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Exact Dimer Ground State of the Two Dimensional Heisenberg Spin SystemSrCu2sssBO3ddd2
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(Received 6 July 1998)

The two dimensional Heisenberg model for SrCu2sBO3d2 has an exact dimer ground state which was
proven by Shastry and Sutherland almost twenty years ago. The critical value of the quantum phase
transition from the dimer state to the Néel ordered state is determined. Analysis of the experimental
data shows that SrCu2sBO3d2 has the dimer ground state but its coupling constants are close to the
transition point, which leads to an unusual temperature dependence of the susceptibility. The almost
localized nature of the triplet excitations explains the plateaus observed in the magnetization curve.
[S0031-9007(99)09090-0]

PACS numbers: 75.10.Jm, 75.30.Kz
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The pseudospin gap behaviors observed in highTc

cuprates have stimulated intensive investigations on ma
netic systems with spin gaps. As products of this type
activity, several new spin gap systems have been fou
experimentally. Among them, some of the example
which have two dimensional character include the co
pled spin ladder systems, SrCu2O3 [1], CaV2O5 [2], and
the plaquette resonanting-valence-bond (RVB) syste
CaV4O9 [3].

Recently Kageyamaet al. found a new two dimensional
spin gap system SrCu2sBO3d2 [4]. The crystal structure
of SrCu2sBO3d2 is tetragonal and all Cu21 ions with a
localized spinS ­ 1y2 are located at crystallographically
equivalent sites. The two dimensional layers containin
the Cu21 ions are separated by planes of Sr21 ions.

The susceptibility drops sharply below the maximum
at aroundT ­ 20 K. The peak of the measured sus
ceptibility is much suppressed compared with that of th
theoretical value expected for a dimer model. The sp
gap estimated by the nuclear magnetic relaxation rate
D ­ 30 K. Another novel feature appears in the mag
netization under high magnetic fields. The authors repo
that the two magnetization plateaus corresponding to1y4
and1y8 of the full Cu21 moment are observed for the firs
time for the two dimensional quantum spin systems.

The magnetic properties of SrCu2sBO3d2 may be de-
scribed by the two dimensional Heisenberg model wi
the nearest-neighbor (nn) and next-nearest-neighbor (n
couplings,

H ­ J
X
nn

si ? sj 1 J 0
X
nnn

si ? sj . (1)

The system is illustrated in Fig. 1(a) and topologicall
equivalent to the model considered by Shastry an
Sutherland [5]. We note that the nearest-neighbor bon
define a unique covering of all spins. On the other han
the system with only next-nearest-neighbor couplings
equivalent to the square lattice Heisenberg model. W
assume that both coupling constants are antiferromagne
J and J 0 . 0, and then the present Heisenberg mod
is frustrated.
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Shastry and Sutherland have shown that the sing
dimer state is an exact eigenstate of the Hamiltonia
In this paper we determine the critical value for th
transition from the gapful dimer ground state to th
antiferromagnetically ordered gapless state. Analysis
experimental data shows that SrCu2sBO3d2 is a spin
gap system with the dimer ground state but is clos

FIG. 1. (a) Lattice structure of the Cu21 spins of
SrCu2sBO3d2. The nearest-neighbor bonds are expresse
by solid lines and the next-nearest-neighbor bonds by brok
lines. Square unit cells containing 4, 8, 16, and 20 spins a
shown by dashed lines. (b) Elementary unit for the interactio
between a pair of nearest-neighbor bonds.
© 1999 The American Physical Society 3701
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to this quantum transition point. The unusual magne
properties of SrCu2sBO3d2 are explained consistently from
this point of view.

In the following analysis we use the dimer base
defined for each nearest-neighbor bond:

jsl ­
1

p
2

sj"#l 2 j#"ld , (2)

jt1l ­ j""l , (3)

jt0l ­
1

p
2

sj"#l 1 j#"ld , (4)

jt21l ­ j##l . (5)

As Shastry and Sutherland [5] have shown, the dire
product of the singlet states

jCl ­
Y

a
jsla , (6)

wherea represents the nearest-neighbor bonds, is alwa
an eigenstate of the Hamiltonian (1).

The proof for the exact eigenstate is simple. Sin
the wave function is an eigenstate, actually the grou
state, of the first term of the Hamiltonian, let us consid
the effect of the second term. It is easy to show b
elementary calculations that for any neighboring pair
the nearest-neighbor bonds the matrix element of t
second term of Eq. (1) vanishes,

H 0
abjslajslb ­ 0 . (7)

To be explicit, H
0

ab ­ J 0ss1 ? s3 1 s2 ? s3d where the
site indices are shown in Fig. 1(b). Note that the va
ishing of the matrix element is due to the odd parity of th
singlet with respect to the reflection which exchanges t
two spinss1 $ s2.

The energy of the dimer state is given byEdimer ­
2s3y8dNJ where N is the total number of spins which
is assumed to be even. It is clear that the dimer state
the ground state for smallJ 0 ø J.

