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Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities
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The morphology of surfaces of arbitrary orientation in the presence of step and kink Ehrlich-
Schwoebel effects (SESE and KESE) during growth is studied within the framework of a model in
which steps are continuous lines, and is illustrated by a simple solid-on-solid model. For vicinal
surfaces KESE induces an instability often stronger than that from SESE. The possibility of stable
kink flow growth is analyzed. Fluctuations can shift the stability threshold. KESE also induces mound
formation. [S0031-9007(99)09023-7]

PACS numbers: 81.10.Aj, 05.70.Ln, 68.35.—p, 82.20.Mj

Control of surface morphology during molecular-beamassume unit lattice spacing throughout. At low enough
epitaxy (MBE) is of immense technological interest. Onetemperaturdl’, detachment from the steps becomes negli-
may want to produce either atomically flat or nanostruc-gible [12,13]. At the steps, mass conservation implies
tured surfaces. Small energy barriers can affect growth 90,0 =F, — 9,7, 1)
properties dramatically. In recent years, numerous pa- : : .

. A where F; [more generallyF(x)] is the incoming flux of
Pers have focused on the instabilities induced by the Stegtoms f;o[m botr? adjoini);u; (te)araces. Capitalg-lletter vari-
Erhrl'cg]érsri(i;\;v?:\?;lineﬁ?ﬁé Séﬁﬁ%;?rgfa;é%n;e;m;ﬁl er;— bles denote properties along the step edge, while lower-
9y 9t . 9 atase variables relate to the conventional guantities in one
a step from the lower side. This Letter concerns the analodimension higher. We can decompose the mass cufrent
gous, largely unstudied (exceptions include Refs. [1—3])a gher. P

kink Ehrlich-Schwoebel effect (KESE) for atoms diffusing long the step:/ = Ji + J. + J, + Jsp, whereJ, is a

. X ossibly destabilizing current coming from the KESE,
alongside step edges near kinks or corners, and, more g?%{ are stabilizing contributions, anfiz breaks the front-

erally, to the consequences of diffusion along the steps 0ack symmetry of the steps [8]

grgvggén?lﬂ‘?dz'nces surface morpholoay during arowt We first consider a step whose average orientation is
. . . morp 9y ng g 100]. Because of KESE, atoms landing on straight, close-
in thre_e_ main ways: (@) It induces an _u_phlll current,packed parts of a step (1D “terraces’—viz. ffai00]
destabilizing nominal surfaces [4]. (b) Vicinal surfacesedges) attach more often to an up kink than to a down

\é\;'éh It?ﬂ%ih(iar?Ol;)gekc];aslﬁgetihgicohrirllle;?hb\;\llgeegg]cSrg;l:{?t kink. We can calculate the resulting mass current along the
Step 9 ; P % .__step, in the up-kink direction, using discrete rate equations.
is a de_(_:reasmg functlo_n. (c) Steps suffer a morphologic ach step adatom jumps with equal rAs@xp(— Wy /ksT)
instability of the Mullins-Sekerka type [6]: the Bales- in either direction. An additional attachment barrier (kink

Zangwill (BZ) instability [7]. S S . . X
. chwoebel barrier) is introduced when jumping down kink,
The essential features of (a) and (b) can be analyzed by.”. = . o N
evaluatingj, (m) [8,9]. Politi and Villain (PV) [8] (whose diving jump ratefy exp(— W, /k,T). If an atom lands di

notation we often follow) have shown that growth from rectly on a kink site, it attaches there directly, and does not
) 9 contribute toJ. The stationary mass current alohig)0]
nominal surfaces should lead to mounds and cracks.

n- . discrete
o : " S edges of lengtiL is J; = (Fy/2)(L — 1)Ly/(Ls +
vestigation [9—11] of the BZ instability on vicinal surfaces e L :
showed that, following the initial instability leading to =) WhereLs = exp(4) — 1is the kink Schwoebel length,

