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We introduce a fractional Fokker-Planck equation describing the stochastic evolution of a par
under the combined influence of an external, nonlinear force and a thermal heat bath. For the
free case, a subdiffusive behavior is recovered. The equation is shown to obey generalized Ei
relations, and its stationary solution is the Boltzmann distribution. The relaxation of single mode
shown to follow a Mittag-Leffler decay. We discuss the example of a particle in a harmonic poten
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Anomalous diffusion in one dimension is characterize
by the occurrence of a mean square displacement of
form

ksDxd2l ­
2Kg

Gs1 1 gd
tg , (1)

which deviates from the linear Brownian dependenc
on time [1]. In Eq. (1), we introduced the generalize
diffusion coefficient, which has the dimensionfKgg ­
cm2 sec2g . In the following, we will deal with the
subdiffusive domain0 , g , 1. Examples for sub-
diffusive transport are very diverse, and include charg
transport in amorphous semiconductors [2,3], NMR diffu
sometry in disordered materials [4], and the dynamics
a bead in polymer networks [5].

Normal diffusion problems involving external fields are
often modeled in terms of a Fokker-Planck equation (FP

ÙWsx, td ­ LFPW , (2)

where the linear FP operator is defined throughLFP ­
s ≠

≠x
V 0sxd
mh1

1 K1
≠2

≠x2 d, with the external potentialV sxd [6].
m denotes the mass of the diffusing particle, andh1
is the friction coefficient. A rich variety of solution
methods exists for Eq. (2) [6]. The basic properties o
the FPE are the exponential decay of the modes, t
Einstein relations, which are intimately connected with th
fluctuation-dissipation theorem and with linear respons
and the Gaussian evolution in the force-free case. F
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an FPE describing systems close to thermal equilibriu
the stationary solution must be given by the Boltzma
distribution.

Our goal in this Letter is to give a stochastic fram
work which describes anomalous systems, and meets
following requirements: (i) In the absence of an extern
force field, Eq. (1) is satisfied; (ii) in the presence of an e
ternal nonlinear and time independent field the station
solution should be the Boltzmann distribution; (iii) gene
alized Einstein relations must be satisfied; and (iv) in t
limit g ! 1 the standard FPE must be recovered. Wh
other approaches [7–17] fulfill part of these requiremen
we know of no simple approach which meets all of the
physical demands.

Our approach is based on fractional derivatives. W
investigate the one-dimensional fractional Fokker-Plan
equation (FFPE) for one variable

ÙWsx, td ­ 0D
12g
t LFPW (3)

in respect to its physical properties. Now, the FP opera

LFP ­

√
≠

≠x
V 0sxd
mhg

1 Kg

≠2

≠x2

!
(4)

contains the generalized diffusion constantKg, and the
generalized friction coefficienthg with the dimension
fhgg ­ secg22. An extension of the FFPE to highe
© 1999 The American Physical Society 3563
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dimensions is made by replacing the spatial derivatives
the one-dimensional FP operator with the correspondi
= operators. In Eq. (3), the Riemann-Liouville fractiona
operator on the right-hand side is defined through [18]

0D
12g
t W ­

1
Gsgd

≠

≠t

Z t

0
dt0 Wsx, t0d

st 2 t0d12g
(5)

for 0 , g , 1, so that Eq. (3) is an integro-differentia
equation. The Riemann-Liouville operator (5) introduce
a convolution integral with a slowly decaying power-law
kernel, which is typical for memory effects in comple
systems. It is easy to see that forg ! 1, Eq. (3)
reduces to the standard FPE (2). We assume natu
boundary conditions; these are lim

x!6`
Wsx, td ­ 0. The

FFPE (3) describes a physical problem, where the syst
is prepared att0 ­ 0 in the stateWsx, 0d.

We show that the generalized FPE (3) fulfills ou
requirements (i) to (iv). The exponential decay of th
modes are modified in such a way that long-tailed memo
effects cause a slow power-law decay of the mode
according to a Mittag-Leffler pattern. The equatio
describes systems close to thermal equilibrium whi
exhibit subdiffusive behavior.

Schneider and Wyss [9] have proposed a fraction
Fick’s equation, describing force-free anomalous diffusio
of the type found in Eq. (1), which is equivalent to Eq. (3
for V sxd ­ const. The occurrence of the fractional deriva
tive 0D

12g
t is directly related to a long-tailed waiting time

distribution in continuous time random walk theory [19
From a generalization of this random walk concept for m
tion under the influence of an external force field, the FFP
(3) and the FP operator (4) can be uniquely derived throu
a generalized master equation [20].

