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Electron Localization in the Insulating State
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The insulating state of matter is characterized by the excitation spectrum, but also by qualitative
features of the electronic ground state. The insulating ground wave function in fact (i) sustains
macroscopic polarization, and (ii) ibcalized We give a sharp definition of the latter concept
and we show how the two basic features stem from essentially the same formalism. Our approach
to localization is exemplified by means of a two-band Hubbard model in one dimension. In the
noninteracting limit, the wave function localization is measured by the spread of the Wannier orbitals.
[S0031-9007(98)08159-9]

PACS numbers: 71.10.Fd, 71.23.An

In a milestone paper that appeared in 1964 [1], Let us start with a single one-dimensional electron:
W. Kohn investigated the very basic features whichthe distinction between localized (bound) and delocalized
discriminate between an insulator and a metal: he gavéscattering) states is a clearcut one when the usual
evidence thatocalization of the electronic ground wave boundary conditions are adopted; much less so when
function implies zero dc conductivity, and therefore char-periodic Born—von Karman boundary conditions (BvK)
acterizes the insulating state. In this Letter, we provide are adopted, implying a ring topology for the one-
definition of localization which is deeply rooted into the dimensional system. Within the latter choice—which
modern theory of polarization [2—5], and rather differentis almost mandatory in condensed matter physics—all
from Kohn’s. Indeed, besides zero dc conductivity,states appear in a sense as “delocalized” since all wave
the property which obviously discriminates betweenfunctionsys(x) are periodic over the BvK periodt(x +
insulators and metals is dielectric polarization: wheneveL) = (x). We show that the key parameter to study
the bulk symmetry is low enough, an insulator displayslocalization of an electronic state within BvK is the
nontrivial static polarization. Here, we show that thedimensionless complex numbgrdefined as
whole information needed for describibgthlocalization L
and polarization is embedded into the same many-body 7= f dx e ®m/DX [y (x)2, 1)
expectation value, namely, the complex numbgrde- 70
fined in Eq. (10) below. It was previously shown [5] that whose modulus is no larger %han 1. Inthe case of extreme
macroscopic polarization is essentially theaseof zy:  delocalization, one hal)(x)|* = 1/L andz = 0, while
here we show that theodulusof zy yields a definition of 1N the case of extreme localization,
localization length which is sharper and more meaningful -
than the available ones. In our formalism a vanishipg (ol = Z 8(x = xo = mL), (2)
implies a delocalized wave functioand an ill-defined o
polarization: this characterizes the metallic state. Ou@nd we get = ¢/7/Pv In the most general case, de-
definition is first demonstrated for a one-dimensionalPicted in Fig. 1, the electron density(x)|*> can always
crystalline system of independent electrons, in which casB€ written as a superposition of a functiep., normal-
our localization length coincides (for insulators) with the ized over(—<, ), and of its periodic replicas:
spread of the Wannier orbitals. We then study a two-band » ow o
Hubbard model undergoing a Mott-like transition: both g ()" = Z Moc(X — xo = mL). 3)
in the band regime (below the transition) and in the e o i
highly correlated regime (above the transition) the wave30th xo andniec(x) have a large arbitrariness: we restrict
function turns out to be localized, while the localizationit @ little bit by imposing thatx, is the center of the
length diverges at the transition point, thus indicating distribution, in the sense thgt’.. dx xnoc(x) = 0.
metallic ground state. Our approach to localization in_ USing EQ. (3),z can be expressed in terms of the
a many-electron system sharply discriminates between Bourier transform ofuj,c as
conducting and nonconducting ground state, yet avoids _ iemins (2T
any reference to the excitation spectrum. t=e Moc\ =77 |- (4)
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no constant. Even for a system of independent electrons,
our approach takes a simple and compact form if a many-
body formulation is adopted. In this case, the ground state
obeys BvK in each electronic variable separately:
W(xg,..o.sXiy.sxy) = Vxg,...,x; + L,...,xy). (9)
Spin variables are omitted (here and in the following
formulas), while they of course are taken care of in
the calculations. In analogy with the one-particle case,
we define the many-body multiplicative operat&r=
>, x;, and the complex number
o = (WX ), (10)
FIG. 1. The distribution|y(x)|* of a localized state within which will be used to discriminate between a localized
periodic Born—von Karman boundary conditions (schematic). many-body ground eigenstate (whedrg| — 1 for large