. . - . ; and A = (W, — Wy)/kgT. In the continuum descrip-
ripples, a secondary instability occurs resulting uItlmatertion of thé surfacg)/thlfe 1D step “slope” (denoted h%re—

in mounds. e . ; - N

KESE can also destabilize or stabilize steps by the 1 fter “twist’) relative to the[100] direction is (Ioca_IIy)
analog of (a) o (b), the latter (b) leading kink flow. "+ ~ e"fés'gar\‘lj‘r'i‘t’iﬂy tof\l’M"l"iaz‘i?“fgtrf?ge”‘;tcéeaggﬂ_"f
We include possible nucleation of kinks, neglected in an 9 y v = c P

caler sty f (5 1] nd e o of cystl symmetry 1. | P41 e STacierie engin o 4 e e
(specifically, the fourfold symmetry of a simple cubic < b

crystal). We show that the morphological instability of neglected here [8], depends pand the fiuxF, incident

. . . on[100] stepsvia [8L4(1 + 6L,/L.) = 12D,/F,, where
steps Is typl_cally driven more by K.ESE _than SESE. Wep is the diffusion constant alond00) edges. Then
then determine the range of step orientations that are stablé’ F (1 — ML Y,

during growth. Finally, we show that KESE can alsolead j, = —=% . 2
k -1 1 ( )
to mound formation. 2 [1+ LM + LH] (M| + LY

On a vicinal surface, théth step is a continuous line Equation (2) differs from the result of PV by the factor
zi(x, 1) = i€ + {(x,1), with £ the mean terrace width. We (1 — |M|): J; vanishes folM| = 1 [14].
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Equation (2) holds for|M| = 1. When |M| > 1, l(
adatoms attach to the step [@10] edges. A contribution K2
to the current is obtained if the atom attaches to the kink (a) ‘k
above it (cf. Fig. 1):
F- (1 - MM a B, o (b)
= s A PP UE > . i
T =, L+ M| (M| > 1) 3) n

This current is destabilizing bwanishedor strong KESE
(large Ly). F;} designates the flux of atoms incident on
[010] edges. Nucleation on such steps is neglected since
F;- is small for largelM| due to step crowding.

There are very few calculations of the energy barriers (¢)
needed to estimate the kink Ehrlich-Schwoebel barrier,
virtually none for semiconductors. For late transition
metals, this barrier is 0.1 eV d001} [12] and{111} [15]
surfaces and 0.02 eV on @l 1} [13]; we find L, = 50 \/\/\/V\/\/
at 300 K, andL; = 2 at 1000 K on late transition metals

(respectively,L; = 1.2 and 0.3 for Al{111}). In MBE , .
- : : N FIG. 1. (a) Schematic of the destabilizing step-edge cutfent
the typical incoming fluxt” = 1 monolayeysec (ML/s).  1ot"£4" (2)] due to KESE: (b) similar behavior g, for highly

Taking Dy ~ 106—108. s*' and € = 10, so thatF; =~  twisted (M| > 1) edges [cf. Eq. (3)]. (c) Shape of unstable
F€¢ = 10 ML/s, we find L. = 100. In the following, steps on a vicinal surface from solid-on-solid simulations for
we consider arbitrary values df, and L., emphasizing parameters of set | (upper curve) and set Il (lower curve)

L, < L., the weak-KESE case. (see text).
The second contribution to the curreht comes from
the stabilizing effect of step stiffnegg M) (via the Gibbs- d,c = DV:c + F, —Dinc = Frec, (5)

Thomson formula): J, = —(Duyc;,/ksT)os(y«x); « is ]

the step curvaturs, is the arclengthg?, is the equilibrium ~ Where + (—) denotes the lower (upper) side of the step,
concentration of adatoms at the step edge, Bpdis the ~ While 9, indicates a derivative normal to the step. In-

macroscopic diffusion constant of an atom along a kinke??Oking the customary quasistatic approximation, we take

step. For a step with kink density, we haveD,, = 9:¢ = 0. We also assume—as expected in most experi-
D,/(1 + NL,) = Dy/[1 + (M| + L:")L,], using the Ments—that attachment kinetics is instantaneous at the
nucleation-based estimate for  This leads to lower side:». = o (see Ref. [18] for the general case),
and denotel, = D/v_. In Eq. (1), F;, =[—Da.c];.
J. = Dy dx ( I'(M)a.M ) (4)  For steps of any average twist,, the contribution to/
‘ (1 + M2)'2\(1 + M2)32)” along the [100] and [010] directions are calculated, and

whereT'(M) = ¢ 5(M)/kyT projected along the corresponding step direction, at an
=cl, )

