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We introduce a fractional Fokker-Planck equation describing the stochastic evolution of a particle
under the combined influence of an external, nonlinear force and a thermal heat bath. For the force-
free case, a subdiffusive behavior is recovered. The equation is shown to obey generalized Einstein
relations, and its stationary solution is the Boltzmann distribution. The relaxation of single modes is
shown to follow a Mittag-Leffler decay. We discuss the example of a particle in a harmonic potential.
[S0031-9007(99)09071-7]
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Anomalous diffusion in one dimension is characterizedan FPE describing systems close to thermal equilibrium,
by the occurrence of a mean square displacement of thbe stationary solution must be given by the Boltzmann
form distribution.

(Ax)) = 2K, £y 1) Our goal in this Letter is to give a stochastic frame-
ra+vy ° work which describes anomalous systems, and meets the

which deviates from the linear Brownian dependencdollowing requirements: (i) In the absence of an external
diffusion coefficient, which has the dimensidi,] = ternal nonlinear and time independent field the stationary

cm?sec”. In the following, we will deal with the solution should be the Boltzmann distribution; (iii) gener-
subdiffusive domain0 < y < 1. Examples for sub- alized Einstein relations must be satisfied; and (iv) in the

diffusive transport are very diverse, and include chargdmit ¥ — 1 the standard FPE must be recovered. While
transport in amorphous semiconductors [2,3], NMR diffu-other approaches [7—17] fulfill part of these requirements,
sometry in disordered materials [4], and the dynamics ofve know of no simple approach which meets all of these
a bead in polymer networks [5]. physical demands. _ o

Normal diffusion problems involving external fields are  Our approach is based on fractional derivatives. We

often modeled in terms of a Fokker-Planck equation (FPE}Vestigate the one-dimensional fractional Fokker-Planck
equation (FFPE) for one variable

W(x,1) = LppW, (2) . 1
where the linear FP operator is defined through = W(x,1) = oD: " LppW 3
(2 420 + Ky #=), with the external potentiaV (x) [6].

e . in respect to its physical properties. Now, the FP operator
m denotes the mass of the diffusing particle, and P Py prop P

is the friction coefficient. A rich variety of solution 9 V'(x) 92
methods exists for Eq. (2) [6]. The basic properties of Lep = | ==

the FPE are the exponential decay of the modes, the
Einstein relations, which are intimately connected with thecontains the generalized diffusion constdnf, and the
fluctuation-dissipation theorem and with linear responsegeneralized friction coefficient;, with the dimension
and the Gaussian evolution in the force-free case. Fdrm,] = sec” 2. An extension of the FFPE to higher

(4)

