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In a nonperturbative formulation, radiative corrections arising from Lorentz andCPT violation in the
fermion sector induce a definite and nonzero Chern-Simons addition to the electromagnetic action.
instead a perturbative formulation is used, an infinite class of theories characterized by the value of th
Chern-Simons coefficient emerges at the quantum level. [S0031-9007(99)09051-1]
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Lorentz andCPT symmetry of conventional Maxwell
electrodynamics is destroyed by adding the ter
Lk ­ 1

2 km´mabgFabAg to the Lagrange density [1–3].
Here,km is a prescribed, constant 4-vector. The termLk

is of the Chern-Simons form [4]: it changes by a tota
derivative when the gauge potential undergoes a gau
transformation Am ! Am 1 ≠mL. Consequently, the
action and equations of motion are gauge invariant, b
the Lagrange density is not. The modified theory predic
birefringence of light in vacuo [1,3]. Observation of
distant galaxies puts a stringent bound onkm: it should
effectively vanish [1,5].

A natural question is whether such a term would b
induced through radiative corrections when Lorentz an
CPT symmetries are violated in other sectors of a larg
theory. If so, then the stringent experimental limits o
Lk would severely restrict the viability of models with
Lorentz andCPT breaking [6].

To study explicitly this issue, one may consider extend
ing the quantum-electrodynamics (QED) action of a sing
Fermi field by including a Lorentz- andCPT -violating
axial-vector term [2,3]:

I .
Z

d4x c̄si≠y 2 Ay 2 m 2 byg5dc . (1)

Here, bm is a constant, prescribed 4-vector, and ourg5

is Hermitian with trg5gagbgggd ­ 4i´abgd. The only
other possible nonderivativeCPT - and Lorentz-violating
term in the fermion sector is uninteresting here because
properties under charge conjugation prevent it contributin
to the Chern-Simons term [3].

Several calculations have been performed to determi
whether radiative corrections induce the Chern-Simo
term with km ~ bm. At leading order inbm and the fine-
structure constant, a perturbative treatment of the term
Eq. (1) has been shown to generate an ambiguous res
the coefficientkm of the induced Chern-Simons term is
regularization dependent and can be freely selected [
Other claims include both a definite zero value forkm [7]
and a definite nonzero value [8].

The purpose of this work is to clarify this situation and
call attention to subtle issues, related to chiral anomali
[9], underlying the discrepancies between these vario
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results. First, a direct calculation ofkm is presented that
is nonperturbative inbm. The various issues are the
disentangled.

The relevant quantity for deciding whether a Cher
Simons term is induced is the vacuum persistence am
tude, or equivalently from Eq. (1) the fermion determina
detsi≠y 2 Ay 2 m 2 byg5d, computed to second order in th
photon variables. We are thus led to examining the sta
dard one-loop vacuum-polarization amplitudePmn , but
with the usual free-fermion propagatorSsld replaced by
thebm-exact propagator from Eq. (1):

Gsld ­
i

ly 2 m 2 byg5
. (2)

This may also be presented as

Gsld ­ Ssld 1 Gbsld , (3a)

where

Gbsld ­
1

ly 2 m 2 byg5
byg5Ssld . (3b)

With this decomposition,Pmn splits into three terms:

Pmn ­ P
mn
0 1 P

mn
b 1 P

mn
bb . (4)

The term P
mn
0 is the usual lowest-order vacuum

polarization tensor of QED, which we shall not discus
further. The termP

mn
bb is at least quadratic inb; it is at

most logarithmically divergent and suffers no ambigui
in routing the internal momenta [10]. Thebm-linear
contribution to the Chern-Simons term arises fromP

mn
b ,

which is given explicitly by

P
mn
b spd ­

Z d4l
s2pd4 trhgmSsldgnGbsl 1 pd

1 gmGbsldgnSsl 1 pdj . (5)

There are several important features of this expressi
Each of the two integrals is (superficially) linearly di
vergent. However, the divergences cancel when the t
terms are taken together and the traces are evaluated.
a consequence, there is no momentum-routing ambigu
in the summed integrand: when the integration moment
© 1999 The American Physical Society



VOLUME 82, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 3 MAY 1999

e
is shifted by the same amount inboth integrands the value
of the integral does not change, even though shifting sep
rately by different amounts in each of the two integrand
changes the value of the integral by a surface term. It fo
lows that different momentum routings leave unchange
the value ofP

mn
b because they produce a simultaneou

shift of integration variable by the same amount in eac
a-
s
l-
d
s
h

of the integrands in Eq. (5). Therefore, a unique valu
can be calculated forP

mn
b , which we shall show leads to

a finite Chern-Simons term.
We next evaluateP

mn
b to lowest order in b, by

replacingGbsld with 2iSsldbyg5Ssld. This gives

P
mn
b . Pmnaba , (6)

where
sing

le

ensor
Pmnaspd ­ 2i
Z d4l

s2pd4 trhgmSsldgnSsl 1 pdgag5Ssl 1 pd 1 gmSsldgag5SsldgnSsl 1 pdj

; Imnaspd 1 Ĩmnaspd . (7)