~ 1
Another stabilizing effect enters wheM is small, angle tan "M, from [100].

due to the stochastic nature of nucleation. In the IineaFn gg; ?iXt vssrfzrrmrsalI?;aglasrt?gilgyofa;?gi/s;wst ;[2 tshg
regime PV [8] showed, = Kd,{ (= Kd..M), which , 1.€., WE P 9 9 ps by

is valid only whenL, < L, (in which casek — F,L4 — & Small meandel, and determine its rate ({' ~ e®’)
12D,). In this limit, J, = D,T9,..¢. In the sim;JIest of growth or decay. Since SESE induces a repulsion

model, breaking bonds costs the kink enelgy From of diffu_sive origin between steps [10]_, the most unstablg
experi;nents [16]7, = €/ks ~ 1000K. AtT < T, we mode is when all steps meander in phase. Entropic
find T(0) = ex—e/ksT]/2 < 1 Thl:ISJ > ] V\;hen repulsion (noncrossing of steps), important whgr- 0,

the mean local twist is near zero V\’/H’M is elarger also favors this in-phase mode. In the long wavelength

nucleation is rare, due to the high kink density of steps? — 2ar [k limit, we have

andJ, dominates. For stronger KESE, bath, and K Ft_ _, - 5 4
decrease, but the exact form Kfis not known. w = TW + 1)+ gMo)lk” — AkT. (6)
We add the currenk to the usual Burton-Cabrera-Frank
(BCF) model [17]. No desorption is allowed. Moreover, ! 7] e X
attachment of terrace adatoms to steps is irreversible, st While (€7" + /7)™ —the cutoff length associated
that the equilibrium concentration on terraces vanishegVith terrace diffusion—accounts for the destabilization

Thus, on the terraces and at the steps, respectively, | g?chttg ofSEEEE t:r?s:tilnt functioa(M,) describes the
ility:

The positiveA reflects stabilizing effects related o and

(M)—i[ . LU ( LA— M‘)ﬂ (7)
SO T oM L+ M2 21— MMo) (L' + L' + IMD\L. ' + (M| 2L, ) L=’
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with M’ = (M — My)/(1 + MM,). From its positive [10]) atM*. Whenl; > 1 this takes the following form:
value at M, = 0 [cf. Eq. (8)], ¢ plunges through the ~1 Ch—1 . _ . —3/9 1 l/2
abscissa axis (&) = M, < 1) to a relatively shallow (€ )<= g (M) = 27 (M) 2,
minimum at My, = M* and then increases gradually (©)
toward a small negative value &f, = 1. The g” term in Eq. (9) gives the stochastic shift of the
For the aligned cas#/, = 0, two instabilities occur deterministic stability criterion (obtained with theterm
simultaneously: (i) That of BZ [7] stems from pre- alone). Sincd” is apparently always negative, steps are
ferred attachment of adatoms to step protuberances. Coralways unstable in the presence of SESE.
bined with the asymmetry of attachment, this leads to a For vanishing SESE/{ < 1) andL, > 1/2, linear sta-
morphological instability studied [7,9,10] for vicinal sur- bility analysis shows steps are stablé4f> M, [where
faces using the BCF model [17]. (ii) A novel instability g(Mmin) = 0]. If L., Ly > 1, then My, = (L.L,)"/>.
comes from the up-kink (destabilizing) current induced byThis threshold value increases due to fluctuations; mim-
KESE—the 1D analog of the mound formation created byicking Eq. (9) we find step stability wheM, > M =
SESE. The latter dominates [cf. Eq. (6)] when Muin + (1/2)[—g(M*)] V2. In Fig. 2, M is plotted as
_ = _ s — a function of L. and L;. In the limit of perfect KESE
€+ <gO) = Lol + L) (8) (Ly — o, L. — 0), steps are unstable, as found in a
With L. = 100 andL; = 1-10, Eq. (8) shows that only 1D-model study of step-flow breakdown with perfect
when the step spacing exceeds10’-10° does the SESE [20]. WhenM, = 1 the projection of next-nearest-
BZ instability dominate. Thus, the instability observed neighbor (NNN) hops along the [110] direction is twice
experimentally [19] on vicinal surfaces withl, = 0 is  as long as that of nearest-neighbor (NN) hops. Thus, for
probably due to KESE. Equation (8) gives a lower limit Ls = 0 (i.e., NN and NNN hop rates equal) the latter pro-
for the range of relevance of the BZ instability. An upperduces a smaller flux along the [110] direction, leading to
bound comes from nucleation on terraces, which atTow a geometrical KESE-induced instability (with kinks along
is likely to occur for¢ > 10°. Around M, = 0 (where (100)). More generally, whed, = 1 and/; = 0, steps
J, > J,) the initial wavelength of the instability (starting are unstable it.; < 1/2.
from straight steps) will thus be determined by nucleation, For illustration, we discuss preliminary results of a
not by line tension. ForL; < L., the most unstable simple solid-on-solid model: Atoms land randomly on
wavelength is [8]A, = (L3/L,)"/2. With L. =~ 100 and  the surface and cannot desorb. Possible hops are picked
L, = 1-10, we find A, = 10°-3 X 102. In the late randomly and are realized with some probabijitypased
stages of the instability), increases and, influences on the following rules: (i) The number of in-plane
the unstable step profile. NN'’s of the atom cannot decrease. (ii) Atoms freeze once
For azimuthally misoriented vicinal step3/{ # 0), n > 1. (iii) When n = 0 (adatoms) only NN hops are
KESE may cause stable kink flow. The effective dynamicallowed andp = 1. (iv) Whenn = 1 (step adatoms),
repulsion between kinks is the 1D analog of that whichp = 1 for NN hops andp = exd —A] for NNN hops.
stabilizes step flow of vicinal surfaces [5,10]. If the po- Since we seek far-from-equilibrium properties, attach-
sition of a kink with respect to its (like-signed) neighbors ment to steps and to kinks can be taken as irreversible
fluctuates from an initial uniform distribution, the kink (thereby violating detailed balance and removing line-
velocity increases or decreases to compensate. This phiension effects). The two stabilizing effects are kink flow
nomenon has already been studied by Aleiner and Surignd random nucleation. Since there is no step Schwoebel
[1] in the absence of nucleation of new kinks, and ne-
glecting the discrete effects that intervene witén- 1. 1
A criterion for the existence of stable kink flow can be
derived from linear analysis of our model. Small twists
are always unstable due to the combined effects of the BZ
and the KESE instabilities fa¥/, ~ 0. Large twists ¥/,
can always be chosen so thaf,| = 1) are unstable if
the stabilization due to KESE fdy| = 1 described in S
Fig. 3 (below) cannot overcome the BZ instability, i.e.,
if (07! + 17171 > g(1). Givenl, > 1, this criterion is
always satisfied, and there is a finite range of stable twists
centered around the most stable twhst.
Because of statistical fluctuations, linearly stable steps

will sample a wide range of twists, and so may reach the 0
unstable region and develop instability. The new, more 0 20 40 60 80
stringent stability criterion is that the twist variation needed Lc

to develop the instability should exceed the typical small+iG, 2. 47, the smallest stable twist without SESE, vs the
k twist fluctuations (calculated with Langevin formalism nucleation length, for weak, moderate, and strong KESE.
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barrier, steps can be unstable only for smdll. We In conclusion, we have investigated several conse-
have checked this prediction faf = 2 X 1074, With  quences of edge diffusion during MBE on stepped sur-
A =25, we haveL; = 11.2 and L, = 3.7, implying faces with arbitrary azimuthal orientation. A strong
Mnin = 0.18. Thus, growth should be stable fof, > instability appears on vicinal surfaces, over-riding the
M = 0.7. Simulations show that the steps are still un-Bales-Zangwill instability. SESE prevents stable kink
stable forM, > My, and that step roughness decreaseslow. Diffusion of atoms along the steps not only affects

for My > 0.75, corroborating predictions. the morphological stability of the steps, but also can in-
The step roughening expone®i({2)!/2 ~ 1) has been duce up-step mass current leading to mound formation.
determined for two sets of parameters. Foe 1074, A= Nonlinear analysis of the model and extensive simulations

