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Unlocking Transition for Modulated Surfaces and Quantum Hall Stripes
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We develop a sine-Gordon model of layered systems of two-dimensional modulated surfaces and
one-dimensional stripes and demonstrate that these systems can undergo a Kosterlitz-Thouless transition
in which the modulations unlock as a result of thermal or quantum fluctuations, respectively. The
unlocked phase is interpreted as an anisotropic crystal in which soliton-antisoliton pairs proliferate.
The properties of such a state for modulated stripes in quantum Hall systems and its possible relevance
to recent anomalies in transport data are discussed. [S0031-9007(99)09019-5]

PACS numbers: 73.40.Hm, 75.30.Kz

Systems which may be modeled as interacting elasapplied currents in the direction of high conductivity, the
tic surfaces occur in many different contexts in naturedissipation is greater than what would be expected from
including liquid crystals, domain walls in magnets [1], either linear response or a simple heating model [13]. We
electron gases in semiconductor superlattices [2], laywill argue below that these properties may be understood
ered superconductors [3], and biophysical systems [4]n the framework of a modulated stripe phase, unlocked
In many situations at a mean-field level the surfacedy quantum fluctuations [16].
themselves may contain spatially periodic structure as We begin by defining a simple model of sheets with
illustrated in Fig. 1. At very low temperatures, such modulations present in them (see Fig. 1). The Hamilton-
modulations on different sheets should be strongly correlan may be written adl = Hy + H,, with
lated so that the system forms a type of three-dimensional 1 )
crystal. An interesting question one may ask is: if the Hy = 5 Z / dx dz(klocuil” + x;
modulations of the surfaces are weakly coupled, can ther- J
mal fluctuations cause the modulations on different sheets + 1 U Z / dx dz(d — u’_,)? 1)
to become uncorrelated—i.e., unlocked—even if ther- 25 ’ T
mal fluctuations do not disorder the modulations within 2
a given surface [5]? In a precise analogy [6], one canflx = _)‘Z / dx dz 009‘7[@(%1) = uj(x,2)]}.
also ask whether a series of modulated elaties will J )
remain locked at zero temperature when quantum fluctua-
tions are taken into account. It is this latter problem that
motivates this work and will be our principal focus.

The modulated elastic line problem is motivated by the j=2
theoretical discovery of striped electronic phases in quan-
tum Hall systems in high Landau levels [7—9]. Hartree-

Fock studies of such striped phases at zero temperature

[10,11] indicate that they are generically unstable to the a

formation of modulations along the stripes, so that at the

mean-field level the stripe state is essentially an electron j=1
(Wigner) crystal [12], albeit a highly anisotropic one. Re-

cent interest in this system has grown due to the discovery

[13,14] of strong anisotropies in the transport properties of

high quality two-dimensional electron systems in perpen-

dicular magnetic fields, between quantum Hall plateaus ////—O

corresponding to filling factors > 4. (v = 2w pol3, po )=
b «—

is the electron densityl? = fic/eB, and B is the mag- / >
netic field.) In these experiments, dc transport data at
very low temperature exhibit a dissipative linear conduc- 7 X

tivity that is much greater in one direction than the other
(i.e., oxx > oy, for some directione [15]). As a func- FIG. 1. Example of a modulated sheet system. Shaded areas

tion of filling factor, o, exhibits a strong peak around ndicate regions where the two-dimensional sheet density is

— 1/2, where v, is the fractional part of the fillin larger than the average. For repulsive |nters:heet.|nterz_act|ons., at
Vx ' * L P 9 Jow temperatures one expects the modulations in neighboring
factor, while oy, has aminimumaroundw, = 1/2. The  sheets to be shifted with respect to one another, forming an

system also exhibits unusual nonlinear transport: for larganisotropic crystal.

d.uj?)
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The fields uj-‘(x,z) represent displacements of théh  us that the introduction off, couples displacements in
layer in the directionu and are the dynamical variables different layers together, even if they are not fully locked.
for this problem,«, are elastic constants for a given Using the above expression for the free energy, the
layer, andU represents the energy scale of a harmonicallyenormalized coupling constants may be computed [18]
approximated repulsion between layers. By, the b  to O(A?). To this order the resulting elastic constants are
inside the cosine represents the period of the layediagonal in their indicesk(ff,y = Kﬁéﬂ,,,) and have the
modulations. Sincé is the natural length scale in this form

problem, we will set it to 1 and adopt it as our unit of Q2 ))? = P\
length [17]. Kh(gy) = Ky + 10 V(Qy)Wﬂf dr r3(—)

