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Unlocking Transition for Modulated Surfaces and Quantum Hall Stripes
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We develop a sine-Gordon model of layered systems of two-dimensional modulated surface
one-dimensional stripes and demonstrate that these systems can undergo a Kosterlitz-Thouless tr
in which the modulations unlock as a result of thermal or quantum fluctuations, respectively.
unlocked phase is interpreted as an anisotropic crystal in which soliton-antisoliton pairs prolife
The properties of such a state for modulated stripes in quantum Hall systems and its possible rel
to recent anomalies in transport data are discussed. [S0031-9007(99)09019-5]

PACS numbers: 73.40.Hm, 75.30.Kz
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Systems which may be modeled as interacting ela
tic surfaces occur in many different contexts in natur
including liquid crystals, domain walls in magnets [1]
electron gases in semiconductor superlattices [2], la
ered superconductors [3], and biophysical systems [
In many situations at a mean-field level the surface
themselves may contain spatially periodic structure
illustrated in Fig. 1. At very low temperatures, suc
modulations on different sheets should be strongly corr
lated so that the system forms a type of three-dimension
crystal. An interesting question one may ask is: if th
modulations of the surfaces are weakly coupled, can th
mal fluctuations cause the modulations on different she
to become uncorrelated—i.e., unlocked—even if the
mal fluctuations do not disorder the modulations withi
a given surface [5]? In a precise analogy [6], one ca
also ask whether a series of modulated elasticlines will
remain locked at zero temperature when quantum fluctu
tions are taken into account. It is this latter problem th
motivates this work and will be our principal focus.

The modulated elastic line problem is motivated by th
theoretical discovery of striped electronic phases in qua
tum Hall systems in high Landau levels [7–9]. Hartree
Fock studies of such striped phases at zero temperat
[10,11] indicate that they are generically unstable to th
formation of modulations along the stripes, so that at th
mean-field level the stripe state is essentially an electr
(Wigner) crystal [12], albeit a highly anisotropic one. Re
cent interest in this system has grown due to the discove
[13,14] of strong anisotropies in the transport properties
high quality two-dimensional electron systems in perpe
dicular magnetic fields, between quantum Hall platea
corresponding to filling factorsn . 4. (n ; 2pr0l2

0 , r0

is the electron density,l2
0 ­ h̄cyeB, and B is the mag-

netic field.) In these experiments, dc transport data
very low temperature exhibit a dissipative linear condu
tivity that is much greater in one direction than the othe
(i.e., sxx ¿ syy for some directionx [15]). As a func-
tion of filling factor, sxx exhibits a strong peak around
nx ­ 1y2, where nx is the fractional part of the filling
factor, whilesyy has aminimumaroundnx ­ 1y2. The
system also exhibits unusual nonlinear transport: for lar
0031-9007y99y82(18)y3693(4)$15.00
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applied currents in the direction of high conductivity, the
dissipation is greater than what would be expected fro
either linear response or a simple heating model [13]. W
will argue below that these properties may be understo
in the framework of a modulated stripe phase, unlocke
by quantum fluctuations [16].

We begin by defining a simple model of sheets wit
modulations present in them (see Fig. 1). The Hamilto
ian may be written asH ­ H0 1 Hl, with

H0 ­
1
2

X
j

Z
dx dzskxj≠xux

j j2 1 kzj≠zux
j j2d

1
1
2

U
X

j

Z
dx dzsuy

j 2 u
y
j21d2, (1)

Hl ­ 2l
X

j

Z
dx dz cos

(
2p

b
fux

j sx, zd 2 ux
j21sx, zdg

)
.

(2)

FIG. 1. Example of a modulated sheet system. Shaded ar
indicate regions where the two-dimensional sheet density
larger than the average. For repulsive intersheet interactions
low temperatures one expects the modulations in neighbori
sheets to be shifted with respect to one another, forming
anisotropic crystal.
© 1999 The American Physical Society 3693
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The fields u
m
j sx, zd represent displacements of thejth

layer in the directionm and are the dynamical variables
for this problem,km are elastic constants for a given
layer, andU represents the energy scale of a harmonica
approximated repulsion between layers. InHl, the b
inside the cosine represents the period of the lay
modulations. Sinceb is the natural length scale in this
problem, we will set it to 1 and adopt it as our unit o
length [17].

