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Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities
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The morphology of surfaces of arbitrary orientation in the presence of step and kink Ehrlich-
Schwoebel effects (SESE and KESE) during growth is studied within the framework of a model in
which steps are continuous lines, and is illustrated by a simple solid-on-solid model. For vicinal
surfaces KESE induces an instability often stronger than that from SESE. The possibility of stable
kink flow growth is analyzed. Fluctuations can shift the stability threshold. KESE also induces mound
formation. [S0031-9007(99)09023-7]

PACS numbers: 81.10.Aj, 05.70.Ln, 68.35.–p, 82.20.Mj
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Control of surface morphology during molecular-beam
epitaxy (MBE) is of immense technological interest. On
may want to produce either atomically flat or nanostruc
tured surfaces. Small energy barriers can affect grow
properties dramatically. In recent years, numerous p
pers have focused on the instabilities induced by the st
Ehrlich-Schwoebel effect (SESE)—an asymmetry in en
ergy barriers favoring the attachment of atoms arriving a
a step from the lower side. This Letter concerns the anal
gous, largely unstudied (exceptions include Refs. [1–3]
kink Ehrlich-Schwoebel effect (KESE) for atoms diffusing
alongside step edges near kinks or corners, and, more g
erally, to the consequences of diffusion along the steps
growth models.

SESE influences surface morphology during growt
in three main ways: (a) It induces an uphill current
destabilizing nominal surfaces [4]. (b) Vicinal surfaces
with large enough slopem becomestabilized[5] against
step bunching because the uphill Schwoebel currentjssmd
is a decreasing function. (c) Steps suffer a morphologic
instability of the Mullins-Sekerka type [6]: the Bales-
Zangwill (BZ) instability [7].

The essential features of (a) and (b) can be analyzed
evaluatingjssmd [8,9]. Politi and Villain (PV) [8] (whose
notation we often follow) have shown that growth from
nominal surfaces should lead to mounds and cracks. I
vestigation [9–11] of the BZ instability on vicinal surfaces
showed that, following the initial instability leading to
ripples, a secondary instability occurs resulting ultimatel
in mounds.

KESE can also destabilize or stabilize steps by the 1
analog of (a) or (b), the latter (b) leading tokink flow.
We include possible nucleation of kinks, neglected in a
earlier study of (b) [1], and the role of crystal symmetry
(specifically, the fourfold symmetry of a simple cubic
crystal). We show that the morphological instability of
steps is typically driven more by KESE than SESE. W
then determine the range of step orientations that are sta
during growth. Finally, we show that KESE can also lea
to mound formation.

On a vicinal surface, theith step is a continuous line
zisx, td ­ i, 1 z sx, td, with , the mean terrace width. We
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assume unit lattice spacing throughout. At low enoug
temperatureT , detachment from the steps becomes negl
gible [12,13]. At the steps, mass conservation implies

≠tz ­ Fs 2 ≠xJ , (1)

whereFs [more generallyFssxd] is the incoming flux of
atoms from both adjoining terraces. Capital-letter vari
ables denote properties along the step edge, while lowe
case variables relate to the conventional quantities in on
dimension higher. We can decompose the mass currenJ
along the step:J ­ Jk 1 Je 1 Jn 1 JSB, whereJk is a
possibly destabilizing current coming from the KESE,Je,
Jn are stabilizing contributions, andJSB breaks the front-
back symmetry of the steps [8].

