k) is a normalized kernel that depends only onsurvive deterministically. Common parameters that will
the Euclidean distance between site%) and(i’, k’). We  be used throughout all our investigation ake= 128,
have chosen an approximately Gaussian kernel (see Fig.Ar = 1, ap = 0.14, y7, = 190, and 8 = 4.2 X 1073,
of Ref. [18]). The previous average corresponds to a loThe choicese = 0.25 and a« = 0.5 correspond to a
cal density of active sites in the neighborhood of a giversubexcitable situation. Periodic boundary conditions are
cell (i,k). According to rule (1), this cell becomes ex- considered. The typical evolution of a localized initial
cited if the corresponding local density is overcritical atcondition is shown in Fig. 1 for increasing values of the
the previous time instant. A spatial coupling is thus re-noise levelo. Different rows correspond to different
alized due to this rule. The characteristic lendth of  values of o; within each row time evolves towards
this coupling (corresponding to the diffusion length of thethe right.
activator) is controlled by the width of the Gaussian ker- For small noise intensities (top row), the initial pertur-
nel K(i’,k’,i, k). The relaxation timer, of the activator bation begins to spread and a ring pattern develops, but
in this model will be given, according to the dynamical the structure finally decays as the system reaches a steady
rule (1), by the integration time step, = Ar. rest state where all cells are inactive. s@rvival timecan

The definition of the threshold parametey, given be defined as the time during which the structure exists.
above establishes the inhibitory character gf: the As soon as a small amount of fluctuations is added to the
larger its value, the higher the excitation threshold. Asthreshold parameter, a constructive influence of noise can
stated above, this variable corresponds to the number dfe observed in the form of an increase in the survival time
inhibitory particles, and its dynamics is described by a sebf the structures. This occurs through the breakup of the
of birth-death rules that update the valuevgf every time initial ring into several spots, one or several of which can
stepAr. Birth processes are governed by a deterministigrow and give rise to further rings that may break up into
rule: In all excited sites the number of particles increasesther spots, and so on.
by a constant amountb?At, wherey is a generation rate  The survival time (and the number of spots that ex-
per unit area, and is the lattice spacing. Death processesperience growth and breakup) increases with the noise
follow a probabilistic precept: At every update, a particlelevel o. Beyond a certain critical value of this parameter
decays with constant probabilit§z/7,, wherer, is the (o, = 4.5 X 1072), the structures were not observed to
decay time ofv. Additionally, the particles exhibit a decay in our longer simulation times (10000 time steps).
random walk on the lattice, realized by several jumpingThis situation is shown in the second row from the top
processes every time step which in the end approximateia Fig. 1. If fluctuations are switched off, the spots dis-
Gaussian distribution of jumps. The characteristic lengthappear within the survival time correspondinga¢o= 0.
L, of this random walk is a measure of the diffusion Therefore, these pulsating structures (also observed in a
length of the inhibitor. physiological context [13]) arsustainediy noise. Three
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FIG. 1. Time sequences for different scenarios (time flows from left to right). From top: first sequence—subcritical noise
(o = 1.6 X 1072%); second sequence—noise-sustained struciigres 4.7 X 1072); third sequence—spontaneous nucleation and
global oscillations(o = 5.7 X 1072); fourth sequence—synchronized oscillatiogfas = 6.3 X 1072). Black denotes excitation

(uix = 1) and the gray level corresponds to inhibitor concentration (the darker the cell, the higher the concentration). Note that the
time interval between consecutive snapshots differs in general.

remarks should be made concerning these noise-sustaingda subexcitable regime, noise induces the medium to
spots. First, an inhomogeneous initial condition is re-become oscillatory. In the case shown in the bottom row
quired for these structures, since noise is not large enoughf Fig. 1, synchronization is not complete, and several
to induce spontaneous nucleation that seeds the spotsucleation processes all through the lattice can be distin-
Second, the spots require a minimal system size to deguished in the prefiring step (third snapshot). Synchro-
velop; they do not survive for small system sizes. Third,nization improves for increasing noise until finally, when
the noise-sustained structures exist provided noise acts ithe nucleation time becomes much smaller than the intrin-
dependently in the different sites of the lattice (spatiallysic refractory time of the system, all cells fire and come
uncorrelated noise). @lobal noise, affecting in an iden- back to rest basically at the same time (see Fig. 3). In this
tical way all lattice cells every time instant, is not able toregime, also the local signal oscillates with a well-defined
sustain structures in this system (spatial correlation is welirequency.
known to reduce the constructive effect of noise; see, for The dependence of the oscillatory properties of the sys-
instance, [2]). tem on the noise amplitude- is shown in Fig. 4, in
Beyond a second thresholghb = 5.5 X 1072, sponta- terms of the height and position of the global-signal spec-
neous nucleation occurs (third row from the top in Fig. 1).tral peak shown in the left plot of Fig. 2. The former
In this regime no particular initial condition is required quantity measures the amplitude of the oscillations, which
for the structures to appear, since noise is large enough &xhibits a maximum for a certain optimal noise, corre-
generate perturbations that seed the spots. Furthermomgonding to perfect synchronization of the firing events.
one can observe in this scenario the existence of oscikor larger noise levels, synchronization is destroyed by
lations of the global signal/(t) = >, ui(t)/N>. The
power spectrum of this global signal is shown in the left
plot of Fig. 2. The oscillations are seen to possess awell-  s(y) S(f)
defined main frequency; both this frequency and the os-

cillation amplitude increase with the noise level The 0.0001 0.0001

local signal_u,-k(t), on the_ oth_er hand, does not show a  1g-05 1e-05

regular oscillatory behavior (its power spectrum does not

reveal any particular dominant frequency; see right plot of 16-06 1e-06

Fig. 2). _ 16-07 1e-07 L— 1Ll
Finally, for noise levels larger thams; =~ 6.0 X 1072 0 0.02 0.04 0.06 0 0.020.040.06

(lower row of Fig. 1), nucleation processes become more f f

frequen'F,_Ieading to a high de_:gree of S_ynchronization_ beFIG. 2. Power spectra&5(f) of the global (left) and local
tween flrlng events in the different sites of the Iattlce.(right) Signa]s at the onset of the osci"atory regim =

Therefore, even though the deterministic system is locatel7 X 10~2—third row from the top in Fig. 1).
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FIG. 3. Time sequence for a large noise lefeel= 0.12). As
in Fig. 1, time flows from left to right, and the sequence repeats
again after the third snapshot.

fluctuations. On the other hand, the frequency of the
oscillations (as measured by the position of the spectral
peak—right plot of Fig. 4) is seen to increase monoto-
nously with noise strength, reaching a saturation level that
decreases with the inhibitor's decay timg (compare
diamonds and crosses in the right plot of Fig. 4).

Figure 4 also displays the results corresponding to the
power spectrum of the local signaj () (squares), which
basically coincide with those of the global output dis-
cussed above. This means that basically in the whole
range of noise strengths presented in this figure (pre-
cisely for ¢ > o3 = 6.0 X 1072, i.e., all points in the

figure except the leftmost ones), synchronization ensures

that both the local and the global fields oscillate with the
same well-defined frequency. We should also note that
the previous results do not depend on the ability of the
inhibitor to diffuse: they hold even in the limiting case

L, = 0. However, the scenarios shown in Figs. 1 and
3 are not observed in models with fixed refractory time,
such as the JM model.
that it is the local dynamics of the inhibitor and the asso
ciateddynamicalrefractory time of the system that gives
rise to the noise-sustained spots, global oscillations, an

This fact leads to the conclusioTlo]

described above. However, a quantitative explanation of
these phenomena is still needed.
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