The distinction between a localized and a delocalized statd) and a delocalized one, wherg, vanishes. Ergo,

becomes clear if one studies the behavior afhen the following Kohn's viewpoint [1], the modulus ofy will
BvK periodicity L is varied. For a localized state, in be used here to discriminate between insulators and

fact, the shape ofi..(x) is essentiallyL independent metals. We start with thg dimensiogless guantity
(exponentially withZ for large L), while the opposite is D =—limN Infzy ", (11)
true for a delocalized state. If the electron is localized in gyhich is finite in insulators and divergent in metals: we

region of space much smaller thanits Fourier transform  yefine the localization length a = v'D/(2mwn,). We
is smooth over reciprocal distances of the ordeiL.of  gmphasize that our definition of localization—as well as

0 Lo L

and can be expanded as the definition of polarization given in Ref. [5]—deals on
. 27 127\ [~ ) the same ground with a general system, either ordered or
"1°°<_T> =1-5 <T> f,m dx x"Mioc () disordered, either independent-electron or correlated.
+ OWL?. (5) For a crystalline system of independent electrons, the

) ) many-body wave function?' can be written as a Slater
Therefore at the increase bf |z| tends to 1 for a localized  determinant of Bloch orbitals angy factors. Using the
state, while it vanishes in the delocalized case. same algebra as in Ref. [5], Eq. (14) onwards, one can
A very natural definition of the center of a localized gasjly prove that for a metaly vanishes, while for an
periodic distribution|y(x)|* is provided by the phase af  insulatorD converges to the Brillouin-zone (BZ) integral:
through the formula my

27
L D=4mh—j dk (u%lu%)
(¥) = 3= Iminz, (6) a Jaz m; e
o

first proposed by Sellonet al. in Ref. [6] to track the < ,
adiabatic time evolution of a single quantum particle - Z (U e L) St g | g 1) |-
in a disordered condensed system within BvK. The bm=1

expectation valugx) is defined modulal, as expected (12)
since |¢(x)|? is periodic: the previous equations imply In EQ. (12) we assume a linear system of lattice constant
indeed(x) = xo,modL. The modulus of; can be used @ With m, occupied bands and density = 2m/a; u

to measure the localization length Using Eq. (5), we IS the periodic factor in the Bloch orbital (chosen to be

get a differentiable function oft), and the prime indicates
1 /27\2 [~ the k derivative. The integral in Eqg. (12) is a “geometric

In|z| = 5 <T> [ dx x*niee(x) (7)  distance” [8] and measures the spregd= (x?) — (x)*
B . qf the optimally localized Wannier orbitals [9,10]: our

&r:gjgi spread of the electronic distribution can be defineq, coincides in fact withQ,/m,, where Q, is the

) quantity defined by Marzari and Vanderbilt [11] (in one
2= 2y — () = _(L) Inlz 2. (8 dimension). _ .

27 Next, we study a one-dimensional model of a correlated
which for largeL goes to a constant limit for a localized polar crystal. We focus on the centrosymmetric case
state, and diverges for a delocalized one. Equation (8\here zy is real and its phase is either 0 ar. We
provides an alternative measure of localization with rechoose a two-band Hubbard model at half filling, whose
spect to the usual participation ratio [7]. Hamiltonian is