We first consider a step whose average orientation
f100g. Because of KESE, atoms landing on straight, close
packed parts of a step (1D “terraces”—viz. flatf100g
edges) attach more often to an up kink than to a dow
kink. We can calculate the resulting mass current along th
step, in the up-kink direction, using discrete rate equation
Each step adatom jumps with equal ratef0 exps2WdykBT d
in either direction. An additional attachment barrier (kink
Schwoebel barrier) is introduced when jumping down kink
giving jump ratef0 exps2WsykBT d. If an atom lands di-
rectly on a kink site, it attaches there directly, and does no
contribute toJ. The stationary mass current alongf100g
edges of lengthL is Jdiscrete

k ­ sFsy2d sL 2 1dLsysLs 1

Ld, whereLs ; expsDd 2 1 is the kink Schwoebel length,
and D ; sWs 2 WddykBT . In the continuum descrip-
tion of the surface, the 1D step “slope” (denoted here
after “twist”) relative to thef100g direction is (locally)
M ; ≠xz . In analogy to PV, we account for nucleation of
new edges by writingN . jMj 1 L21

c for the step den-
sity, Lc being the characteristic length of an edge abov
which nucleation occurs.Lc, whose twist dependence is
neglected here [8], depends onLs and the fluxFs incident
onf100g steps via [8]L4

cs1 1 6LsyLcd ­ 12DsyFs, where
Ds is the diffusion constant alongk100l edges. Then

Jk ­
Fs

2
s1 2 jMjdLs

f1 1 LssjMj 1 L21
c dg

M
sjMj 1 L21

c d
. (2)

Equation (2) differs from the result of PV by the factor
s1 2 jMjd: Jk vanishes forjMj ­ 1 [14].
© 1999 The American Physical Society 3661
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Equation (2) holds for jMj # 1. When jMj . 1,
adatoms attach to the step onf010g edges. A contribution
to the current is obtained if the atom attaches to the ki
above it (cf. Fig. 1):

Jk2 ­
F'

s

4
s1 2 jMjdM

Ls 1 jMj
sjMj . 1d . (3)

This current is destabilizing butvanishesfor strong KESE
(large Ls). F'

s designates the flux of atoms incident o
f010g edges. Nucleation on such steps is neglected sin
F'

s is small for largejMj due to step crowding.
There are very few calculations of the energy barrie

needed to estimate the kink Ehrlich-Schwoebel barri
virtually none for semiconductors. For late transitio
metals, this barrier is 0.1 eV onh001j [12] andh111j [15]
surfaces and 0.02 eV on Alh111j [13]; we find Ls ø 50
at 300 K, andLs ø 2 at 1000 K on late transition metals
(respectively,Ls ø 1.2 and 0.3 for Al h111j). In MBE
the typical incoming fluxF . 1 monolayerysec (MLys).
Taking Ds , 106 108 s21 and , ­ 10, so that Fs ø
F, ø 10 MLys, we find Lc . 100. In the following,
we consider arbitrary values ofLs and Lc, emphasizing
Ls , Lc, the weak-KESE case.

The second contribution to the currentJe comes from
the stabilizing effect of step stiffnessg̃sMd (via the Gibbs-
Thomson formula): Je ­ 2sDMcs

eqykBT d≠ssg̃kd; k is
the step curvature,s is the arclength,cs

eq is the equilibrium
concentration of adatoms at the step edge, andDM is the
macroscopic diffusion constant of an atom along a kink
step. For a step with kink densityN , we haveDM ­
Dsys1 1 NLsd ø Dsyf1 1 sjMj 1 L21

c dLsg, using the
nucleation-based estimate forN . This leads to

Je ­ DM
≠x

s1 1 M2d1y2

µ
GsMd≠xM

s1 1 M2d3y2

∂
, (4)

whereGsMd ; cs
eqg̃sMdykBT .

Another stabilizing effect enters whenM is small,
due to the stochastic nature of nucleation. In the line
regime PV [8] showedJn . K≠xxxz s; K≠xxMd, which
is valid only whenLs ø Lc (in which caseK ­ FsL4

c ­
12Ds). In this limit, Je . DsG≠xxxz . In the simplest
model, breaking bonds costs the kink energye. From
experiments [16],Tk ; eykB , 1000K. At T , Tk, we
find Gs0d . expf2eykBTgy2 ø 1. Thus,Jn ¿ Je when
the mean local twist is near zero. WhenM is larger,
nucleation is rare, due to the high kink density of step
and Je dominates. For stronger KESE, bothDM and K
decrease, but the exact form ofK is not known.

