VOLUME 82, NUMBER 18 PHYSICAL REVIEW LETTERS 3 My 1999

Exact Dimer Ground State of the Two Dimensional Heisenberg Spin SysteSrCu,(B03);

Shin Miyahara and Kazuo Ueda

Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8666, Japan
(Received 6 July 1998

The two dimensional Heisenberg model for Sy@0;), has an exact dimer ground state which was
proven by Shastry and Sutherland almost twenty years ago. The critical value of the quantum phase
transition from the dimer state to the Néel ordered state is determined. Analysis of the experimental
data shows that SrG(BO;), has the dimer ground state but its coupling constants are close to the
transition point, which leads to an unusual temperature dependence of the susceptibility. The almost
localized nature of the triplet excitations explains the plateaus observed in the magnetization curve.
[S0031-9007(99)09090-0]

PACS numbers: 75.10.Jm, 75.30.Kz

The pseudospin gap behaviors observed in high Shastry and Sutherland have shown that the singlet
cuprates have stimulated intensive investigations on maglimer state is an exact eigenstate of the Hamiltonian.
netic systems with spin gaps. As products of this type ofn this paper we determine the critical value for the
activity, several new spin gap systems have been fountfansition from the gapful dimer ground state to the
experimentally. Among them, some of the examplesantiferromagnetically ordered gapless state. Analysis of
which have two dimensional character include the couexperimental data shows that Ss(BIO;), is a spin
pled spin ladder systems, Sriy [1], CaV,0s [2], and gap system with the dimer ground state but is close
the plaquette resonanting-valence-bond (RVB) system,
CaV,0Og [3].

Recently Kageyamat al. found a new two dimensional
spin gap system SrG(BOs), [4]. The crystal structure
of SrCw(B0O;), is tetragonal and all Cd ions with a
localized spinS = 1/2 are located at crystallographically
equivalent sites. The two dimensional layers containing
the C4* ions are separated by planes of'Sions.

The susceptibility drops sharply below the maximum
at aroundT = 20 K. The peak of the measured sus-
ceptibility is much suppressed compared with that of the
theoretical value expected for a dimer model. The spin
gap estimated by the nuclear magnetic relaxation rate is
A = 30 K. Another novel feature appears in the mag-
netization under high magnetic fields. The authors report
that the two magnetization plateaus corresponding/tb
and1/8 of the full C™ moment are observed for the first
time for the two dimensional quantum spin systems.

The magnetic properties of SrgB0;), may be de-
scribed by the two dimensional Heisenberg model with

the nearest-neighbor (nn) and next-nearest-neighbor (nnn) 10 ,
couplings, J 5
o—=
H:JZSi’Sj'f‘J/ZSi'Sj. (l) \‘\\‘\3 4
The system is illustrated in Fig. 1(a) and topologically 2@
equivalent to the model considered by Shastry and a b
Sutherland [5]. We note that the nearest-neighbor bonds (b)

define a unique covering of all spins. On the other hand, ' .
the system with only next-nearest-neighbor couplings i€!G- 1. (a) Lattice structure of the €u spins of
equivalent to the square lattice Heisenberg model. W rCu(BO;),. The nearest-neighbor bonds are expressed

. - Dy solid lines and the next-nearest-neighbor bonds by broken
assume that both coupling constants are ant|ferromagnet|ﬁ,les_ Square unit cells containing 4, 8, 16, and 20 spins are

J and J' > 0, and then the present Heisenberg modekhown by dashed lines. (b) Elementary unit for the interaction
is frustrated. between a pair of nearest-neighbor bonds.
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to this quantum transition point. The unusual magnetic T T T T T
properties of SrCy(BOs), are explained consistently from
this point of view.