A shift of integration variables in the second term reduces it to a crossed form of the first plus a contribution ari
from shifting variables in a linearly divergent integral:

Ĩmnaspd ­ Inmas2pd 1 Dmnaspd , (8)

where

Dmnaspd ­ 2i
Z d4l

s2pd4 trhgmSsldgag5SsldgnSsl 1 pd 2 gnSsldgmSsl 2 pdgag5Ssl 2 pdj . (9)

Since the tensorial form ofImna must be´mnabpb , the crossed term coincides with the uncrossed term. The variab
shift produces a surface term, andDmnaspd is evaluated as

Dmnaspd ­ 2
1

8p2 ´mnabpb . (10)

Thus, we have

Pmnaspd ­ 2
1

8p2 ´mnabpb 2 2
Z d4l

s2pd4 trgm 1
ly 2 m

gn 1
ly 1 py 2 m

gag5
1

ly 1 py 2 m
. (11)

To evaluate the integral, note first that

1
ly 1 py 2 m

gag5
1

ly 1 py 2 m
­

1
ly 1 py 2 m

ga

∑
21

ly 1 py 2 m
1

2m
sl 1 pd2 2 m2

∏
g5

­
≠

≠pa

1
ly 1 py 2 m

g5 1
2m

ly 1 py 2 m
gag5

1
sl 1 pd2 2 m2 . (12)

Thepa derivative contributes a term

22
≠

≠pa

Z d4l
s2pd4 tr

µ
gm 1

ly 2 m
gn 1

ly 1 py 2 m
g5

∂
.

However, the above integral must vanish: no two-index pseudotensor exists involving the antisymmetric pseudot
and depending only on a single variablep. Therefore, one is left with an entirely finite integral. We find

Pmnaspd ­ 2
1

8p2 ´mnabpb 2 4m
Z d4l

s2pd4 trgm 1
ly 2 m

gn 1
ly 1 py 2 m

gag5
1

sl 1 pd2 2 m2

­ 2
1

8p2 ´mnabpb 1
im2

p4 ´mnabpb

Z
d4l

1
l2 2 m2

1
fsl 1 pd2 2 m2g2

­ 2´mnabpb

µ
1

8p2 1
2

p2

Z `

2m
da

m2
p

a2 2 4m2

1
p2 2 a2 1 i´

∂
. (13)

The final result is

Pmnaspd ­ ´mnab
pb

2p2

µ
u

sinu
2

1
4

∂
, (14)

whereu ; 2 sin21s
p

p2y2md andp2 , 4m2.
3573
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The bm-linear contribution to the induced Chern-
Simons term is determined by this expression atp2 ­ 0.
One finds a definite, nonzero, and finite result [8,11]:

Pmnaspdjp2­0 ­
3

8p2 ´mnabpb , (15)

and

km ­
3

16p2 bm. (16)

This completes our calculation.
We have chosen to extract the leading-order result

bm. However, our calculation is in fact nonperturbative i
bm in the sense that it has been performed keeping care
track of contributions from thebm-exact propagator in
Eq. (3a). Thus, in this calculation, we are choosing
define the theory of Eq. (1) in a nonperturbative way.

If instead the theory in Eq. (1) is defined through it
perturbation series inbm, the sameu dependence as in
Eq. (14) emerges but the additional constant and theref
the net result for the induced Chern-Simons term is diffe
ent [3]. At first order, one finds that the two integrals (7
arise from a triangle VVA graph and its crossed expressi
with zero axial-vector momentum. In perturbation theory
no correlation is determineda priori between the momen-
tum routings in the two graphs. If the relative routing
are as in (7), the resulting expression coincides with (14
Otherwise, a shift of integration variables produces th
configuration (7), but generates an additional contributio
Taking the shift as proportional to the external momentu
gives rise to an arbitrary multiple ofDmna ~ ´mnabpb ,
leaving the Chern-Simons coefficientkm proportional to
bm but with anundeterminedproportionality constant.

Coleman and Glashow have recently argued thatkm

must unambiguously vanish to first order inbm for any
gauge-invariantCPT -odd interaction [7]. Their result is
3574
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based on their hypothesis that one define the axial v
tor j

m
5 sxd ; c̄sxdgmg5csxd to be gauge invariant in the

quantum theory at arbitrary 4-momentum, that is, at ev
point in x. However, a weaker condition is true: ifj

m
5 sxd

does not couple to any other field, then physical gau
invariance is maintained providedj

m
5 sxd is gauge invari-

ant at zero 4-momentum. Equivalently, physical gaug
invariance is maintained provided

R
d4x j

m
5 sxd and there-

fore the action are gauge invariant,without the require-
ment that the Lagrange density also be gauge invaria
This behavior characterizes the Chern-Simons term, s
is unsurprising that demanding gauge invariance of
Lagrange density can prevent generating the noninvar
Chern-Simons term.

