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Electron Localization in the Insulating State
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The insulating state of matter is characterized by the excitation spectrum, but also by qualita
features of the electronic ground state. The insulating ground wave function in fact (i) sust
macroscopic polarization, and (ii) islocalized. We give a sharp definition of the latter concept
and we show how the two basic features stem from essentially the same formalism. Our appr
to localization is exemplified by means of a two-band Hubbard model in one dimension. In
noninteracting limit, the wave function localization is measured by the spread of the Wannier orbi
[S0031-9007(98)08159-9]
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In a milestone paper that appeared in 1964 [1
W. Kohn investigated the very basic features whic
discriminate between an insulator and a metal: he ga
evidence thatlocalization of the electronic ground wave
function implies zero dc conductivity, and therefore cha
acterizes the insulating state. In this Letter, we provide
definition of localization which is deeply rooted into the
modern theory of polarization [2–5], and rather differen
from Kohn’s. Indeed, besides zero dc conductivity
the property which obviously discriminates betwee
insulators and metals is dielectric polarization: whenev
the bulk symmetry is low enough, an insulator display
nontrivial static polarization. Here, we show that th
whole information needed for describingboth localization
and polarization is embedded into the same many-bo
expectation value, namely, the complex numberzN de-
fined in Eq. (10) below. It was previously shown [5] tha
macroscopic polarization is essentially thephaseof zN :
here we show that themodulusof zN yields a definition of
localization length which is sharper and more meaningf
than the available ones. In our formalism a vanishingzN

implies a delocalized wave functionand an ill-defined
polarization: this characterizes the metallic state. O
definition is first demonstrated for a one-dimension
crystalline system of independent electrons, in which ca
our localization length coincides (for insulators) with th
spread of the Wannier orbitals. We then study a two-ba
Hubbard model undergoing a Mott-like transition: bot
in the band regime (below the transition) and in th
highly correlated regime (above the transition) the wav
function turns out to be localized, while the localizatio
length diverges at the transition point, thus indicating
metallic ground state. Our approach to localization
a many-electron system sharply discriminates between
conducting and nonconducting ground state, yet avoi
any reference to the excitation spectrum.
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Let us start with a single one-dimensional electro
the distinction between localized (bound) and delocaliz
(scattering) states is a clearcut one when the us
boundary conditions are adopted; much less so wh
periodic Born–von Kàrmàn boundary conditions (BvK
are adopted, implying a ring topology for the one
dimensional system. Within the latter choice—whic
is almost mandatory in condensed matter physics—
states appear in a sense as “delocalized” since all w
functionscsxd are periodic over the BvK period:csx 1

Ld ­ csxd. We show that the key parameter to stud
localization of an electronic state within BvK is the
dimensionless complex numberz, defined as

z ­
Z L

0
dx eis2pyLdxjcsxdj2, (1)

whose modulus is no larger than 1. In the case of extre
delocalization, one hasjcsxdj2 ­ 1yL and z ­ 0, while
in the case of extreme localization,

jcsxdj2 ­
X̀

m­2`

dsx 2 x0 2 mLd , (2)

and we getz ­ eis2pyLdx0 . In the most general case, de
picted in Fig. 1, the electron densityjcsxdj2 can always
be written as a superposition of a functionnloc, normal-
ized overs2`, `d, and of its periodic replicas:

jcsxdj2 ­
X̀

m­2`

nlocsx 2 x0 2 mLd . (3)

Both x0 andnlocsxd have a large arbitrariness: we restric
it a little bit by imposing thatx0 is the center of the
distribution, in the sense that

R`

2` dx xnlocsxd ­ 0.
Using Eq. (3), z can be expressed in terms of th

Fourier transform ofnloc as

z ­ eis2pyLdx0 ñloc

µ
2

2p

L

∂
. (4)
© 1999 The American Physical Society
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FIG. 1. The distributionjcsxdj2 of a localized state within
periodic Born–von Kàrmàn boundary conditions (schematic).