ox mmn, Y ox?
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dimensions is made by replacing the spatial derivatives iThe mean square displacement for the FFPE (3) in
the one-dimensional FP operator with the correspondingbsence of a force, can be calculated similarly,
V operators. In Eg. (3), the Riemann-Liouville fractional VK1Y
operator on the right-hand side is defined through [18] (x%) = 1“(171) ) (8)
Y
1—y 1 9 ! / W(x,t)
oDt W= — Sy (5)  Note the subscript” and 0 to indicate presence and
Lly) ot Jo — (& — )77 : :
. _ _ ~absence of the force field. Using Eq. (6), we recover the
for 0 < y < 1, so that Eqg. (3) is an integro-differential reg|ation
equation. The Riemann-Liouville operator (5) introduces 1 F(x2)
a convolution integral with a slowly decaying power-law (F = = ,
L X . 2 kgT
kernel, which is typical for memory effects in complex
systems. It is easy to see that for— 1, Eqg. (3) connecting the first moment in the presence of a uniform
reduces to the standard FPE (2). We assume naturfdrce field with the second moment in absence of the
boundary conditions; these are +3LirW(x, t) = 0. The force. Relation (9) is the generalized Einstein relation
FFPE (3) describes a physical problem, where the syste@iscussed in Refs. [1,21]. It can be derived from first
is prepared at, = 0 in the stateW (x, 0). principles, using a Hamiltonian description of the system,
We show that the generalized FPE (3) fulfills our Within the linear response regime. Recent experimental
requirements (i) to (iv). The exponential decay of theresults corroborate the validity of Eq. (9) in polymeric
modes are modified in such a way that long-tailed memorypystems in the subdiffusive regime; see Refs. [5,22]. The
effects cause a slow power-]aw decay of the modegpvestlgatlon of Charge carrier transportln semiconductors
according to a Mittag-Leffler pattern. The equationin Ref. [3] showed that, up to a prefactor of 2, which
describes systems close to thermal equilibrium whickeould not be determined exactly, Eq. (9) is valid.
exhibit subdiffusive behavior. We now consider the temporal evolution f(x, r) in
Schneider and Wyss [9] have proposed a fractionaEq. (3), in the presence of an arbitrary_ ext_ernf’:ll force field
Fick’s equation, describing force-free anomalous diffusionf (x). For the FPE (2), a formal solution is given by the
of the type found in Eq. (1), which is equivalent to Eq. (3) Operator expressiol (x,7) = expLgpt)W(x,0). In case
for V(x} = const. The occurrence of the fractional deriva-of the FFPE (3), we find that
tive ;D, ' is directly related to a long-tailed waiting time Wx.1) = Eo(Leot? YW (x.0 10
distribution in continuous time random walk theory [19]. (e,1) y(Lept")W(x, 0) (10)
From a generalization of this random walk concept for mo-is the corresponding formal solution, which can be proven
tion under the influence of an external force field, the FFPEeasily via Eq. (11) below. Herd, denotes the Mittag-
(3) and the FP operator (4) can be uniquely derived througheffler function [23], which is the natural extension of the

(9)

a generalized master equation [20]. exponential function [24]. It is defined through the series
The right-hand side of the FFPE (3) is equivalent to 0 .

the fractional expressionoD; *aS(x,)/dx, whereS = Ey(2) = S — (11)
V() 3 : o I+ yn)

(— — K, 3;)W(x,t) is the probability current. If a 0

My
stationary state is reaches,must be constant. Thus, if The Mittag-Leffler function reduces to the exponential
S = 0 for anyx, it vanishes for alk [6], and the station- function for y = 1. We will later comment on the
ary solution is given by'(x)W/[mn,] + K,W/ = 0.  special role of the Mittag-Leffler function for relaxation
Comparing this expression with the required Boltzmanrphenomena in more detail.
distribution W, = exp{—V (x)/[kpT]}, we find a general-  |n order to find an analytic solution for the FFPE (3),
ization of the Einstein relation, also referred to as Stokeswe introduce the separation ansatz
Einstein-Smoluchowski relation,

Wa(x, 1) = @u(x)T, (1), (12)

kgT

i mny,’ (6) where the index: refers to a given eigenvalue dfgp.
Introducing the ansatz (12) into Eq. (3), yields

for the generalized coefficients, and »,. Thus, pro-

between gencralized ficion and diffusion cosficionto. re Tugw = [oD0 T, JLrven. a3)
flecting the fluctuation-dissipation theorem. _ so that, after the separation of Eq. (13) through division
e presence ot a unfo foce . gven by 57 T s
tity (x)» = [ dx xW via the FFPE (3), obtaining Ty = —AuyoDi T, (14a)
(x)p = P 7)
F mm.,, ra+qy)’ Lrppn = —Anyn (14b)
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for the eigenvaluea,,. The A, , are related to the laxation behavior foy — 1. This time behavior is shown
standard eigenvalues, ; for the casey = 1, discussed in Fig. 1. The second moment behaves as
extensively in the literature [6], by a dimensional prefactor |, , 2 2 ) . y

My = (m1/my)Aes [25]. The solution of Eq. (14a) is () = @ + [0 O = CHhu By (=201/ 7))
given in terms of the monotonically decreasing Mittag- (29)