We add the currentJ to the usual Burton-Cabrera-Frank
(BCF) model [17]. No desorption is allowed. Moreove
attachment of terrace adatoms to steps is irreversible,
that the equilibrium concentration on terraces vanish
Thus, on the terraces and at the steps, respectively,
3662
nk

n
ce

rs
er,
n

ed

ar

s,

r,
so

es.

FIG. 1. (a) Schematic of the destabilizing step-edge currentJk
[cf. Eq. (2)] due to KESE; (b) similar behavior ofJk2 for highly
twisted sjMj . 1d edges [cf. Eq. (3)]. (c) Shape of unstabl
steps on a vicinal surface from solid-on-solid simulations fo
parameters of set I (upper curve) and set II (lower curv
(see text).

≠tc ­ D=2c 1 F , 2D≠nc ­ 7n6c , (5)

where1 (2) denotes the lower (upper) side of the ste
while ≠n indicates a derivative normal to the step. In
voking the customary quasistatic approximation, we ta
≠tc ­ 0. We also assume—as expected in most expe
ments—that attachment kinetics is instantaneous at
lower side:n1 ­ ` (see Ref. [18] for the general case)
and denotels ; Dyn2. In Eq. (1), Fs ­ f2D≠zcg2

1.
For steps of any average twistM0, the contribution toJ
along the [100] and [010] directions are calculated, a
projected along the corresponding step direction, at
angle tan21M0 from [100].

We next perform a linear stability analysis on th
model, i.e., we perturb a regular train of straight steps
a small meanderz , and determine its ratev (z , evt)
of growth or decay. Since SESE induces a repulsi
of diffusive origin between steps [10], the most unstab
mode is when all steps meander in phase. Entro
repulsion (noncrossing of steps), important whenls ! 0,
also favors this in-phase mode. In the long waveleng
l ­ 2pyk limit, we have

v ­
F,

2
fs,21 1 l21

s d21 1 gsM0dgk2 2 Ak4. (6)

The positiveA reflects stabilizing effects related toJe and
Jn. While s,21 1 l21

s d21 —the cutoff length associated
with terrace diffusion—accounts for the destabilizatio
due to SESE, the even functiongsM0d describes the
effects of KESE on stability:
gsM0d ­
≠

≠M

∑
1 2 jM 0j

s1 1 M 02d1y2s1 2 M 0M0d sL21
s 1 L21

c 1 jM 0jd

µ
M 0

L21
c 1 jM 0j

1
M0

2Ls

∂∏
M­0

, (7)
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with M 0 ; sM 2 M0dys1 1 MM0d. From its positive
value at M0 ­ 0 [cf. Eq. (8)], g plunges through the
abscissa axis (atM0 ­ Mmin ø 1) to a relatively shallow
minimum at M0 ­ Mp and then increases gradually
toward a small negative value atM0 ­ 1.

For the aligned caseM0 ­ 0, two instabilities occur
simultaneously: (i) That of BZ [7] stems from pre-
ferred attachment of adatoms to step protuberances. Co
bined with the asymmetry of attachment, this leads to
morphological instability studied [7,9,10] for vicinal sur-
faces using the BCF model [17]. (ii) A novel instability
comes from the up-kink (destabilizing) current induced b
KESE—the 1D analog of the mound formation created b
SESE. The latter dominates [cf. Eq. (6)] when

s,21 1 l21
s d21 , gs0d ­ LcsL21

c 1 L21
s d21. (8)