0.5 (set 1), we findB =0.3 +0.05; with F=2X10"*,  are under way to investigate morphology and coarsening
A =5.0(setll), 8 =0.57 £0.07. Figure 1c depicts typi- of the structures induced by these instabilities [18].

cal morphologies. The step skewne&s)/(/2)*/? is This work was supported by NSF MRSEC Grant
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to prevent lateral coarsening. When KESE is stronger,

a special twistiM| = 1.5 [14] is selected, and coarsen-  «present address: Lab. Spectro. Phys., UJF (CNRS),
ing is seen. It is unclear whether this regime is transient.  Grenoble I, B.P. 87, 38402 Saint-Martin d’Héres, France.
The absence of groove formation in set Il is related to a[1] I.L. Aleiner and R.A. Suris, Sov. Phys. Solid Ste3d,
vanishingJy, for strong KESE. As predicted above (for 809 (1992).
I, = 0), an instability is also seen fdf, = 1 andL, = 0. [2] Z. Zhang and M. G. Lagally, Scien@76, 377 (1997).

Even in the absence of SESE, mounds form at long[3] J.G. Amar, Bull. Am. Phys. Soct3, 851 (1998); (to be
times on vicinal surfaces (as in Refs. [9,10]); however, this _ Published).

limit can prove unattainable, especially for large Our  [41 J: Viua:_n,hJ. Pdhys- ' (g(rjance;l, ﬁg (199hl)- _
simulations with, = 0, starting from a flat surface, do [°! G- Ehrlich and F. Hudda, J. Chem. Phy, 1039 (1966);

show mounds, which must be induced by #iek uphill 5 R L Schwoebel Of'£2‘f"£ﬂ§&%“£§f93h a5, 440
current. To see how this occurs, consider a step stabilize (1964).

by edge diffusion. With no diffusion or attachment bias, [7] G.s. Bales and A. Zangwill, Phys. Rev. B1, 5500
atoms landing on a vicinal surface attach to a step in" "~ (1990).

an average position which is the landing site. Since the[8] P. Politi and J. Villain, Phys. Rev. B4, 5114 (1996); I.
step meanders due to statistical fluctuations, the adatom Elkinani and J. Villain, J. Phys. | (Francé) 1991 (1994);
will then drift in the uphill direction once it is attached, P. Politi, J. Phys. | (France, 799 (1997).

stabilizing the step, as depicted in Fig. 3. From this drift [9] M. Rost, P.Smilauer, and J. Krug, Surf. Sc869 393
comes a mound-forming uphill current. Because of the _ (1996). . .

geometrical KESE, mounds have square symmetry withLOl O. Pierre-Louis and C. Misbah, Phys. Rev. L&, 4761

; (1996).
straight steps alongl00) ((110)) whenL; < (>) 1/2. [11] O. Pierre-Louiset al., Phys. Rev. Lett80, 4221 (1998).

[12] P. Stoltze, J. Phys. Condens. Matt@r 9495 (1994);
H. Shao, P.C. Weakliem, and H. Metiu, Phys. Rev. B
53, 16 041 (1996).

[13] A. Bogicevic, J. Stromquist, and B.l. Lundqvist, Phys.
Rev. Lett.81, 637 (1998).

[14] J; does not completely vanish atM| = 1. A
residual fluctuation-induced uphill current exists for
M =1 [18].

[15] S. Liu et al., Phys. Rev. Lett.71, 2967 (1993);
A. Bogicevicet al., Phys. Rev. B57, R9459 (1998).

[16] See, e.g., M. Gieseet al., Surf. Sci.366, 229 (1996).

[17] W.K. Burton, N. Cabrera, and F.C. Frank, Philos. Trans.
R. Soc. London A243 299 (1951).

[18] O. Pierre-Louis (unpublished).

[19] L. Schwenger, R.I. Folkerts, and H.-J. Ernst, Phys.

FIG. 3. Schematic showing the origin of the uphill kink Rev. B55, R7406 (1997).

Schwoebel current: (a) continuum with mass currents marked20] J. Krug and M. Schimschak, J. Phys. | (Fran&e)1065

(b) discretized. (1995).

3664