To develop some intuition as to what can happen
this model, it is convenient to “freeze” all the sheet
except one; i.e., setu

m
j ­ 0 except for j ­ 0. If one

computes the partition functionZ ­
R

D $u0e2H it is easy
to see that this separates into a product of two function
integrals, one for each direction of displacement. O
the two integrals, only the one overux

0 has a nontrivial
structure; it is precisely the partition function for the two
dimensional sine-Gordon model. For smalll it is well
known that this model has a Kosterlitz-Thouless pha
transition [1]. For large values ofkx, thej ­ 0 sheet will
be locked into what we have approximated as the period
potential of the other (for the moment) static sheets. Th
state has a set of interesting excitations in the form
solitons. At any temperature one should expect to s
occasional soliton-antisoliton pairs in the system, but su
soliton pairs should always recombine. For the dynamic
s j ­ 0d layer, such an excitation represents a finite siz
patch that has slipped by one period of the modulatio
(b) relative to the other layers. Askx is decreased, the
soliton-antisoliton pairs become more tenuously boun
and the sizes of the patches become increasingly large.
a critical value ofkx , the solitons fully unbind, leading to
arbitrarily large slips of the dynamical surface and henc
its unlocking from the modulations of the others.

In the s2 1 1d-dimensional quantum problem of modu
lated lines, the soliton-antisoliton pairs have a simple i
terpretation: they are vacancy-interstitial pairs forming o
a given line. Vacancies and interstitials in a Wigner cry
tal can carry current [12]; thus, if quantum fluctuation
populate the ground state with unbound pairs, we expe
the system to behave as a metal rather than an insula
This will be discussed in more detail below.

To properly treat the unlocking transition, we need t
include the dynamics of all the layers. A convenient wa
to approach this is to treatHl as a perturbation and com-
pute the change in the effective elastic constantskx and
kz due to its presence. Following a standard procedu
[1], we define the effective stiffnesses of the system b
imposing a gradient in the displacement field:ux

j sx, zd ­

u
xs0d
j sx, zd 1

P
qy

eiqyja $yqy ? $x, where $x ­ sx, zd, $yqy ­
$yp

2qy
, a is the distance between layers, and the fie

u
xs0d
j s $xd must vanish at the system boundaries. The fr

energy of the system should then take the formFsyd 2

Fs0d ­
V

2

P
qy

P
m,n kR

m,nsqydym
qy yn

2qy
, where kR

m,nsqyd is
an effective elasticity tensor,V is the area of a sheet in the
x, z plane, andm, n ­ x, z. Note theqy dependence tells
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us that the introduction ofHl couples displacements in
different layers together, even if they are not fully locked

Using the above expression for the free energy, t
renormalized coupling constants may be computed [1
to Osl2d. To this order the resulting elastic constants a
diagonal in their indices (kR

m,n ­ kR
mdm,n) and have the

form

kR
msqyd ­ km 1

s2pld2

4V
gsqydWm

Z `

ac

dr r3

√
r
ac

!2xk

.

(3)

Here, gsqyd ­ 2 2 2 cossqyad, sWx , Wzd ­
R2p

0 du 3

scos2 u, sin2 ude2fu , with fu ­ pa
R dqy

2p gsqyd 3

lnf kz

kx
cos2 u 1 sin2 ugyskxkzd1y2, ac is an ultraviolet

cutoff of orderb, and

xk ­ a
Z

dqy
gsqyd

skzkxd1y2 .

The quantityxk plays a central role in this model. One
may see that the renormalized elasticity constants dive
in perturbation theory ifxk # 4. We take this divergence
to signal the onset of the locking transition between th
layers. The form of Eq. (3) is typical for a system tha
undergoes a Kosterlitz-Thouless transition [1].