The distinction between a localized and a delocalized sta
becomes clear if one studies the behavior ofz when the
BvK periodicity L is varied. For a localized state, in
fact, the shape ofnlocsxd is essentiallyL independent
(exponentially withL for large L), while the opposite is
true for a delocalized state. If the electron is localized in
region of space much smaller thanL, its Fourier transform
is smooth over reciprocal distances of the order ofL21

and can be expanded as

ñloc

µ
2

2p

L

∂
­ 1 2

1
2

µ
2p

L

∂2 Z `

2`

dx x2nlocsxd

1 O sL23d . (5)

Therefore at the increase ofL, jzj tends to 1 for a localized
state, while it vanishes in the delocalized case.

A very natural definition of the center of a localized
periodic distributionjcsxdj2 is provided by the phase ofz
through the formula

kxl ­
L

2p
Im ln z , (6)

first proposed by Selloniet al. in Ref. [6] to track the
adiabatic time evolution of a single quantum particl
in a disordered condensed system within BvK. Th
expectation valuekxl is defined moduloL, as expected
since jcsxdj2 is periodic: the previous equations imply
indeedkxl . x0 modL. The modulus ofz can be used
to measure the localization lengthl. Using Eq. (5), we
get

lnjzj . 2
1
2

µ
2p

L

∂2 Z `

2`

dx x2nlocsxd , (7)

and the spread of the electronic distribution can be defin
through

l2 ­ kx2l 2 kxl2 ­ 2

µ
L

2p

∂2

lnjzj2, (8)

which for largeL goes to a constant limit for a localized
state, and diverges for a delocalized one. Equation
provides an alternative measure of localization with re
spect to the usual participation ratio [7].

We now switch from the one-body case to the man
body one, and we consider a finite density of electronsn0:
N particles in a periodic box of sizeL. Eventually, the
thermodynamic limit is taken:N ! `, L ! `, NyL ­
te

a

e
e

ed

(8)
-

y-

n0 constant. Even for a system of independent electro
our approach takes a simple and compact form if a man
body formulation is adopted. In this case, the ground sta
obeys BvK in each electronic variable separately:

Csx1, . . . , xi , . . . , xN d ­ Csx1, . . . , xi 1 L, . . . , xN d . (9)
Spin variables are omitted (here and in the followin
formulas), while they of course are taken care of
the calculations. In analogy with the one-particle cas
we define the many-body multiplicative operatorX̂ ­PN

i­1 xi , and the complex number
zN ­ kCjeis2pyLdX̂ jCl , (10)

which will be used to discriminate between a localize
many-body ground eigenstate (wherejzN j ! 1 for large
N) and a delocalized one, wherezN vanishes. Ergo,
following Kohn’s viewpoint [1], the modulus ofzN will
be used here to discriminate between insulators a
metals. We start with the dimensionless quantity

D ­ 2 lim
N!`

N lnjzN j2, (11)

which is finite in insulators and divergent in metals: w
define the localization length asl ­

p
Dys2pn0d. We

emphasize that our definition of localization—as well a
the definition of polarization given in Ref. [5]—deals on
the same ground with a general system, either ordered
disordered, either independent-electron or correlated.

For a crystalline system of independent electrons, t
many-body wave functionC can be written as a Slater
determinant of Bloch orbitals andzN factors. Using the
same algebra as in Ref. [5], Eq. (14) onwards, one c
easily prove that for a metalzN vanishes, while for an
insulatorD converges to the Brillouin-zone (BZ) integral

D ­ 4mb
2p

a

Z
BZ

dk

"
mbX

m­1

ku0
m,k j u0

m,kl

2

mbX
l,m­1

ku0
m,k j ul,kl kul,k j u0

m,kl

#
.

(12)
In Eq. (12) we assume a linear system of lattice consta
a with mb occupied bands and densityn0 ­ 2mbya; um,k
is the periodic factor in the Bloch orbital (chosen to b
a differentiable function ofk), and the prime indicates
the k derivative. The integral in Eq. (12) is a “geometri
distance” [8] and measures the spreadl2 ­ kx2l 2 kxl2

of the optimally localized Wannier orbitals [9,10]: ou
l2 coincides in fact with VIymb , where VI is the
quantity defined by Marzari and Vanderbilt [11] (in on
dimension).