To develop some intuition as to what can happen in de de
this model, it is convenient to “freeze” all the sheets (3)

except one; i.e., seztf = 0 except forj =19. If one  Here, y(qy) = 2 — 2codgya), (W,,W,) = 377 46 %
" o S _ B : > i

oy mee that e sepereten e a ploduss of two fonsonao S el Wil fo = ma | S vian) X

_ P noap L OT WO TuUncliong % o602 g + sin? 0]/(k,k.)/?, a. is an ultraviolet

integrals, one for each direction of displacement. Ofqioff of orderp. and

the two integrals, only the one oveg has a nontrivial '

structure; it is precisely the partition function for the two- X = a[ dg M

dimensional sine-Gordon model. For smaliit is well Y (ko)1

known that this model has a Kosterlitz-Thouless phasd@he quantityx, plays a central role in this model. One

transition [1]. For large values &f,, thej = 0 sheetwill may see that the renormalized elasticity constants diverge

be locked into what we have approximated as the periodit perturbation theory ik, = 4. We take this divergence

potential of the other (for the moment) static sheets. Thigo signal the onset of the locking transition between the

state has a set of interesting excitations in the form ofayers. The form of Eq. (3) is typical for a system that

solitons. At any temperature one should expect to seandergoes a Kosterlitz-Thouless transition [1].

occasional soliton-antisoliton pairs in the system, but such To get an approximation of the phase diagram for this

soliton pairs should always recombine. For the dynamicasystem, it is convenient to expand the elastic constants in

(j = 0) layer, such an excitation represents a finite sizea complete set of states, (q,) = >, Kff)y,,(qy), setting

patch that has slipped by one period of the modulationy, = [2 — zcog(qya)]/\/g_ One can then see that to

(b) relative to the other layers. A, is decreased, the ordera? only «() is actually renormalized by the interlayer

soliton-antisoliton pairs become more tenuously boundgqoypling. To orden? the scaling relations are

and the sizes of the patches become increasingly large. At dx,

a critical value of«,, the solitons fully unbind, leading to a0 —A2C(0),

arbitrarily large slips of the dynamical surface and hence dA 1 (4)
its unlocking from the modulations of the others. AR} [4 — x]A,

In the(2 + 1)-dimensional quantum problem of modu- . W

lated lines, the soliton-antisoliton pairs have a simple inWith  C(€) = V6a [ dq, Y0(9y) ey 2 - Since
terpretation: they are vacancy-interstitial pairs forming onC(¢) behaves smoothly in the vicinity of the critical point,
a given line. Vacancies and interstitials in a Wigner crys-we can seC(¢) — C(0) and only incur errors of ordex3.
tal can carry current [12]; thus, if quantum fluctuationsWith this substitution, one can derive the phase boundary
populate the ground state with unbound pairs, we expe@nd renormalization group flows in tite,, A) plane. The
the system to behave as a metal rather than an insulataesult is illustrated in Fig. 2. It is interesting to note that
This will be discussed in more detail below. similar phase diagrams have been obtained in studies of

To properly treat the unlocking transition, we need toJosephson coupled, layered superconductors [3].
include the dynamics of all the layers. A convenient way We now turn to the application of this model to the
to approach this is to tredf, as a perturbation and com- striped phase in the quantum Hall system. Hartree-Fock
pute the change in the effective elastic constantsand  studies of striped phases [7,8] in high Landau levels
k. due to its presence. Following a standard procedurindicate that, within mean-field theory, they are unstable
[1], we define the effective stiffnesses of the system byto the formation of weak modulations within each stripe
imposing a gradient in the displacement field(x,z) =  [10,11]. The modulation period that is favored turns out
u;(o)(x’z) + Y, e, - %, wherek = (x,2), B, = to be _preC|s.er what is needed so the resulting anisotropic
v, , a is the distance between layers, and the ﬁelotwomm_ensmnal crystal has one electron per unit cell.

0} - _ _ Qualitatively, the modulations appear to get weaker as the
uj (x) must vanish at the system boundaries. The fregractional part of the filling factory,, approaches /2;
energy of the system should then take the faf@) —  however, they never completely vanish, andat= 1/2
F(0) = %zqv >0 kR (g)vgv”, , wherekR (q,) is  the mean-field state has broken particle-hole symmetry.
an effective elasticity tensof) is the area of a sheetinthe  To model fluctuations around this mean-field state, we
x,z plane, andu, v = x,z. Note theg, dependence tells consider each stripe as an elastic line [19,20], with the
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plitude modulationsA. Writing x, in terms of the origi-
nal parameters, andU, one finds tha["l}—f:]l/2 < 16/3
to produce an unlocked, free soliton phaolse. For arbitrar-
ily weak interactions one can estimate the value of this
parameter [18]; the result iE"l}—?]‘/z =27 < 16/3.
Thus, for weak interactions, we expect the modulations to
unlock. We note that it is not immediately obvious what
Unlocked happens as repulsive interactions are turned up: these in-
crease both, andU, and whether their ratio is increased
or decreased depends upon the microscopic details of the
interaction. Studies of this are currently under way.