To get an approximation of the phase diagram for th
system, it is convenient to expand the elastic constants
a complete set of states,kmsqyd ­

P
n ksnd

m gnsqyd, setting
g0 ­ f2 2 2 cossqyadgy

p
6. One can then see that to

orderl2 only ks0d
m is actually renormalized by the interlaye

coupling. To orderl2 the scaling relations are
dxk

d,
­ 2l2Cs,d ,

dl

d,
­

1
2

f4 2 xkgl ,
(4)

with Cs,d ­
p

6 a
R

dqy g0sqyd 1
skxkz d1y2

P
m

Wm

km
. Since

Cs,d behaves smoothly in the vicinity of the critical point
we can setCs,d ! Cs0d and only incur errors of orderl3.
With this substitution, one can derive the phase bounda
and renormalization group flows in thesxk , ld plane. The
result is illustrated in Fig. 2. It is interesting to note tha
similar phase diagrams have been obtained in studies
Josephson coupled, layered superconductors [3].

We now turn to the application of this model to th
striped phase in the quantum Hall system. Hartree-Fo
studies of striped phases [7,8] in high Landau leve
indicate that, within mean-field theory, they are unstab
to the formation of weak modulations within each strip
[10,11]. The modulation period that is favored turns o
to be precisely what is needed so the resulting anisotro
two-dimensional crystal has one electron per unit ce
Qualitatively, the modulations appear to get weaker as
fractional part of the filling factor,nx , approaches 1y2;
however, they never completely vanish, and atnx ­ 1y2
the mean-field state has broken particle-hole symmetry

To model fluctuations around this mean-field state, w
consider each stripe as an elastic line [19,20], with t
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FIG. 2. Phase boundary and renormalization group flow
for unlocking transition. Bold line denotes phase boundar
Dotted line illustrates possible initial conditions relevant to th
striped phase, discussed in the text. It is assumed (see Ref.
that below nx ø 0.36 the system is in an insulating “bubble
phase” and enters the unlocked stripe phase via a first or
transition. Filling factors above1y2 are related to those below
by particle-hole symmetry.

modulations coupled by the HamiltonianHl above. In
the absence of modulations, our model potential energy

V0 ­
1
2

U
X

j

Z
dxfuy

j sxd 2 u
y
j21sxdg2

1
1
2

X
j

Z
dx kx

√
dux

j sxd
dx

!2

. (5)

This model Hamiltonian is most appropriate for electron
interacting via short-range interactions; the effects
long-range interactions will be discussed elsewhere [1
In the quantum Hall regime, we project the dynamic
of the stripes into a single Landau level by makin

the replacement [21]u
y
j sxd !

l2
0

i
≠

≠ux
j sxd . In the standard

fashion [6], one can now compute most quantities
interest from the generating functionalZ ­

R
D u e2S,

with S ­ H0 1 Hl, and [18]

H0 ­
1
2

Z
dx dt

(X
qy

"
kzsqyd

É
dusx, qy , td

dt

É2
1 kx

É
dusx, qy , td

dx

É2#)
,

whereusx, qy , td ; s1y
p

Ncd
P

j e2iqyjaux
j sx, td, Nc is the

number of stripes, and1ykzsqyd ­ Ugsqydl4
0 . Hl is

formally identical to Eq. (2). Relabelingt ! z, except
for the qy dependence in the “bare” value ofkz, the
system is formally identical to the one studied above. Th
analysis follows through essentially without change.

The structure of the phase diagram in Fig. 2 sugge
that if the stiffnesses of the systemkm are large enough, or
more precisely ifxk is small enough, then the system wil
remain in a locked phase even for arbitrarily small am
s
y.
e
[5])

der

is

s
of
8].
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l
-

plitude modulationsl. Writing xk in terms of the origi-
nal parameterskx andU, one finds thatf kxb4

Ul4
0

g1y2 , 16y3
to produce an unlocked, free soliton phase. For arbitr
ily weak interactions one can estimate the value of th

parameter [18]; the result isf kxb4

Ul4
0

g1y2 ­
p

2 p , 16y3.
Thus, for weak interactions, we expect the modulations
unlock. We note that it is not immediately obvious wha
happens as repulsive interactions are turned up: these
crease bothkx andU, and whether their ratio is increase
or decreased depends upon the microscopic details of
interaction. Studies of this are currently under way.