Now we consider the other limit,J 0 ¿ J. In this
limit the model is topologically equivalent to the two di
mensional square lattice Heisenberg model as mention
before. According to the recent quantum Monte Car
simulations the ground state energy per site is20.669J 0

[6]. The first order correction due to the dimer couplin
J is obtained from the spin-spin correlation of the nex
nearest-neighbor pair of the square lattice model, whi
is calculated as0.204 [7]. By using these results the
ground state energy of the ordered phase is estimated
EAF ­ 2Ns0.669J 0 2 0.102Jd. The transition point be-
tween the two phases may be obtained by equating
two energies, which leads tosJ 0yJdc ­ 0.71. Since the
ground state energy for the antiferromagnetic phase is
timated by a variational calculation, the transition poin
thus obtained gives an upper bound.

Figure 2 shows the energy obtained by the exa
diagonalization for finite systems,N ­ 8, N ­ 16, and
3702
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FIG. 2. Ground state energy per site for finite lattices:N ­ 8,
16, and 20. The lowest energies of triplet excitations are a
shown by filled symbols.

N ­ 20. Periodic boundary conditions are used f
the calculations. By considering the finite size effec
we obtain an estimation,sJ 0yJdc . 0.69. Therefore we
conclude that the transition point issJ 0yJdc ­ 0.7 6 0.01.

One can estimate the excitation gap in the dimer ph
by the perturbation theory. After some calculations t
spin gap up to the fourth order correction is given by

D ­ J

241 2

√
J 0

J

!2

2
1
2

√
J 0

J

!3

2
1
8

√
J 0

J

!4
35 . (8)

Up to this order the triplet excitations are completely l
calized. This unusual behavior is understood by consid
ing the matrix elements for the triplet excitations. To b
explicit we start from the state with a triplet with the spi
quantum numbersz ­ 1 at the bonda in Fig. 1(b). The
states connected with this state by the Hamiltonian are

H 0
abjt1lajslb ­

J 0

2
jt1lajt0lb 2

J 0

2
jt0lajt1lb . (9)

It is important to note that when a triplet moves
neighboring bonds it leaves another triplet behind. T
next crucial observation is that the following matri
elements vanish also by symmetry reasoning: parity w
respect to the reflection,

H 0
abjslajtmlb ­ 0 sm ­ 0, 61d . (10)

The above two facts, Eqs. (9) and (10), set a string
constraint for the motion of a triplet. Hopping of a triple
is possible through a closed path of dimer bonds a
thus the hopping processes start from the sixth order
the perturbation. On the other hand, in a similar syst
in one dimension, the triplet excitations are complete
localized [8]. In the present system, the triplet excitatio
are nearly localized with extremely small dispersion.



VOLUME 82, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 3 MAY 1999

In
cal

the
ri-
u-
n
eti-
een
fit
for

is
er
low
ng

ts

of
ity.
5
tic
ct

ed

a

te

o
he
The spin gap for finite systems is shown in Fig. 3. Fo
the dimer region,J 0yJ , 0.7, the finite size effects are
small, which is a consequence of the almost localize
wave functions of the triplet excitations. The perturbatio
result given by Eq. (8) is very accurate forJ 0yJ # 0.5.
On the other hand, for the antiferromagnetic regio
the finite size effects are significant, indicating usu
dispersive magnon excitations. Since the dimer grou
state is always an eigenstate it makes a level crossing w
the Néel ordered state at the transition point. For such
case there are two possibilities concerning the nature
the transition [9]. From the results shown in Fig. 3 it i
difficult to determine uniquely whether it is weakly first
order or continuous.

Susceptibility at high temperatures is obtained by th
high temperature series expansion as

x ­
sgmBd2

4T

√
1 2

J 1 4J 0

4T
1

2J2 1 8JJ 0 1 8J 02

16T2

!
.

(11)

From the expansion, the paramagnetic Weiss constan
given byu ­ sJ 1 4J 0dy4.

Kageyamaet al. determined the excitation gapD ­
30 K from the NMR relaxation rate. It should be noted
that from the low temperature increase of the susceptib
ity it is estimated asD ­ 19 K. In the following analysis
of the experimental data we use the former value which
identified as the spin gap by the authors of [4]. The su
ceptibility data at high temperatures are fitted by a Curi
Weiss law with the Weiss constantu ­ 92.5 K and the
effectiveg factor g ­ 2.14. The spin gap and the Weiss
constant are sufficient to determine the coupling consta
uniquely. By using the fit up to the sixth order shown i

FIG. 3. Spin gap for finite lattices:N ­ 8, 16, and 20. The
solid line is the perturbation result up to the fourth order. Th
dashed line is a fit obtained by adding fifth and sixth orde
terms to the perturbation result.
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Fig. 3, J ­ 100 andJ 0 ­ 68 K are obtained. Tempera-
ture dependence of susceptibility is shown in Fig. 4.
the figure a comparison is made between the theoreti
calculations for finite clustersN ­ 8 andN ­ 16 and the
experiments. The theoretical values are calculated by
quantum transfer matrix method for the systems with pe
odic boundary conditions [10]. Considering the ambig
ity for the estimation of the gap from the experiments o
one side, and the smallness of clusters used for theor
cal calculations on the other side, the agreement betw
the experiment and the theory is satisfactory. A better
may be obtained when slightly smaller values are used
the Weiss constant and the spin gap.