In direct analogy with the unpinned phase of the sine-
+ Gordon equation, the unlocked phase may be thought of
- as a highly anisotropic Wigner crystal state, in which
FIG. 2. Phase boundary and renormalization group flowdree solitons—vacancies and interstitials of the Wigner
for unlocking transition. Bold line denotes phase boundarycrystal—are included in the ground state due to quan-

Dotted line illustrates possible initial conditions relevant to the m fluctuations. If the disorder is weak enough, or the
striped phase, discussed in the text. Itis assumed (see Ref. [

that below », ~ 0.36 the system is in an insulating “bubble teMperature high enough, so that localization of the soli-
phase” and enters the uniocked stripe phase via a first ordéons may be ignored [22], these solitons can carry current
transition. Filling factors abové/2 are related to those below through the system. The properties of the unlocked phase
by particle-hole symmetry. of this anisotropic Wigner crystal turn out to be consistent
with many aspects of the experimental data. (i) Charge
modulations coupled by the Hamiltonigt, above. In transport through the system would be highly anisotropic.
the absence of modulations, our model potential energy i€learly, the solitons are far more mobile along the stripes

Locked

1 y y ) than across them. Transport across the stripes requires
Vo = EUZ ] dx[uj(x) — uj—i(x)] tunneling of the solitons, whose amplitude should be
J small since the stripe modulations in the mean-field state
1 dujj(x) 2 are weak [23]. (ii) In experiment, a peak in the longitu-
+ 2 Z / dx Ky dx : () dinal conductivity is observed for some direction of trans-
J port (e.g., inoy,) aroundr, = 1/2. If one assumes that

This model Hamiltonian is most appropriate for electronsthe parameters, and A follow a trajectory as a func-
interacting via short-range interactions; the effects oftion of », such as that shown in Fig. 2, then one moves
long-range interactions will be discussed elsewhere [18JMore deeply into the unlocked phase:as— 1/2. The

In the quantum Hall regime, we project the dynamicshumber of carriers—solitons—then wouldcrease as

of the stripes into a single Landau level by makingﬁnle approache]s/2.hBecause of an apprcl)ximate[pa]rtictl]e-
Yoy, kb ole symmetry in the microscopic Hamiltonian [10], this
the replacement [214;(x) = 7 57 In the standard jeads to a peak i, if the stripes lie along ther di-

{2?;2; lgfo]'motr;]i Caer:wer;gllivn Cc:‘z]npcliitgngl] O_St fc%antlflse S Oection. A tantalizing possibility for this system is that
With S = Ho + H gand [18]9 B “¢ " it can undergo a continuous quantum phase transition as
0 A a function ofy, if the microscopic parametens, and A

1 pass through the phase boundary (bold line in Fig. 2) as a
Hy = o dxdt Z Kz(qy) function of »,. We note, however, that mean-field calcu-
q\'
Kx

du(x, gy 7) ||

dr

’ lations [7] support a scenario in which the specific sample
studied in Ref. [13] has a first order transition directly
’ into an (unlocked) striped phase [24]. (iii) In experiment,
o a dip is observed inry, aroundv, = 1/2. In the un-
whereu(x, gy, 7) = (1//Ne) ;e '*uj(x,7), Ncisthe  |ocked phase, linear transport perpendicular to the stripes
number of stripes, and/«;(q,) = Uy(qy)lé. H, is depends on both the density of solitons and the amplitude
formally identical to Eq. (2). Relabeling — z, except for soliton tunneling across stripes. Since the modulations
for the ¢, dependence in the “bare” value af, the of the stripes become more well developed as one moves
system is formally identical to the one studied above. Theaway from v, = 1/2 [10], this amplitude should be an
analysis follows through essentially without change. increasing function ofv, — 1/2| [23]. If the amplitude
The structure of the phase diagram in Fig. 2 suggestshanges fast enough, one would expect to see a dif,in
that if the stiffnesses of the systexy are large enough, or A microscopic study of the soliton tunneling amplitude is
more precisely ifc, is small enough, then the system will currently under way. (iv) Large currents (in the same
remain in a locked phase even for arbitrarily small am-direction as that of a measurement of,) lead to
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anomalously large dissipation in experiment. For the un-[2] S. Das Sarma and J.J. Quinn, Phys. Rev2®B 7603

locked stripe phase, such a large current would be accom-  (1982).

panied by a large electric field parallel to the stripes [18]. [3] B. Horovitz, Phys. Rev. Bt7, 5947 (1993).