In direct analogy with the unpinned phase of the sin
Gordon equation, the unlocked phase may be though
as a highly anisotropic Wigner crystal state, in whic
free solitons—vacancies and interstitials of the Wign
crystal—are included in the ground state due to qua
tum fluctuations. If the disorder is weak enough, or th
temperature high enough, so that localization of the so
tons may be ignored [22], these solitons can carry curr
through the system. The properties of the unlocked ph
of this anisotropic Wigner crystal turn out to be consiste
with many aspects of the experimental data. (i) Char
transport through the system would be highly anisotrop
Clearly, the solitons are far more mobile along the strip
than across them. Transport across the stripes requ
tunneling of the solitons, whose amplitude should b
small since the stripe modulations in the mean-field st
are weak [23]. (ii) In experiment, a peak in the longitu
dinal conductivity is observed for some direction of tran
port (e.g., insxx) aroundnx ­ 1y2. If one assumes that
the parametersxk and l follow a trajectory as a func-
tion of nx such as that shown in Fig. 2, then one mov
more deeply into the unlocked phase asnx ! 1y2. The
number of carriers—solitons—then wouldincreaseas
one approaches1y2. Because of an approximate particle
hole symmetry in the microscopic Hamiltonian [10], thi
leads to a peak insxx if the stripes lie along thex di-
rection. A tantalizing possibility for this system is tha
it can undergo a continuous quantum phase transition
a function ofnx if the microscopic parametersxk and l

pass through the phase boundary (bold line in Fig. 2) a
function ofnx . We note, however, that mean-field calcu
lations [7] support a scenario in which the specific samp
studied in Ref. [13] has a first order transition direct
into an (unlocked) striped phase [24]. (iii) In experimen
a dip is observed insyy aroundnx ­ 1y2. In the un-
locked phase, linear transport perpendicular to the strip
depends on both the density of solitons and the amplitu
for soliton tunneling across stripes. Since the modulatio
of the stripes become more well developed as one mo
away from nx ­ 1y2 [10], this amplitude should be an
increasing function ofjnx 2 1y2j [23]. If the amplitude
changes fast enough, one would expect to see a dip insyy.
A microscopic study of the soliton tunneling amplitude
currently under way. (iv) Large currents (in the sam
direction as that of a measurement ofsxx) lead to
3695
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anomalously large dissipation in experiment. For the u
locked stripe phase, such a large current would be acco
panied by a large electric field parallel to the stripes [18
Such a field would generate soliton-antisoliton pairs, lea
ing to the enhanced dissipation.

Finally, we comment briefly on other related model
currently in the literature. In Refs. [7,8] striped phase
were predicted but the instability to modulations in mean
field theory were not noted. In Ref. [16] the instability is
pointed out, shape fluctuations are proposed as a mec
nism to restore the stripe phase, and any further effects
modulations on the stripes are not considered. In all the
models, tunneling between stripes at zero temperatu
is not possible due to symmetry considerations, leavi
open the question of whysyy is nonvanishing in experi-
ment. Presumably, disorder lifts the symmetry and allow
interstripe transport in such models, but to explain th
experiments one must adopt a disorder model that allo
interstripe tunneling but not localization effects at the low
est experimentally available temperatures. By contrast,
the model discussed here the energy scale for tunnel
is set by electron-electron interactions, so for weak di
order it is natural for the system to behave metallical
over a range of temperatures. We note also that an
teresting possible route to interstripe tunneling, discuss
in Ref. [16], is via dislocations if they proliferate (lead-
ing to a nematic phase) due to either thermal or quantu
fluctuations. Whether the fluctuations in experiment a
strong enough to melt the stripe phase in this way is cu
rently unknown, but if present they should lead to inte
stripe transport in parallel to that discussed in this Lette
Finally, when described in terms of free vacancies and i
terstitials the present model admits a simple explanati
for the nonlinear transport properties seen in experime
It is unclear at present how unmodulated stripes mig
yield such behavior.

Many interesting issues remain to be explored. Prom
nent among these are the effect of long-range interactio
on the transition, the behavior of the unlocked quantu
Hall phase at finite temperature, the role of edges, the
fects of dislocations, and the effects of disorder. The
issues are currently under study.
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