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Coulomb Blockade in Superconducting Quantum Point Contacts

D.V. Averin

Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, New York 11794
(Received 5 March 1998; revised manuscript received 17 Novembel) 1998

The amplitude of the Coulomb blockade oscillations is calculated for a single-mode Josephson
junction with arbitrary electron transparenby It is shown that a mechanism related to chiral anomaly
completely suppresses the Coulomb blockade in ballistic junctions mrith 1. At finite reflection
probability, the suppression process is described quantitatively in terms of the Landau-Zener transition.
[S0031-9007(99)09032-8]
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Coulomb blockade phenomena in mesoscopic conduaurrent/ andg = It, or as thermodynamic oscillations [9],
tors have been actively studied during the past few year$ one of the junction electrodes is an isolated island and the
[1-3]. They arise from the interplay of discreteness, inchargey is induced on the junction capacitance by external
units of electron charge, of electric charge? of a small  gate voltageV, coupled through a gate capacitanCeg:
conductor, and tunneling into the conductor. Coulombg = C,V,. In both situations, oscillation amplitude is the
blockade requires for its existence the “localization” of thesame and can be found from the junction free endt@y).
chargeQ, the condition that implies that the transparency For a single-mode junction with quasicontinuous en-
D of the tunnel barriers isolating the conductor is small,ergy spectrum of the electrodes, studied in this work, the
D < 1. In ballistic junctions withD — 1 the charge can coupling energyH.(¢) can be represented similar to the
move freely in and out of the conductor, and both thenormal case [4] as a sum of the energiggr of elec-
charge quantization and the associated Coulomb blockadmns with momentatk; moving forward and backward
are suppressed. Until now, full quantitative understandinghrough the junction, and a potenti&l responsible for
of such a suppression has been worked out only for nearlgcattering between these two directions of propagation.
ballistic single-mode junctions between two normal con-The energy of the forward-moving electrons in a super-
ductors [4,5]. It has been shown that for conductors withconductor can be written in the standard matrix form:
the quasicontinuous energy spectrum, the amplitude of the " —ihvpd/ox A(x)

Coulomb blockade oscillations vanishes as the junction Hr = f dx WL ()| pe ixvpd)ox
reflection coefficient approaches ze®:= 1 — D — 0.
The aim of this work was to study this problem for su-A(x) _ {A, ' x <0,
perconducting junctions, where the situation appears to be Ae'?, x>0,
different. Coulomb blockade oscillations arise in this casherew! —
[6] from the formation of Bloch bands in the Josephson, . .+ Lo : ;

i S ; particles with momentuntz, andvg is the Fermi veloc-
potentlaIU(¢) penoqhq in the Josephson pha_se Q|ﬁerencqty_ Hy is given by the same expression with — — v
¢. Since the ballistic junctions also have periodic Josephthq pair potentialA (x) can be written in the steplike form
son potential, one could expect that the Coulomb blockryy ynder the assumption that the characteristic junction

ade exists even in the ballistic regime. It is shown belowenaih 4 is much smaller than the superconductor coher-
that this expectation is incorrect and, similarly to the nor-g - lengthivy /A.

mal case, the Coulomb blockade is completely suppressedye [imit ourselves to the case of adiabatic phase dy-
whenR — 0. _ o namics, when all energies, including characteristic charg-
Coulomb blockade in superconducting junctions can b‘?ng energyEc = (2¢)2/2C and temperatur@, are much
conveniently discussed as the quantum dynamics of thgyajier thamh. In this case, the chargg is carried only
Josephson phase differenge The standard Hamiltonian ,, cooper pairs and can be expressed directly in terms of
for quantum dynamics ap (seg, e.g., [1,7]) consists of_the the Josephson phase differensd10]: 0 = —2¢id/de.
coupling energyt.(¢) of the junction electrodes, which gyen more importantly, the energy spectrum of electrons

in the case of low-transparency junctions reduces 10 &,ing in the contact can be found in this regime by treat-
simple Josephson potentiéll¢), and the charging energy o, a5 stationary. The HamiltoniaH, + Hy is then

(Q - q)_2/_2c,wr_1erec is'gheju_nction capacitance,s the . reduced to a sum of the quasiparticle energig&p) of
charge injected into the junction from the external circuit,,o occupied states, so that

andQ is the charge transferred through the junction. The 2
Coulomb blockade manifests itself as periodic oscillations H— L <2—e 9 q) + D ele) + V. (2

of the junction characteristics as a function of the charge 2C

g with the period2e. These oscillations can take place The spectrum of eigenenergies.(¢) is found by
either in time [6,8], when the junction is biased with a dcsolving the Bogolyubov-de Gennes (BdG) equations with

WV (x),
1)