The characteristic feature of the susceptibility of th
compound, the usual Curie-Weiss-type behavior at high
temperatures above the peak and the steep drop be
the peak, is well reproduced. The estimated coupli
constantsJ 0yJ ­ 0.68 are close to the critical value
sJ 0yJdc ­ 0.7. Figure 4 also shows the theoretical resul
for smaller values of the ratioJ 0yJ ­ 0, 0.2, and 0.4 with
the Weiss constant fixed,u ­ 92.5 K. We can conclude
that the closeness to the transition point is the origin
the unusual temperature dependence of the susceptibil

Next we discuss the magnetization curve. Figure
shows magnetization as a function of the applied magne
field. The results are obtained by the numerical exa
diagonalization for the system withN ­ 20 spins. One
can clearly identify plateaus corresponding to1y4 and1y2
of the full moment. Experimentally, plateaus are observ
for 1y4 and1y8 of the full moment. Since the calculations
were done for a small cluster, it is not possible to find
plateau at1y8. The critical value for the plateau at1y4

FIG. 4. Temperature dependence of susceptibility for fini
clusters,N ­ 8 and16. J ­ 100 K andJ 0 ­ 68 K are used.
The experimental data are shown by the thick solid line. Als
shown are the theoretical results for smaller values of t
ratio J 0yJ ­ 0 sdimerd, 0.2, 0.4 with the Weiss constant fixed
u ­ 92.5 K.
3703
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FIG. 5. Magnetization process for the finite cluster of 2
spins. J ­ 100 andJ 0 ­ 68 K are used.

estimated for the present set of parametersJ ­ 100 K,
J 0 ­ 68 K is about 40 T which is comparable with the
experimentally observed critical fieldHc4 ­ 37 T [4].

Formation of the plateaus is related with the almost lo
calized wave functions of the triplet excitations. At spe
cial values of magnetization, where the triplet excitation
can take a regular lattice structure, energy cost would
locally minimum. It is natural to assume that the com
mensurability energy is more favorable when a unit ce
is a simple square since the original structure has t
tetragonal symmetry. The square unit cells are po
sible for N ­ 4, 8, 16, 20, 32, . . . , which corresponds to
plateaus at1y2, 1y4, 1y8, 1y10, 1y16, . . . ; see Fig. 1(a).
The plateaus observed experimentally,1y4 and 1y8, are
just two of them. Our theory predicts that there wil
be a clear plateau for1y2 of the full moment at around
100 T and also for1y10 at a smaller magnetic field than
Hc2 ­ 28 T. Since the plateau of the latter is expecte
to be small, a lower temperature and a clean sample w
be required. The experiments on these plateaus are a
cial test for the present theory. Another prediction of th
theory is the superstructure at each plateau which sho
be observable, for example, by NMR.

In conclusion we have identified that SrCu2sBO3d2
has the exact dimer ground state found by Shas
3704
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and Sutherland [5]. In the model the quantum pha
transition occurs atJ 0yJ , 0.7 from the dimer state to
the antiferromagnetically ordered state. This transition
either weakly first order or continuous and SrCu2sBO3d2
is a unique spin gap system which is close to the quant
transition point. Unusual temperature dependence of
susceptibility is a consequence of the closeness to
transition point. Another interesting feature appears
the excitations. The low lying triplet excitations ar
almost localized and easily form regular lattices und
certain magnetic fields. The commensurability ener
associated with the superstructures leads to the plateau
the magnetization curve at1y2, 1y4, 1y8, 1y10, 1y16, . . . ,
of the full moment.
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part of the numerical calculations was performed on t
HITACHI SR2201 massively parallel computer at th
University of Tokyo.

[1] M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and
Y. Kitaoka, Phys. Rev. Lett.73, 3463 (1994).

[2] H. Iwase, M. Isobe, Y. Ueda, and H. Yasuoka, J. Phy
Soc. Jpn.65, 2397 (1996).

[3] S. Taniguchi, T. Nishikawa, Y. Yasui, Y. Kobayashi
M. Sato, T. Nishioka, M. Kontani, and K. Sano, J. Phy
Soc. Jpn.64, 2758 (1995).

[4] H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov
K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto
and Y. Ueda, Phys. Rev. Lett.82, 3168 (1999).

[5] B. S. Shastry and B. Sutherland, Physica (Amsterda
108B, 1069 (1981).

[6] A. W. Sandvik, Phys. Rev. B56, 11 678 (1997).
[7] M. Troyer (private communication).
[8] M. P. Gelfand, Phys. Rev. B43, 8644 (1991).
[9] I. Affleck, Phys. Rev. B43, 3215 (1991).

[10] H. Betsuyaku, Prog. Theor. Phys.75, 774 (1986);
I. Morgenstern and D. Würtz, Phys. Rev. B32, 523
(1985).