Leffler function where we introduced the thermal equilibrium value

T(t) = E, (= Ay ,t7), (15)  (x*w = kgT/[mw?], reached forr — <. The Mittag-
which is always positive. The full solution of Eq. (3) is befle" function £y (—2l1/]7) behaves as — 2(t/7)/
thus the sum over all eigenvalues I'a+v) f9r short times, and as(t./T) /2l =
y)1 — (t/7)"27/[4T'(1 — 2y)] for long times. Thus, the
W(x,t|x',0) = short time behavior of Eq. (19) follows Eq. (1) exactly,
) and is independent of». For long times, the thermal
PPNy () ()Ey (= Auyt?)  equilibrium value(x2), is approached slowly, in power-
" (16) law form, again contrasting the fast equilibration for the
standard case.
for an initial distribution concentrated in’. Here, the For the FFPE (3), we find in Laplace space the
functions ¢, (x) = ¢e®®/2¢, (x) are related to the eigen- functional scaling relation W, (x,u) = (n,/n1)u?""
functions of the FP operatdrp, ¢,(x), via the scaled po- Wi (x,(n,/n1)u?), the same initial condition® (x,0) =
tential®(x) = V(x)/[kgT]. They, are eigenfunctionsto &(x — x’) provided. The subscript refers to the fractional
the Hermitian operatok = ¢ ®Lppe®. L andLgp have casey € (0,1) and to the standard situatiop = 1,
the same eigenvalues , [6]. On arranging the eigenval- respectively. That means thet, (x, «) in Laplace space
ues in increasing order, i.€0, = Agy < A1, < Ay, < is the same distribution anasW;(x, (n,/n:)u?) for the
..., the first eigenvalue is zero if there exists a stationaryscaled Laplace variabley, /n;)u”, only rescaled by the
solution, which is non-negative. This stationary solutionfactor(n,/n)u? .
is given by As in the standard FPE, the FFPE (3) in the
o /2= D)2 / force-free case possesses a scaling variable. Using
Wo = lim Wix,1) = e Ry (o), (A7) scaling arguments, one can show th@t—o(x,7) =
in full accordance with the standard cage= 1, and itis  [Ky?"]~"/*f(z) with the dimensionless similarity variable
nothing else but the Boltzmann distribution. However,z = x/(K,t*)"/2. The asymptotic shape d¥;— is a
the relaxation of a single mode is not exponential, Stretched Gaussian [9]. For arbitrary external potentials
but decays slowly likeE,(—A,,t?) ~ 1/[A,,2”] for V(x), no _such simple scaling behavi_or is found.
[,\Wﬂ] > 1. One might be tempted to generalize the FPE (2) by the
Before we discuss the FFPE (3) in more detail, letsubstitutionW — oD/ W, so that an FFPE of the form
us consider the nonstationary behavior using a SimpleDtyW = LgpW would result, instead of our proposition
example, the generalized subdiffusive version of the
Ornstein-Uhlenbeck process with the harmonic potential
V(x) = 5 mw2x?, the solution of which is given by log Ey (—[t/]")

logt/r

mw? « 1 .
W= E,(—nt?
27TkBT%2”n! v(=nt?)

i/ x -2 -0.6 \‘
X H, H,| == e ¥/, (18)
(ﬁ> (ﬁ) —0.8} \
using the general solution (16) and reduced coordi- -1}
natesi = t/7 andx¥ = x/mw?2/kpT, as well asr™” = L9 Vo
w?/n,. H, denote the Hermite polynomials, and the - Vo
eigenvalues here arg, , = nw?/7n,. From Eq. (18) we -14 Voo

can see that the behavior of the= 0 term is constant '

and independent of; the remaining terms decay in the FIG. 1. Mittag-Leffler relaxation compared with the expo-
course of time. Thus, for al, the stationary solution is Nential behavior for different values of: (--) y = I
the same, the Boltzmann distribution. (exponential); (~-) y = 08; (—) vy = 1/2. Fory =1/2,

. . the Mittag-Leffler function reduces te"erfc(nv/7). In the
The first moment of the process can be directly Cal'decadic log-log plot, the long power-law tails of the Mittag-

culated from Eq. (3) to evolve in time likéx)(1) =  Leffler decay in comparison to the fast exponential decrease are
(x)(0)E, (—[¢/7]"), reducing to the usual exponential re- obvious.
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