(szT, 1)) is the creation operator for quasi-

0031-900799/82(18)/3685(4)$15.00 © 1999 The American Physical Society 3685



VOLUME 82, NUMBER 18

PHYSICAL REVIEW LETTERS

3 My 1999

the pair potentialA(x) [Eq. (1)]. It consists of the
continuum of states at energies outside the ¢alp> A,
and two discrete states in the gap [11-13]:

the expense of creating quasiparticles in the junction
electrodes. In the case of classical Josephson dynamics,
this process generates real quasiparticles and creates a

e (p) = FAcosp/2, dissipative component of the Josephson current [13]. The
energy relaxation then restores the periodicity of all
V*(x) = \/§/2<_ lw/z)eiik:r-xﬂxl, of the junction characteristics. It should be noted that
+e the potential (7) for quantum phase dynamics cannot be
whereé = (A/hvr)sing /2. In all of these expressions obtained if one takes into account only the subgap states
¢ € [0,27], and they should be continued periodically in [16]. It is also interesting that the mechanism of the
¢ beyond this interval. The subgap states merge with thepectrum shift creating the potential (7) is very similar to
continuum wheng = 0mod27). Equation (3) shows the chiral anomaly in the 1D quantum electrodynamics—
that as¢ varies from 0 to27 the state with momentum see, e.g., Ref. [17].
kr moves across the energy gap from the lower half of the An important consequence of aperiodicity of the poten-
continuum,e < —A, to the upper halfg > A, while the tial (7) is the complete suppression of the Coulomb block-
—kr state moves in the opposite direction. The states imde oscillations in ballistic junctions. Since the Coulomb
the continuum also shift up or down in a similar fashion,blockade in superconducting junctions results from the
as can be seen from the Friedel sum rule for the densitiormation of Bloch bands in a periodic Josephson poten-
of statesp(¢) (see, e.g., [14,15]): tial, the aperiodicity of the potential obviously suppresses
ap(e) i 92 the Coulomb blockade. However, the periodic nature of
do 2w dpde @ the potential and the Coulomb blockade are restored by

where S(e) is the scattering matrix for scattering off the finité reflection in the junction. Indeed, the aperiodicity
discontinuity of the pair potentiah(x) [Eq. (1)]. The of the potential (7) is the result of the transfer of one

straightforward solution of the BdG equations shows thatPCCuPied+k states from the energy range= —A to
for +ky states, g = A and one empty-k, state in the opposite direc-

@)

IndetS(e),

1 lal( = ¢®) (1 —a?) tion as phase evolves from O @w. The backscatter-

S(g) = —— [ 14t e a) . ing termV in the Hamiltonian (2) couples these states at
eiv — g2\ (1 —a%)e'® |a|(1 — e'?) _ o

¢ = 7 and prevents such a transfer. If the coupling is

(5)  sufficiently strong, the occupied ks state, which starts
wherea(e) = sgn(e)[le| — (2 — A%)V/2]/A is the am-  at ¢ = 0 from the energye = —A, turns into the—k
plitude of the Andreev reflection from a superconductorstate aty = 7, and moves back into the energy range
From Eq. (5), we get e = —A. Similarly, the empty state starting from= A

i 2w at ¢ = 0 returns to this energy at = 27. In this way
the backscattering couples the branch (7) of the Josephson
potential with no quasiparticles at = 0 to the one with

d |1, lel > A,
Sy do Py IndetS(e) {O, le| = A (6)
Combined with Eq. (4), this equation means thateas
increases from 0 td7, the +kr States move up in energy,
so that precisely one state is removed from the lower half
of the continuum,e = —A, and is added to the upper 3
half, e = A. Together with the shift of the subgap states
this means that the whole spectrum -bky states shifts
by one state up in energy. Similarly, one can show that 2 |
the spectrum of-kx states shifts by one state down.

Such a motion of the energy spectrum determinesﬂ
the effective potential for the dynamics @f in the =
Hamiltonian (2). At¢ = 0, when there are no states = 1
in the gap, the equilibrium occupation of the eigenstates
implies that at7T << A all of the states withe = —A
are filled, while those withe = A are empty. Since
the adiabatic variation o> does not induce transitions
between different quasiparticle states, the shift of the
energy spectrum with these occupation probabilities gives
rise to the followingaperiodicpotential fore (Fig. 1): -1

Ulp) = D exlp) = Al2m + (—1)"*' cosp/2],
(7)