In the following analysis we use the dimer bases -0.3 - -
defined for each nearest-neighbor bond: 222 S
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As Shastry and Sutherland [5] have shown, the direct
product of the singlet states

1 1 1 1
0 02 04 06 038
W) = [Tls). (6) i

whereq represents the nearest-neighbor bonds, is alway‘légG- 26 Z%rOUT”hd Sltate energy per Sige f.OT finite lattic¥s:= 8, |
an eigenstate of the Hamiltonian (1) , an . e lowest energies o t”p et excitations are also

. L . shown by filled symbols.
The proof for the exact eigenstate is simple. Since y y

the wave function is an eigenstate, actually the ground; — 5o periodic boundary conditions are used for

state, of the first term of the Hamiltonian, let us considerne calculations. By considering the finite size effects,

the effect of the second term. It is easy to show bye obtain an estimatior(J’/J). > 0.69. Therefore we

elementary calculations that for any neighboring pair of;onclude that the transition point('/J), = 0.7 = 0.01.

the nearest-neighbor bonds the matrix element of the ope can estimate the excitation gap in the dimer phase

second term of Eq. (1) vanishes, by the perturbation theory. After some calculations the
H/ Is)als)y = 0. (7)  spin gap up to the fourth order correction is given by

To be explicit, H,, = J'(s; - s3 + s> - s3) where the N (Y 1
site indices are shown in Fig. 1(b). Note that the van- A =J| 1 — (—) - — (—) - — (—) . (8)
ishing of the matrix element is due to the odd parity of the J 2\J 8 \J

singlet with respect to the reflection which exchanges the . . -
fwo spinss; < s, Up to this order the triplet excitations are completely lo-

The energy of the dimer state is given Wi = calized. This unusual behavior is understood by consider-
—(3/8)NJ where N is the total number of spinlgle{/vhich ing the matrix elements for the triplet excitations. To be

is assumed to be even. It is clear that the dimer state gxplicit we start from the state with a_trip_let with the spin
the ground state for small < J. quantum numbes, = 1 at the bondu in Fig. 1(b). The

Now we consider the other limit/’ > J. In this states connected with this state by the Hamiltonian are

limit the model is topologically equivalent to the two di- / _J !
mensional square lattice Heisenberg model as mentioned Haplt)als)s ) 1t1alt0)s > lto)alt)s . (9)
before. According to the recent quantum Monte Carlo
simulations the ground state energy per site-i%669J’

It is important to note that when a triplet moves to
; . : . neighboring bonds it leaves another triplet behind. The
[6]. The first order correction due to the dimer COUIOIIngnext crucial observation is that the following matrix

J1s obtalngd from the Spin-spin correla'tlon of the ne)?['elements vanish also by symmetry reasoning: parity with
nearest-neighbor pair of the square lattice model, Wh'd?espect to the reflection

is calculated a%9.204 [7]. By using these results the ,
ground state energy of the ordered phase is estimated as Hsaltwyy =0 (m =0,%1). (10)
Ear = —N(0.669J' — 0.102J). The transition point be- The above two facts, Egs. (9) and (10), set a stringent
tween the two phases may be obtained by equating theonstraint for the motion of a triplet. Hopping of a triplet
two energies, which leads t0’/J). = 0.71. Since the is possible through a closed path of dimer bonds and
ground state energy for the antiferromagnetic phase is ethus the hopping processes start from the sixth order in
timated by a variational calculation, the transition pointthe perturbation. On the other hand, in a similar system
thus obtained gives an upper bound. in one dimension, the triplet excitations are completely
Figure 2 shows the energy obtained by the exactocalized [8]. In the present system, the triplet excitations
diagonalization for finite systemgy = 8, N = 16, and are nearly localized with extremely small dispersion.
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The spin gap for finite systems is shown in Fig. 3. ForFig. 3,/ = 100 andJ’ = 68 K are obtained. Tempera-
the dimer region,J'/J < 0.7, the finite size effects are ture dependence of susceptibility is shown in Fig. 4. In
small, which is a consequence of the almost localizedhe figure a comparison is made between the theoretical
wave functions of the triplet excitations. The perturbationcalculations for finite cluster¥ = 8 andN = 16 and the
result given by Eq. (8) is very accurate fét/J = 0.5. experiments. The theoretical values are calculated by the
On the other hand, for the antiferromagnetic regionquantum transfer matrix method for the systems with peri-
the finite size effects are significant, indicating usualodic boundary conditions [10]. Considering the ambigu-
dispersive magnon excitations. Since the dimer groundy for the estimation of the gap from the experiments on
state is always an eigenstate it makes a level crossing witbne side, and the smallness of clusters used for theoreti-
the Néel ordered state at the transition point. For such aal calculations on the other side, the agreement between
case there are two possibilities concerning the nature dhe experiment and the theory is satisfactory. A better fit
the transition [9]. From the results shown in Fig. 3 it is may be obtained when slightly smaller values are used for
difficult to determine uniquely whether it is weakly first the Weiss constant and the spin gap.