The right-hand side of the FFPE (3) is equivalent
the fractional expression20D

12g
t ≠Ssx, tdy≠x, whereS ­

s2 V 0sxd
mhg

2 Kg
≠

≠x d Wsx, td is the probability current. If a
stationary state is reached,S must be constant. Thus, if
S ­ 0 for any x, it vanishes for allx [6], and the station-
ary solution is given byV 0sxdWstyfmhgg 1 KgW 0

st ­ 0.
Comparing this expression with the required Boltzman
distributionWst ~ exph2V sxdyfkBT gj, we find a general-
ization of the Einstein relation, also referred to as Stoke
Einstein-Smoluchowski relation,

Kg ­
kBT
mhg

, (6)

for the generalized coefficientsKg and hg. Thus, pro-
cesses described by Eq. (3) fulfill the linear relatio
between generalized friction and diffusion coefficients, r
flecting the fluctuation-dissipation theorem.

In the presence of a uniform force field, given b
V sxd ­ 2Fx, a net drift occurs. We calculate the quan
tity k ÙxlF ­

R
dx x ÙW via the FFPE (3), obtaining

kxlF ­
F

mhg

tg

Gs1 1 gd
. (7)
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The mean square displacement for the FFPE (3)
absence of a force, can be calculated similarly,

kx2l0 ­
2Kgtg

Gs1 1 gd
. (8)

Note the subscriptsF and 0 to indicate presence an
absence of the force field. Using Eq. (6), we recover t
relation

kxlF ­
1
2

Fkx2l0

kBT
, (9)

connecting the first moment in the presence of a unifo
force field with the second moment in absence of t
force. Relation (9) is the generalized Einstein relati
discussed in Refs. [1,21]. It can be derived from fir
principles, using a Hamiltonian description of the syste
within the linear response regime. Recent experimen
results corroborate the validity of Eq. (9) in polymer
systems in the subdiffusive regime; see Refs. [5,22]. T
investigation of charge carrier transport in semiconduct
in Ref. [3] showed that, up to a prefactor of 2, whic
could not be determined exactly, Eq. (9) is valid.

We now consider the temporal evolution ofWsx, td in
Eq. (3), in the presence of an arbitrary external force fie
Fsxd. For the FPE (2), a formal solution is given by th
operator expressionWsx, td ­ expsLFP tdWsx, 0d. In case
of the FFPE (3), we find that

Wsx, td ­ EgsLFP tgdWsx, 0d (10)

is the corresponding formal solution, which can be prov
easily via Eq. (11) below. Here,Eg denotes the Mittag-
Leffler function [23], which is the natural extension of th
exponential function [24]. It is defined through the seri

Egszd ­
X̀

0

zn

Gs1 1 gnd
. (11)

The Mittag-Leffler function reduces to the exponenti
function for g ­ 1. We will later comment on the
special role of the Mittag-Leffler function for relaxatio
phenomena in more detail.

In order to find an analytic solution for the FFPE (3
we introduce the separation ansatz

Wnsx, td ­ wnsxdTnstd , (12)

where the indexn refers to a given eigenvalue ofLFP .
Introducing the ansatz (12) into Eq. (3), yields

ÙTnwn ­
h

0D
12g
t Tn

i
LFPwn , (13)

so that, after the separation of Eq. (13) through divisi
by s0D

12g
t Tnd wn, we arrive at the two eigenequations

ÙTn ­ 2ln,g 0D
12g
t Tn , (14a)

LFPwn ­ 2ln,gwn (14b)
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for the eigenvalueln,g. The ln,g are related to the
standard eigenvaluesln,1 for the caseg ­ 1, discussed
extensively in the literature [6], by a dimensional prefact
ln,g ­ sh1yhgdln,1 [25]. The solution of Eq. (14a) is
given in terms of the monotonically decreasing Mittag
Leffler function

Tnstd ­ Egs2ln,gtgd , (15)

which is always positive. The full solution of Eq. (3) is
thus the sum over all eigenvalues

Wsx, t j x0, 0d ­

eFsx0dy22Fsxdy2
X
n

cnsxdcnsx0dEgs2ln,gtgd

(16)

for an initial distribution concentrated inx0. Here, the
functionscnsxd ­ eFsxdy2wnsxd are related to the eigen-
functions of the FP operatorLFP , wnsxd, via the scaled po-
tentialFsxd ­ V sxdyfkBT g. Thecn are eigenfunctions to
the Hermitian operatorL ­ e2FLFPeF. L andLFP have
the same eigenvaluesln,g [6]. On arranging the eigenval-
ues in increasing order, i.e.,0 # l0,g , l1,g , l2,g ,

. . ., the first eigenvalue is zero if there exists a stationa
solution, which is non-negative. This stationary solutio
is given by

Wst ­ lim
t!`

Wsx, td ­ eFsx0dy22Fsxdy2c0sxdc0sx0d , (17)

in full accordance with the standard caseg ­ 1, and it is
nothing else but the Boltzmann distribution. Howeve
the relaxation of a single moden is not exponential,
but decays slowly likeEgs2ln,gtgd , 1y

£
ln,gtg

§
for£

ln,gtg
§

¿ 1.
Before we discuss the FFPE (3) in more detail, l

us consider the nonstationary behavior using a simp
example, the generalized subdiffusive version of th
Ornstein-Uhlenbeck process with the harmonic potent
V sxd ­ 1

2 mv2x2, the solution of which is given by

W ­

s
mv2

2pkBT

X̀
0

1
2nn!