We now switch from the one-body case to the many- - "
body one, and we consider a finite density of electrans Z [(=1)/Acjocje = tlcjpcjrioc + H.C)]
. . I . p
N particles in a pe_rlo_dlc box of sizé. Eventually, the / + UZ”,/’T”jl’ (13)
thermodynamic limit is takenN — o, [ — ©, N/L = 7
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and depends on two parameters besides the Hubbard The many-body wave function is explicitly needed for
the hopping, and the difference in site energi2A. detecting the transition, and the relevant information is
In the special casd/ = 0 we recover a system of indeed embedded iny. We adopt in the following the
independent electrons and the model describes an inalue of A/t = 0.5714, previously used in Refs. [13,14]:
sulator wheneverA # 0. As discussed aboveD is the Mott transition occurs then &t = 2.27¢.
finite [Eq. (12)] in the insulating case and formally ~We perform exact diagonalizations fof = 8 via the
infinite (even atfinite N) in the metallic one. We Lanczos algorithm, as described in Ref. [13]. The results
show in Fig. 2 the convergence ob for several are shown in Fig. 3 (dashed line) and would indicate
values of A/r: the localization length diverges upon an increase of the localization length until the transition
approaching the metallic stattA = 0), and a large point, where a discontinuous drop occurs; in the high-
system sizeN is needed for evaluatingd if A/t is  region the wave function is strongly localized. However,
small. Approximating D with its finite-N value is upon performing the calculations in this way, the finite
exactly equivalent to a discretization of the BZ inte-size effects are clearly very relevant: this depends on the
gral in Eq. (12): if we further replace the logarithm in chosen value ofA/r. Even atU = 0 (where we can
Eq. (11) with its leading expansion, we recover the samafford exact diagonalizations at arbitrarily large sizes) the
discretization proposed in Ref. [10]. While one gets thevalue of D calculated atNV = 8 differs from the fully
same limiting value, our logarithm form converges muchconverged value by 27% (see Fig. 2): in the correlated
faster: this is also shown in Fig. 2, for a selected valuecase, the situation is expected to worsen. We have
of A/t. performed a few calculations at different sizes, up to
The case ofU > 0 is much more interesting, since N = 12: The convergence turns out to be slow and
no Wannier functions or single-particle orbitals can beoscillatory, with N = 4n and N = 4n + 2 following
defined. Notwithstanding, ouk maintains its value of different trends.
a meaningful measure of the localization of the many- We overcome this drawback upon building approximate
body wave function as a whole, even in the highlywave functions for much larger sizes. At a fixed si¥g
correlated regime. The model Hamiltonian of Eq. (13)we performseveralindependent calculations, using skew
has been thoroughly studied by several authors [12{quasiperiodic) boundary conditions with Bloch vector
14]: when U is increased to large values, the systemover each electronic variable separately:
undergoes an interesting transition from a band _insulato&)k(xh_._’xi +L....xy) = e D,
to a Mott insulator. The real numbey changes sign at
the transition: this fact has an important physical meaning, (14)
since it indicates a swapping of roles between anion angye chooseM equally spaced value df in the interval
cation. In the low¥/ regime, the anion is the ion having [0,27/L):
the lowest on-site energy (oddfor positiveA), while the 2
opposite is true in the highly correlated regime. We have ky = — s, s=0,1,....M — 1. (15)

. . . . ML
shown in Ref. [13] that the anion-cation swap manifest X . .
itself in a discontinuous change of thdynamical (or SEach of thed,_ is therefore BvK periodical over a period

-SL’ = ML, and we build an ansatz wave function for
N’ = MN electrons as the antisymmetrized product of
the M different N-particle wave functionsb, . In the
simple case ofV = 1 this construction yields the Slater
determinant of M orbitals, and is therefore the exact
wave function for a system oN’ = M noninteracting
electrons. Upon choosingy > 1, one allows theMN
electrons to correlate, but only in clusters df at a
time: of course, our ansatz wave function has restricted
variational freedom. At any give, and for evenv, the

..,X,’,...,XN).

100

10 numberzy, factorizes as [15]
v = zuy = (WleCTMOX )
1 M-l .
= [] (@i 1/ MDX Dy ). (16)
[l [ [ (] s=0
10 20 30 40 For instance, takingv =4 and M = 3, the ansatz

FIG. 2. Solid lines: —N Inzy|? as a function ofv at several '€Produces the exact 12 sites result {atr = 1) within
values ofA /1 for independent electror® = 0). From bottom 3%. We then approximate the thermodynamic limit upon
to top, A/t assumes the values 5, 2, 1, 0.5714, 0.1, andstudying the larg@/ limit at fixed N:

0.01, respectively. The dashed line is obtained replacing the . . 2

logarithm with its leading expansion at/¢ = 0.5714. D=~ Agmm NM In|zypm ™. (17)
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discriminate between an insulator and a metal without ac-
tually looking at the excitation spectrum, simply scruti-
nizing electron localization in the ground eigenstate. For

200 the special case of an insulating crystal of noninteract-
ing electrons, we measure nothing other than the localiza-
tion of the Wannier functions, whereas in the correlated

150 . o -
and/or disordered case our approach to localization is

D not related—to our best knowledge—to any previously

100 known theory [16]. Our work opens the way to further
advances and leaves several important issues open. We

5 mention just a few of them: effects (possibly qualitative)

of long-range interaction upak use of different approxi-
mate many-body wave functions (such as, e.g., quantum
Monte Carlo); role ofA in the context of Anderson local-
ization in disordered systems.
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