With Lc ø 100 andLs ø 1 10, Eq. (8) shows that only
when the step spacing, exceeds102 103 does the
BZ instability dominate. Thus, the instability observe
experimentally [19] on vicinal surfaces withM0 ­ 0 is
probably due to KESE. Equation (8) gives a lower lim
for the range of relevance of the BZ instability. An uppe
bound comes from nucleation on terraces, which at lowT
is likely to occur for, . 103. Around M0 ­ 0 (where
Jn ¿ Je) the initial wavelength of the instability (starting
from straight steps) will thus be determined by nucleatio
not by line tension. ForLs ø Lc, the most unstable
wavelength is [8]lu . sL3

cyLsd1y2. With Lc ø 100 and
Ls ø 1 10, we find lu ø 103 3 3 102. In the late
stages of the instability,M0 increases andJe influences
the unstable step profile.

For azimuthally misoriented vicinal steps (M0 fi 0),
KESE may cause stable kink flow. The effective dynam
repulsion between kinks is the 1D analog of that whic
stabilizes step flow of vicinal surfaces [5,10]. If the po
sition of a kink with respect to its (like-signed) neighbor
fluctuates from an initial uniform distribution, the kink
velocity increases or decreases to compensate. This p
nomenon has already been studied by Aleiner and Su
[1] in the absence of nucleation of new kinks, and ne
glecting the discrete effects that intervene whenM , 1.

A criterion for the existence of stable kink flow can be
derived from linear analysis of our model. Small twist
are always unstable due to the combined effects of the B
and the KESE instabilities forM0 , 0. Large twists (M0
can always be chosen so thatjM0j # 1) are unstable if
the stabilization due to KESE forjM0j ­ 1 described in
Fig. 3 (below) cannot overcome the BZ instability, i.e
if s,21 1 l21

s d21 . gs1d. Given ls . 1, this criterion is
always satisfied, and there is a finite range of stable twi
centered around the most stable twistMp.

Because of statistical fluctuations, linearly stable ste
will sample a wide range of twists, and so may reach th
unstable region and develop instability. The new, mo
stringent stability criterion is that the twist variation neede
to develop the instability should exceed the typical sma
k twist fluctuations (calculated with Langevin formalism
m-
a

y
y

d

it
r

n,

ic
h
-
s

he-
ris
-

s
Z

.,

sts

ps
e

re
d
ll-

[10]) at Mp. Whenls . 1 this takes the following form:

s,21 1 l21
s d21 , lp ; 2gsMpd 2 223y2g00sMpd1y2.

(9)

The g00 term in Eq. (9) gives the stochastic shift of the
deterministic stability criterion (obtained with theg term
alone). Sincelp is apparently always negative, steps ar
always unstable in the presence of SESE.

For vanishing SESE (ls , 1) andLs . 1y2, linear sta-
bility analysis shows steps are stable ifM . Mmin [where
gsMmind ­ 0g. If Lc, Ls ¿ 1, then Mmin . sLcLsd1y2.
This threshold value increases due to fluctuations; mim
icking Eq. (9) we find step stability whenM0 . M̃ ;
Mmin 1 s1y2d f2gsMpdg21y2. In Fig. 2, M̃ is plotted as
a function of Lc and Ls. In the limit of perfect KESE
(Ls ! `, Lc ! 0), steps are unstable, as found in
1D-model study of step-flow breakdown with perfec
SESE [20]. WhenM0 ­ 1 the projection of next-nearest-
neighbor (NNN) hops along the [110] direction is twice
as long as that of nearest-neighbor (NN) hops. Thus, f
Ls ­ 0 (i.e., NN and NNN hop rates equal) the latter pro
duces a smaller flux along the [110] direction, leading t
a geometrical KESE-induced instability (with kinks along
k100l). More generally, whenM0 ­ 1 and ls ­ 0, steps
are unstable ifLs , 1y2.

For illustration, we discuss preliminary results of a
simple solid-on-solid model: Atoms land randomly on
the surface and cannot desorb. Possible hops are pic
randomly and are realized with some probabilityp based
on the following rules: (i) The numbern of in-plane
NN’s of the atom cannot decrease. (ii) Atoms freeze onc
n . 1. (iii) When n ­ 0 (adatoms) only NN hops are
allowed andp ­ 1. (iv) When n ­ 1 (step adatoms),
p ­ 1 for NN hops andp ­ expf2Dg for NNN hops.

