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In a nonperturbative formulation, radiative corrections arising from LorentzCatifl violation in the
fermion sector induce a definite and nonzero Chern-Simons addition to the electromagnetic action. If
instead a perturbative formulation is used, an infinite class of theories characterized by the value of the
Chern-Simons coefficient emerges at the quantum level. [S0031-9007(99)09051-1]
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Lorentz andCPT symmetry of conventional Maxwell results. First, a direct calculation &f, is presented that
electrodynamics is destroyed by adding the termis nonperturbative inb,. The various issues are then
L, = 3k,elPYF,5A, to the Lagrange density [1-3]. disentangled.

Here,k, is a prescribed, constant 4-vector. The tefm The relevant quantity for deciding whether a Chern-
is of the Chern-Simons form [4]: it changes by a totalSimons term is induced is the vacuum persistence ampli-
derivative when the gauge potential undergoes a gaud#de, or equivalently from Eq. (1) the fermion determinant
transformation A, — A, + 9,A. Consequently, the detij — A — m — Pys), computed to second order in the
action and equations of motion are gauge invariant, buphoton variables. We are thus led to examining the stan-
the Lagrange density is not. The modified theory predictslard one-loop vacuum-polarization amplitudle*”, but
birefringence of lightin vacuo [1,3]. Observation of Wwith the usual free-fermion propagatsf/) replaced by
distant galaxies puts a stringent bound ign it should  theb,-exact propagator from Eq. (1):

effectively vanish [1,5].

A natural question is whether such a term would be G(l)= ———.
induced through radiative corrections when Lorentz and /= m = Bys
CPT symmetries are violated in other sectors of a largefrhjs may also be presented as
theory. If so, then the stringent experimental limits on
L, would severely restrict the viability of models with G(l) =S + Gy (), (3a)
Lorentz andCPT breaking [6]. where

To study explicitly this issue, one may consider extend-
ing the quantum-electrodynamics (QED) action of a single
Fermi field by including a Lorentz- and'PT-violating
axial-vector term [2,3]:

i
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Gy(l) = PysS(1). (3b)
s

v

J —m—§
With this decompositionlI#” splits into three terms:
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Here, b, is a constant, prescr;bed 4-vector, and o4r  The term II)" is the usual lowest-order vacuum-
is Hermitian with tysy®y”y?y® = 4ie*#7°. Theonly  polarization tensor of QED, which we shall not discuss
other possible nonderivativ€P7- and Lorentz-violating  further. The termll}, is at least quadratic in; it is at
term in the fermion sector is uninteresting here because ifgost logarithmically divergent and suffers no ambiguity
properties under charge conjugation prevent it contributingn routing the internal momenta [10]. Thi,-linear

to the Chern-Simons term [3]. _ contribution to the Chern-Simons term arises froHj ",
Several calculations have been performed to determingpich js given explicitly by

whether radiative corrections induce the Chern-Simons

term withk,, = b,. Atleading order inb,, and the fine- proo f " ’

structure constant, a perturbative treatment of the term in I~ (p) rly5S(y Gl + p)

Eqg. (1) has been shown to generate an ambiguous result: P .

the coefficientk,, of the induced Chern-Simons term is TyEGMYSUE P} ()

regularization dependent and can be freely selected [3]. There are several important features of this expression.

Other claims include both a definite zero value kQr[7] Each of the two integrals is (superficially) linearly di-

and a definite nonzero value [8]. vergent. However, the divergences cancel when the two
The purpose of this work is to clarify this situation and terms are taken together and the traces are evaluated. As

call attention to subtle issues, related to chiral anomaliea consequence, there is no momentum-routing ambiguity

[9], underlying the discrepancies between these variou the summed integrand: when the integration momentum

d*l
(2m)*
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is shifted by the same amountliothintegrands the value of the integrands in Equ. (5). Therefore, a unique value
of the integral does not change, even though shifting sepaan be calculated fofl,~, which we shall show leads to
rately by different amounts in each of the two integrandsa finite Chern-Simons term.

changes the value of the integral by a surface term. Itfol- We next evaluatell,” to lowest order inb, by
lows that different momentum routings leave unchangedeplacingG, (1) with —iS(/)$ysS(I). This gives

the value ofIl,” because they produce a simultaneous BV _ truva
i . i . ) I, = I1*"%b,, (6)
shift of integration variable by the same amount in ea1ch
where
mra . d4l m v a m a v
H#7%(p) = —i o) t{y#*S)y”SU + p)y*ysSU + p) + y*S(D)y*ysS()y"SU + p)}
= I"%(p) + I*"*(p). (7)

A shift of integration variables in the second term reduces it to a crossed form of the first plus a contribution arising
from shifting variables in a linearly divergent integral:

T4 (p) = "M (=p) + AM*(p). ®)
where

4
A#re(p) = —if (261771)4 t{y S y*ysSDy"SU + p) — y"SDy*SU — p)y“ysSU — p)}. )

Since the tensorial form af*”* must bee*”*# p;, the crossed term coincides with the uncrossed term. The variable
shift produces a surface term, ané”*( p) is evaluated as

1
ARYY(p) = 3.2 e P pg. (10)
Thus, we have
1 d*l 1 1 1
[Hra - _ wraB o _ 2/ try# v @ . 11
(p) g2 pp P Tk R R e A L g (11)

To evaluate the integral, note first that

1 u 1 _ 1 C{ —1 N 2m }
R R A e R N I R
ad 1 1
Tpa fthm U+ pr—mt

2m
+ o
[CR - e (12)