order or continuous. The characteristic feature of the susceptibility of this
Susceptibility at high temperatures is obtained by thecompound, the usual Curie-Weiss-type behavior at higher
high temperature series expansion as temperatures above the peak and the steep drop below
(gun)? J + 4J —J2 + 87J + 8J” the peak, is well reproduced. The estimf?\t_ed coupling
=T ( T 1612 ) constantsJ/’/J = 0.68 are close to the critical value
(J'/J). = 0.7. Figure 4 also shows the theoretical results

(11)  for smaller values of the ratie’/J = 0, 0.2, and 0.4 with

From the expansion, the paramagnetic Weiss constant the Weiss constant fixed, = 92.5 K. We can conclude
givenbyd = (J + 4J')/4. that the closeness to the transition point is the origin of

Kageyamaet al. determined the excitation gap =  the unusual temperature dependence of the susceptibility.
30 K from the NMR relaxation rate. It should be noted Next we discuss the magnetization curve. Figure 5
that from the low temperature increase of the susceptibilshows magnetization as a function of the applied magnetic
ity it is estimated a& = 19 K. In the following analysis field. The results are obtained by the numerical exact
of the experimental data we use the former value which isliagonalization for the system witN = 20 spins. One
identified as the spin gap by the authors of [4]. The susean clearly identify plateaus correspondind f@ and1/2
ceptibility data at high temperatures are fitted by a Curieof the full moment. Experimentally, plateaus are observed
Weiss law with the Weiss constadt= 92.5 K and the for 1/4 and1/8 of the full moment. Since the calculations
effectiveg factorg = 2.14. The spin gap and the Weiss were done for a small cluster, it is not possible to find a
constant are sufficient to determine the coupling constantslateau atl /8. The critical value for the plateau ay4
uniquely. By using the fit up to the sixth order shown in
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Vi FIG. 4. Temperature dependence of susceptibility for finite
clusters,N = 8 and16. J = 100 K andJ’ = 68 K are used.
FIG. 3. Spin gap for finite latticesv = 8, 16, and 20. The The experimental data are shown by the thick solid line. Also
solid line is the perturbation result up to the fourth order. Theshown are the theoretical results for smaller values of the
dashed line is a fit obtained by adding fifth and sixth orderratio J’/J = 0 (dimer),0.2,0.4 with the Weiss constant fixed
terms to the perturbation result. 6 =925 K.
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1 T T T and Sutherland [5]. In the model the quantum phase
transition occurs aff’/J ~ 0.7 from the dimer state to
the antiferromagnetically ordered state. This transition is
MM, —— either weakly first order or continuous and Ss(B0;),
3/4 N is a unique spin gap system which is close to the quantum
transition point. Unusual temperature dependence of the
susceptibility is a consequence of the closeness to the
1/2 transition point. Another interesting feature appears in
the excitations. The low lying triplet excitations are
JJ almost localized and easily form regular lattices under
certain magnetic fields. The commensurability energy
1/4 associated with the superstructures leads to the plateaus in
the magnetization curve dt/2,1/4,1/8,1/10,1/16,...,
of the full moment.
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