Since we seek far-from-equilibrium properties, attach
ment to steps and to kinks can be taken as irreversib
(thereby violating detailed balance and removing line
tension effects). The two stabilizing effects are kink flow
and random nucleation. Since there is no step Schwoe

FIG. 2. M̃, the smallest stable twist without SESE, vs th
nucleation length, for weak, moderate, and strong KESE.
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barrier, steps can be unstable only for smallM0. We
have checked this prediction forF ­ 2 3 1024. With
D ­ 2.5, we haveLs . 11.2 and Lc . 3.7, implying
Mmin . 0.18. Thus, growth should be stable forM0 .

M̃ . 0.7. Simulations show that the steps are still un
stable forM0 . Mmin and that step roughness decreas
for M0 . 0.75, corroborating predictions.

The step roughening exponentb (kz 2l1y2 , tb) has been
determined for two sets of parameters. ForF ­ 1024, D ­
0.5 (set I), we findb ­ 0.3 6 0.05; with F ­ 2 3 1024,
D ­ 5.0 (set II), b ­ 0.57 6 0.07. Figure 1c depicts typi-
cal morphologies. The step skewnesskz 3lykz 2l3y2 is
,1.0, and,0.1, respectively, for sets I and II. The ob
served front-back asymmetry of step shape only for we
Schwoebel effect is well known [8] and is related to th
mass currentJSB along the step. More novel is the shape o
the mounds and their coarsening. In the weak KESE ca
(set I), cusps form after some transient period during whi
steps synchronize their phases. The cusps due toJk2 seem
to prevent lateral coarsening. When KESE is strong
a special twistjMj . 1.5 [14] is selected, and coarsen
ing is seen. It is unclear whether this regime is transie
The absence of groove formation in set II is related to
vanishingJk2 for strong KESE. As predicted above (fo
ls ­ 0), an instability is also seen forM0 ­ 1 andLs ­ 0.

Even in the absence of SESE, mounds form at lo
times on vicinal surfaces (as in Refs. [9,10]); however, th
limit can prove unattainable, especially for largem. Our
simulations withls ­ 0, starting from a flat surface, do
show mounds, which must be induced by thekink uphill
current. To see how this occurs, consider a step stabiliz
by edge diffusion. With no diffusion or attachment bias
atoms landing on a vicinal surface attach to a step
an average position which is the landing site. Since t
step meanders due to statistical fluctuations, the adat
will then drift in the uphill direction once it is attached
stabilizing the step, as depicted in Fig. 3. From this dr
comes a mound-forming uphill current. Because of th
geometrical KESE, mounds have square symmetry w
straight steps alongk100l (k110l) whenLs ø s¿d 1y2.

FIG. 3. Schematic showing the origin of the uphill kink
Schwoebel current: (a) continuum with mass currents marke
(b) discretized.
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In conclusion, we have investigated several cons
quences of edge diffusion during MBE on stepped su
faces with arbitrary azimuthal orientation. A stron
instability appears on vicinal surfaces, over-riding th
Bales-Zangwill instability. SESE prevents stable kin
flow. Diffusion of atoms along the steps not only affec
the morphological stability of the steps, but also can i
duce up-step mass current leading to mound formati
Nonlinear analysis of the model and extensive simulatio
are under way to investigate morphology and coarsen
of the structures induced by these instabilities [18].

This work was supported by NSF MRSEC Gran
No. DMR-96-32521. We acknowledge helpful convers
tions with E. D. Williams, Z. Zhang, and Z. Toroczkai.

Note added in proof.—Aspects of KESE have also bee
observed and studied in simulations by M. V. Rama
Murty and B. H. Cooper (to be published).
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