The p,, derivative contributes a term

d d*l ( 1 1 )
22— | ——tr[y* v .
ipa) @\ T =m T y g m "
However, the above integral must vanish: no two-index pseudotensor exists involving the antisymmetric pseudotensor
and depending only on a single variable Therefore, one is left with an entirely finite integral. We find

e (p) = ——— " Ppg — 4mf a1 A ! Y*ys 1
8?2 (2ar)* J—m" J+p—m (I + p)P?—m?
1 im? 1 1
= —_——  prapB 4 B gurap [ d*l
gm2 Dp 4 pg 2= m[( + p)? — mP
1 2 (- m? 1
— _ o mvaB 4+ = d ) 13
© pﬁ<87T2 72 Jom “ Va2 — 4m? p? — a® + ie (13)
The final result is
pg (0 1 )
[1#72( p) = ghvaB ( o _ 1) 14
(p) =2 272 \sind 4 (14)

whered = 2sin~!'(y/p2/2m) andp? < 4m?>.
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The b,-linear contribution to the induced Chern- based on their hypothesis that one define the axial vec-
Simons term is determined by this expressiopat= 0.  tor j5(x) = ¥(x)y*ysi(x) to be gauge invariant in the
One finds a definite, nonzero, and finite result [8,11]: quantum theory at arbitrary 4-momentum, that is, at every

point inx. However, a weaker condition is true:jif (x)

A7 (p)l =0 = % "’ *Fpg, (15) does not couple to any other field, then physical gauge
87 invariance is maintained provided (x) is gauge invari-
and ant atzero 4-momentum. Equivalently, physical gauge
invariance is maintained providefld*x j¢ (x) and there-
Kt = 3 bH. (16) fore the action are gauge invariantjthout the require-
1672 ment that the Lagrange density also be gauge invariant.

This completes our calculation. This behavior characterizes the Chern-Simons term, so it

We have chosen to extract the leading-order result ifS Unsurprising that demanding gauge invariance of the
b,.. However, our calculation is in fact nonperturbative in bagrange density can prevent generating the noninvariant

b, in the sense that it has been performed keeping carefthern-Simons term. _ o

track of contributions from theb,-exact propagator in _ 1he Coleman-Glashow argument is perturbative in

Eq. (3a). Thus, in this calculation, we are choosing tg@nd is taken to first order. Only in the perturbative

define the theory of Eq. (1) in a nonperturbative way. framework does the axial vector arise as a distinct entity:
If instead the theory in Eq. (1) is defined through its it is an insertion whose gauge variance can be discussed.

perturbation series i, the same? dependence as in In contrast, with the nonperturbative definition of the
Eq. (14) emerges but the additional constant and therefof@€0ry the axial vector has no separate identity, but
the net result for the induced Chern-Simons term is differWhen the first-order contribution is extracted from our
ent [3]. At first order, one finds that the two integrals (7) COMPlete expression we find a nonzero result. Evidently
arise from a triangle VVA graph and its crossed expressioffi’® dynamics of the nonperturbative theary selects the
with zero axial-vector momentum. In perturbation theory,VEaker option: gauge invariance only fud*x b js (x)
no correlation is determineai priori between the momen- Ut not for the unintegrated quantity. Gauge invariance is
tum routings in the two graphs. If the relative routings Preserved in the sense thag Il;, = 0, and the induced
are as in (7), the resulting expression coincides with (14)2Ction is gauge invariant, but the induced Chern-Simons
Otherwise, a shift of integration variables produces the-2drange density is not. _
configuration (7), but generates an additional contribution, 1N€ gauge anomaly vanishes for zero momentum in the
Taking the shift as proportional to the external momentunfXial-vector vertex, regardless of the momentum routing
gives rise to an arbitrary multiple ak#*@ o ghra@f g in the two triangle graphs. However, foronvanishing

leaving the Chern-Simons coefficiekt proportional to momentum_in the axial vertex, only a special_ routing of
b* but with anundeterminegbroportionality constant. the integration momenta gives a gauge-invariant answer.
Coleman and Glashow have recently argued that This special routing is known explicitly [12], and in the

must unambiguously vanish to first order i for any limit of zero axial-vector momentum it correspond§ to
gauge-invarianCPT-odd interaction [7]. Their result is| the reslult of the Coleman-Glashow assumption, giving
uniquely

v . d4l v o [+ 14
Meg(p) = —tf o) t{y#*S)y”"SU + p)y*ysS(U + p) + y*S(L + 3p)y*ysS(L + 3p)y”SU + 4p)}

after an innocuous shift in both integrands. The integr"a
tion momentum in the second expression must be de-

creased by8p to bring this re_sult into_conformity with which enforces gauge invariance for all axial momenta.
Eq. (7). Therefore, from (10) it follows that The various values of the induced Chern-Simons coeffi-
Hgéa(p) = TT#7a(p) — 3 s,uvaﬂpﬁ' (17) cien_t are mass i_ndependent,_ so they are gubtracted and
82 vanish in Pauli-Villars regularization [3]. This would be
This result vanishes ap?> = 0, in agreement with the true whether or not the theory is formulated perturbatively
Coleman-Glashow claim. However, other than the deor nonperturbatively. Another possibility is dimensional
mand that gauge invariance be maintained not only foregularization. This is problematic with thgs matrix,
the action but also for the induced Lagrange density, therand a variety of answers fdr, can be obtained depend-
is no reason to prefer this result over any other. ing on howys is generalized to arbitrary dimensions. In
A further degree of arbitrariness in the induced termthis sense, the physics of the theory (1) depends on the
appears according to the choice of regularization schemehoice of regularization scheme.
used in the calculation. This can be true even within a Referring to the dispersive representation, presented
nonperturbative formation. in Eqg. (14), we see that the theory predicts a definite

One possible choice is Pauli-Villars regularization,
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