Such a field would generate soliton-antisoliton pairs, lead-[4] A-W.C. Lau, Dov Levine, and P. Pincus, report, and

ing to the enhanced dissipation. references therein. . o
Finally, we comment briefly on other related models [5] Layers of DNA galleries represent a cIassma! 'reallzatlon

currently in the literature. In Refs. [7,8] striped phases (r)é CZ?};C ;é’:;er;fe;gte‘g_hfge ullwlogg:rl]%,ozigsﬂonéoT_ave

were predicted but the instability to modulations in mean- ;)0 i Phys. Rev. Lettsb, 4341.(1998); C. O'Hern and

field theory were not noted. In Ref. [16] the instability is T.C. Lubensky, Phys. Rev. LeB0, 4345 (1998).

pointed out, shape fluctuations are proposed as a mechgs] s.L. Sondhi, S.M. Girvin, J.P. Carini, and D. Shahar,

nism to restore the stripe phase, and any further effects of  Rev. Mod. Phys69, 315 (1997).

modulations on the stripes are not considered. In all thesd7] A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys.

models, tunneling between stripes at zero temperature Rev. Lett.76, 499 (1996).

is not possible due to symmetry considerations, leaving[8] R. Moessner and J.T. Chalker, Phys. Rev.5& 5006

open the question of why,, is nonvanishing in experi- (1996). _

ment. Presumably, disorder lifts the symmetry and allows [°] For an introduction to the quantum Hall effect, see

interstripe transport in such models, but to explain the ~ <:M- Prange and S.M. GirviiThe Quantum Hall Effect

experiments one must adopt a disorder model that allow; (Springer-Verlag, New York, 1990).

) . . o 0] H.A. Fertig (unpublished).
interstripe tunneling but not localization effects at the low- 11% AH. Macgo(na% and M.)P.A. Fisher (unpublished).

est experimentally available temperatures. By contrast, iﬁz] For a review of two-dimensional Wigner crystals in
the model discussed here the energy scale for tunneling = magnetic fields, seBerspectives in Quantum Hall Effects,
is set by electron-electron interactions, so for weak dis-  edited by S. Das Sarma and A. Pinczuk (Wiley, New
order it is natural for the system to behave metallically York, 1997), Chaps. 3 and 9.
over a range of temperatures. We note also that an if13] M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer,
teresting possible route to interstripe tunneling, discussed and K.W. West, Phys. Rev. Le®2, 394 (1999).
in Ref. [16], is via dislocations if they proliferate (lead- [14] R-R. Du, D.C. Tsui, H.L. Stormer, L.N. Pfeiffer, K. W.
ing to a nematic phase) due to either thermal or quantu Baldwin, and K.W. West, cond-mat/9812025. =
fluctuations. Whether the fluctuations in experiment arel> At Present it is unclear what picks out the direction of
strong enough to melt the stripe phase in this way is cur- larger conductivity in the experiments. In _thls Le_tter we
. . assume some weak underlying structure in the interface
rer_1t|y unknown,_ but if present theY should I_ead _to Inter- at which the electron gas is located picks out a preferred
stripe transport in parallel to that discussed in this Letter.  gjrection for the stripes.
Finally, when described in terms of free vacancies and inf16] E. Fradkin and S. Kivelson [Phys. Rev. B9, 8065
terstitials the present model admits a simple explanation  (1999)] have recently suggested that modulated stripes
for the nonlinear transport properties seen in experiment. may unlock due to shape fluctuations through a first
It is unclear at present how unmodulated stripes might order transition into a quantum smectic state. The
yield such behavior. transition discussed in the present Letter is continuous and
Many interesting issues remain to be explored. Promi-  Presumably different than the one studied by Fradkin and
nent among these are the effect of long-range interactions__ Kivelson. "
on the transition, the behavior of the unlocked quantunii’] Dislocations within and between layers are not con-
i sidered in this model. Their effects will be discussed
Hall phase at finite temperature, the role of edges, the ef-

. . . elsewhere.
fects of dislocations, and the effects of disorder. Thes?lg] Details will be presented elsewhere.

issues are currently under study. [19] This model ignores tunneling of electrons between stripes.
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