The Coleman-Glashow argument is perturbative inbm

and is taken to first order. Only in the perturbativ
framework does the axial vector arise as a distinct ent
it is an insertion whose gauge variance can be discus
In contrast, with the nonperturbative definition of th
theory the axial vector has no separate identity, b
when the first-order contribution is extracted from o
complete expression we find a nonzero result. Eviden
the dynamics of the nonperturbative theory selects
weaker option: gauge invariance only for

R
d4x bmj

m
5 sxd

but not for the unintegrated quantity. Gauge invariance
preserved in the sense thatpmP

mn
b ­ 0, and the induced

action is gauge invariant, but the induced Chern-Simo
Lagrange density is not.

The gauge anomaly vanishes for zero momentum in
axial-vector vertex, regardless of the momentum routi
in the two triangle graphs. However, fornonvanishing
momentum in the axial vertex, only a special routing
the integration momenta gives a gauge-invariant answ
This special routing is known explicitly [12], and in th
limit of zero axial-vector momentum it corresponds
the result of the Coleman-Glashow assumption, givi
uniquely
P
mn
CGspd ­ 2i

Z d4l
s2pd4 trhgmSsldgnSsl 1 pdgag5Ssl 1 pd 1 gmSsl 1 3pdgag5Ssl 1 3pdgnSsl 1 4pdj
,
ta.
ffi-
and

ly
l

-
n
the

ted
ite
after an innocuous shift in both integrands. The integr
tion momentum in the second expression must be d
creased by3p to bring this result into conformity with
Eq. (7). Therefore, from (10) it follows that

P
mna
CG spd ­ Pmnaspd 2

3
8p2 ´mnabpb . (17)

This result vanishes atp2 ­ 0, in agreement with the
Coleman-Glashow claim. However, other than the d
mand that gauge invariance be maintained not only f
the action but also for the induced Lagrange density, the
is no reason to prefer this result over any other.

A further degree of arbitrariness in the induced term
appears according to the choice of regularization sche
used in the calculation. This can be true even within
nonperturbative formation.
a-
e-

e-
or
re

me
a

One possible choice is Pauli-Villars regularization
which enforces gauge invariance for all axial momen
The various values of the induced Chern-Simons coe
cient are mass independent, so they are subtracted
vanish in Pauli-Villars regularization [3]. This would be
true whether or not the theory is formulated perturbative
or nonperturbatively. Another possibility is dimensiona
regularization. This is problematic with theg5 matrix,
and a variety of answers forkm can be obtained depend
ing on howg5 is generalized to arbitrary dimensions. I
this sense, the physics of the theory (1) depends on
choice of regularization scheme.

Referring to the dispersive representation, presen
in Eq. (14), we see that the theory predicts a defin
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absorptive part, which is sufficiently well behaved to en
ter into an unsubtracted dispersion relation. Neverthele
there remains the possibility of a real subtraction, whic
is perturbatively undetermined, even though we present
a nonperturbative argument for the value1y8p2. This
situation is familiar in quantum field theory. Parameter
in a Lagrangian typically acquire infinite radiative cor
rections that must be renormalized. They flow with th
renormalization scale and are determined only by com
parison with experiment. Here, the radiative correction
are finite, so infinite renormalization is unnecessary, b
nevertheless no definite value is determined in perturb
tion theory. Another instance of this phenomenon occu
in the chiral Schwinger model, which generates an und
termined mass for its vector meson [13]. Theu angle of
QCD provides a further example [14]. For all these, a fi
nite parameter must be fixed by reference to nature. F
the Chern-Simons case this has already been done [1,5

In this work, we have found that the apparently reaso
able physical question “Is a Chern-Simons term induce
in the theory (1)?” has no unique answer. Equiva
lently, there is no unique evaluation of the effective actio
2i ln detsi≠y 2 Ay 2 m 2 byg5d. We have given a nonper-
turbative definition of the theory (1) that induces a definit
and nonzero value of the Chern-Simons coefficient.
instead a perturbative definition is used, an infinite class
theories characterized by the value of the Chern-Simons c
efficient emerges at the quantum level. The choice of reg
larization procedure can induce further ambiguity in bot
nonperturbative and perturbative schemes. Although o
could perhaps argue that our nonperturbative formulatio
is the most aesthetically satisfying, there seems no co
pelling reason to prefer any one definition over another.
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