Next, we study a one-dimensional model of a correlat
polar crystal. We focus on the centrosymmetric ca
where zN is real and its phase is either 0 orp. We
choose a two-band Hubbard model at half filling, whos
Hamiltonian isX

js

fs21djDc
y
jscjs 2 tscy

jscj11s 1 H.c.dg

1 U
X

j

nj"nj# , (13)
371
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and depends on two parameters besides the HubbardU:
the hoppingt, and the difference in site energies2D.

In the special caseU ­ 0 we recover a system of
independent electrons and the model describes an
sulator wheneverD fi 0. As discussed above,D is
finite [Eq. (12)] in the insulating case and formally
infinite (even at finite N) in the metallic one. We
show in Fig. 2 the convergence ofD for several
values of Dyt: the localization length diverges upon
approaching the metallic statesD ­ 0d, and a large
system sizeN is needed for evaluatingD if Dyt is
small. Approximating D with its finite-N value is
exactly equivalent to a discretization of the BZ inte
gral in Eq. (12): if we further replace the logarithm in
Eq. (11) with its leading expansion, we recover the sam
discretization proposed in Ref. [10]. While one gets th
same limiting value, our logarithm form converges muc
faster: this is also shown in Fig. 2, for a selected valu
of Dyt.

The case ofU . 0 is much more interesting, since
no Wannier functions or single-particle orbitals can b
defined. Notwithstanding, ourl maintains its value of
a meaningful measure of the localization of the man
body wave function as a whole, even in the highl
correlated regime. The model Hamiltonian of Eq. (13
has been thoroughly studied by several authors [1
14]: when U is increased to large values, the syste
undergoes an interesting transition from a band insula
to a Mott insulator. The real numberzN changes sign at
the transition: this fact has an important physical meanin
since it indicates a swapping of roles between anion a
cation. In the low-U regime, the anion is the ion having
the lowest on-site energy (oddj for positiveD), while the
opposite is true in the highly correlated regime. We hav
shown in Ref. [13] that the anion-cation swap manifes
itself in a discontinuous change of thedynamical (or
Born) ionic charge, while instead the static charge
continuousand carries no information about the transition

FIG. 2. Solid lines: 2N lnjzN j2 as a function ofN at several
values ofDyt for independent electronssU ­ 0d. From bottom
to top, Dyt assumes the values 5, 2, 1, 0.5714, 0.1, an
0.01, respectively. The dashed line is obtained replacing t
logarithm with its leading expansion atDyt ­ 0.5714.
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The many-body wave function is explicitly needed for
detecting the transition, and the relevant information i
indeed embedded inzN . We adopt in the following the
value ofDyt ­ 0.5714, previously used in Refs. [13,14]:
the Mott transition occurs then atU ­ 2.27t.

We perform exact diagonalizations forN ­ 8 via the
Lanczos algorithm, as described in Ref. [13]. The resul
are shown in Fig. 3 (dashed line) and would indicat
an increase of the localization length until the transition
point, where a discontinuous drop occurs; in the high-U
region the wave function is strongly localized. However
upon performing the calculations in this way, the finite
size effects are clearly very relevant: this depends on th
chosen value ofDyt. Even at U ­ 0 (where we can
afford exact diagonalizations at arbitrarily large sizes) th
value of D calculated atN ­ 8 differs from the fully
converged value by 27% (see Fig. 2): in the correlate
case, the situation is expected to worsen. We hav
performed a few calculations at different sizes, up t
N ­ 12: The convergence turns out to be slow and
oscillatory, with N ­ 4n and N ­ 4n 1 2 following
different trends.