¢/21

m = int(|g|/27) FIG. 1. Two branches of the Josephson potential in a ballistic
o @ - . junction with transparency) = 1: one that corresponds to the
The rise of the potential (7) witlp means that the phase equilibrium occupation of Andreev states@t= 0 (s = 1) and

can increase beyond the poings= 0mod2s) only at  another with equilibrium atp = 27 (s = —1).
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no quasiparticles ap = 27 [the same as (7) but shifted (Ec/A)'/2. Since the amplitude of the Coulomb block-
along thegp axis by 27—see Fig. 1], thus creating the ade oscillations is proportional te,, Eqg. (11) shows
periodic low-energy branch of the potential. that, similar to the normal junctions, in superconducting
Quantitatively, the backscattering term in the Hamilton-junctions, these oscillation vanish B%'2 atR — 0.
ian (2)isV = [dx U(x)p(x), whereU(x) is the potential The low-energy periodic branch of the potential in the
profile along the junction and Hamiltonian (9) coincides with the classical stationary
n f Dk Josephson potential which for arbitrary junction trans-
p(x) =D WirosWig + (WrosWre™ + He) parencyD is [11,12] U(¢) = —A[l — D sir*(¢/2)]"/2.
LR For D larger than the small ratifc/A, the characteristic

is the operator of electron density. Here and below . : :
o’s denote the Pauli matrices. Using the fact that the’magnltude of the potentidli(¢) is larger thankc, and

e . one can find the first few eigenenergigsfor ¢ motion
_characterlstlc range O.f the potentialx) is on the order of in this potential using the quasiclassical wave functions
junction lengthd and is much smaller than the coherence

! o .“~away from the potential minima & = 0,27 and match-
lengthhivr /A, we find thqt the only nonvanishing matrix ing them to the oscillator wave functions in the vicinity
elements ofV in the basis of the subgap states (3) are

o of these points. Taking into account that the wave func-
those that couple the two branches of the potential: tions should be periodicy (¢ + 27) = (), we find

— + I .
.<\P VIVT) = irAsing/2. ~ (8 that each oscillator eigenenergy acquires a small correc-
Her(_ar = —iUQkp)/Rvp |s_the reflect_lon amplitude of ign ~8,: &y = hw,(n + 1/2) — 8,, where
the junction [4], andU (2kr) is the Fourier component of /4 /
the potentialU(x). At small r, the backscattering term _ Ec —a+/AD/E¢ ana™ 4
| X o ; 8o = AbDw e coS ,
(8) is relevant only in the vicinity ofp = 7, where it 272AD
reduces toirA. Then, the junction Hamiltonian (2) for b2 [ A \"2 (12)
¢ € [0,27] takes the following form in the basis of two 8y = (=1)"60— (—)
branches of the potential: n! \2Ec
g 120 _ Here w, = (EcAD/2k)"? is the frequency of small
2C\ i d¢ . oscillations around the potential minima, aptl= g —

) e® /7 is the induced charge shifted by the phase of
c}he backscattering coupling. The numerical factars
Gandb in Eq. (12) can be expressed in terms of elliptic
integrals, and are plotted as functions of the transparency
D in Fig.3. AtD < 1, a =2+/2 and b = 4, while,
atD—1,a=8+2—-1)+RInVR, b =82 —1).
Summing the corrections, [Eqg. (12)] overn, we can
fd the g-dependent part of the junction free energy at

+ A(iro- — irfo+ — 03c0%0/2).
The width of the Bloch bands and the associate
amplitude of the Coulomb blockade oscillations depen
on the probability amplitudev of staying on the low-
energy periodic branch of the potential in the Hamiltonian
(9). This amplitude is controlled by the usual Landau-
Zener transition, the same as in the case of classical pha
dynamics [18]. The only difference with the classical case
is that now the transition should take place in the course
of ¢ motion under the potential barrier, i.e., in “imaginary
time.” Indeed, in the quasiclassical approximation, the 1.0
stationary Schrodinger equation with the Hamiltonian (9)
and energye = —A describing the evolution o near
the level-crossing poinp = 7 is
2Ec/N) oy /ox = —sxips/2 + VRy—,  (10)
wherex = ¢ — 7, ands = =1 is the potential branch
index (Fig. 1). In Eqg. (10) we removed the pha®e
of the coupling terms in the Hamiltonian (9) by the
simple unitary transformatiosr, — ¢*9/2y,. Equations
(10) are the imaginary-time versions of the equations
describing the regular Landau-Zener transitions, and their
solution is provided by the parabolic cylinder functions.
From the asymptotes of these functions [19] we find that

= 05}

the probability amplitudev for the states = 1 starting at 0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘

x — —ooto reach the state = —1 atx — «is 0.0 0.5 1.0 15 2.0
1 2\ _ 12 ROVE 112

=T (5) a=wmem o

(11) FIG. 2. The probability amplitudew [Eq. (11)] for the
. . . . Josephson phase differengeto stay in the low-energy branch
The amplitudew is plotted in Fig. 2. It tends to of the Josephson potential in junctions with the small reflection
1 at R > (Ec/A)'/2, while w = 27A)'/2 at R <  coefficientR < 1.
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4.0 and then is rapidly suppressed [on the scale/A)!/?] at

D = 1. The rapid suppression is described quantitatively
by the amplitude (11) of the Landau-Zener transition be-
tween two branches of the Josephson potential.
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