We overcome this drawback upon building approximat
wave functions for much larger sizes. At a fixed sizeN ,
we performseveralindependent calculations, using skew
(quasiperiodic) boundary conditions with Bloch vectork
over each electronic variable separately:

Fksx1, . . . , xi 1 L, . . . , xN d ­ eikLFksx1, . . . , xi , . . . , xN d .

(14)

We chooseM equally spaced value ofk in the interval
f0, 2pyLd:

ks ­
2p

ML
s, s ­ 0, 1, . . . , M 2 1 . (15)

Each of theFks is therefore BvK periodical over a period
L0 ­ ML, and we build an ansatz wave function for
N 0 ­ MN electrons as the antisymmetrized product o
the M different N-particle wave functionsFks . In the
simple case ofN ­ 1 this construction yields the Slater
determinant ofM orbitals, and is therefore the exact
wave function for a system ofN 0 ­ M noninteracting
electrons. Upon choosingN . 1, one allows theMN
electrons to correlate, but only in clusters ofN at a
time: of course, our ansatz wave function has restricte
variational freedom. At any givenM, and for evenN, the
numberzN , factorizes as [15]

zN 0 ­ zMN ­ kCjeis2pyMLdX̂ jCl

­
M21Y
s­0

kFks11 je
is2pyMLdX̂ jFks l . (16)

For instance, takingN ­ 4 and M ­ 3, the ansatz
reproduces the exact 12 sites result (atUyt ­ 1) within
3%. We then approximate the thermodynamic limit upo
studying the largeM limit at fixed N:

D ­ 2 lim
M!`

NM lnjzNM j2. (17)
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FIG. 3. Dimensionless localization parameterD [Eq. (11)]
as a function ofUyt, where Dyt ­ 0.5714. Dashed line:
Calculations atN ­ 8, which are not converged since the
size is too small. Solid line: Values ofD, where the
thermodynamic limit is achieved by means of the ansatz wa
functions (see text); the divergence of the Mott transition
perspicuous.

The values ofD calculated forM ­ 100 andN ­ 8 are
plotted in Fig. 3 (solid line): one clearly sees a divergenc
of the localization length at the Mott transition, while
the wave function becomes localized again in the high
correlated regime.

The many-dimensional generalization of the prese
formulation is not straightforward: its presentation i
outside the scope of the present Letter. We menti
here only a few main features. (i)l is essentially
a unidimensional quantity, in the sense that one fix
a direction and defines a localization length in tha
given direction: say,lxx if we choosezN identical to
form to Eq. (10). For anisotropic crystals, differentl’s
coexist: for instance, in graphite we expectl to be
finite in the direction normal to the basal plane, an
divergent in the planar direction. (ii) For ad-dimensional
system ofN electrons in a cubic box of volumeLd the
factor N appearing in Eq. (11) must be replaced wit
N2yd21 in order to define the dimensionlessDxx , and
the localization length becomesl2

xx ­ Dxxys2pn
1yd
0 d2.

(iii) For a crystalline system of independent electronslxx

can be expressed as a BZ integral. In three dimensio
for a cubic lattice andmb occupied bands, we can prove
that

l2
xx ­ 2

1

s2pn
1y3
0 d2

lim
N!`

N21y3 lnjzN j2 ­
1

3mb
VI ,

(18)

whereVI is the BZ integral of Ref. [11].
In conclusion, we have shown how to unambiguous

measure localization in the ground state of a man
electron system. We have shown examples of how
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discriminate between an insulator and a metal without a
tually looking at the excitation spectrum, simply scruti-
nizing electron localization in the ground eigenstate. Fo
the special case of an insulating crystal of noninterac
ing electrons, we measure nothing other than the localiz
tion of the Wannier functions, whereas in the correlate
and/or disordered case our approach to localization
not related—to our best knowledge—to any previousl
known theory [16]. Our work opens the way to further
advances and leaves several important issues open.
mention just a few of them: effects (possibly qualitative
of long-range interaction uponl; use of different approxi-
mate many-body wave functions (such as, e.g., quantu
Monte Carlo); role ofl in the context of Anderson local-
ization in disordered systems.
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