Egs2nt̃gd

3 Hn

√
x̃0

p
2

!
Hn

√
x̃

p
2

!
e2x̃2y2, (18)

using the general solution (16) and reduced coord
natest̃ ­ tyt and x̃ ­ x

p
mv2ykBT , as well ast2g ;

v2yhg . Hn denote the Hermite polynomials, and th
eigenvalues here areln,g ­ nv2yhg. From Eq. (18) we
can see that the behavior of then ­ 0 term is constant
and independent ofg; the remaining terms decay in the
course of time. Thus, for allg, the stationary solution is
the same, the Boltzmann distribution.

The first moment of the process can be directly ca
culated from Eq. (3) to evolve in time likekxl std ­
kxl s0dEgs2ftytggd, reducing to the usual exponential re
or
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laxation behavior forg ! 1. This time behavior is shown
in Fig. 1. The second moment behaves as

kx2l std ­ kx2lth 1
£
kx2l s0d 2 kx2lth

§
Egs22ftytggd

(19)

where we introduced the thermal equilibrium valu
kx2lth ­ kBTyfmv2g, reached fort ! `. The Mittag-
Leffler function Egs22ftytggd behaves as1 2 2stytdgy
Gs1 1 gd for short times, and asstytd2gyf2Gs1 2

gdg 2 stytd22gyf4Gs1 2 2gdg for long times. Thus, the
short time behavior of Eq. (19) follows Eq. (1) exactly
and is independent ofv. For long times, the thermal
equilibrium valuekx2lth is approached slowly, in power-
law form, again contrasting the fast equilibration for th
standard case.

For the FFPE (3), we find in Laplace space th
functional scaling relation Wgsx, ud ­ shgyh1dug21

W1sssx, shgyh1dugddd, the same initial conditionsWsx, 0d ­
dsx 2 x0d provided. The subscript refers to the fractiona
case g [ s0, 1d and to the standard situationg ­ 1,
respectively. That means thatWgsx, ud in Laplace space
is the same distribution onx asW1sssx, shgyh1dugddd for the
scaled Laplace variableshgyh1dug , only rescaled by the
factor shgyh1dug21.

As in the standard FPE, the FFPE (3) in th
force-free case possesses a scaling variable. Us
scaling arguments, one can show thatWF­0sx, td ­£
Kgtg

§
21y2fszd with the dimensionless similarity variable

z ­ xysKgtgd1y2. The asymptotic shape ofWF­0 is a
stretched Gaussian [9]. For arbitrary external potentia
V sxd, no such simple scaling behavior is found.

One might be tempted to generalize the FPE (2) by t
substitution ÙW ! 0D

g
t W , so that an FFPE of the form

0D
g
t W ­ LFPW would result, instead of our proposition

FIG. 1. Mittag-Leffler relaxation compared with the expo
nential behavior for different values ofg: (– –) g ­ 1
(exponential); (–? –) g ­ 0.8; (—) g ­ 1y2. For g ­ 1y2,
the Mittag-Leffler function reduces toen2 t̃erfcsn

p
t̃ d. In the

decadic log-log plot, the long power-law tails of the Mittag
Leffler decay in comparison to the fast exponential decrease
obvious.
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in Eq. (3). However, such an approach is inconsiste
which can be seen, if we integrate both sides of th
equation overx. The right-hand side vanishes due to th
natural boundary conditions, but for the left-hand sid
the result is0D

g
t 1 ­ t2gyGs1 2 gd. Such a shortcoming

does not exist in our FFPE (3) [26].
Let us briefly examine the importance of the Mittag

Leffler function, Eq. (15), in relaxation modeling
Besides via the series representation (11), the Mitta
Leffler function is defined through its Laplace transfor
L hEgsss 2 stytdgdddj ­ fu 1 t2gu12gg21, or through the
fractional differential equation (14a). In Refs. [27,28
it is shown, that the Mittag-Leffler function is the exac
relaxation function for an underlying fractal time random
walk process, and that this function directly leads
the Cole-Cole behavior [29] for the complex suscep
bility, which is broadly used to describe experiment
results. Furthermore, the Mittag-Leffler function can b
decomposed into single Debye processes, the relaxa
time distribution of which is given by a modified, com
pletely asymmetric Lévy distribution [28,30]. This las
observation is related to the formulation of Mittag-Leffle
relaxation described in Ref. [27]. In Ref. [22], the signifi
cance of the Mittag-Leffler function was shown, where i
Laplace transform was obtained as a general result fo
collision model in the Rayleigh limit.

Concluding, we have introduced a generalized Fokk
Planck equation of fractional order, which generaliz
the Stokes-Einstein-Smoluchowski relation, in cons
tency with the fluctuation-dissipation theorem, and fulfil
the generalized Einstein relation. The external force fie
leads to a stationary solution, which is given by the Bolt
mann distribution. The general methods of solution, su
as the separation of variables used extensively in literat
for g ­ 1, can still be applied, and the example of su
diffusion in a harmonic potential is explicitly solved. Th
introduction of the Riemann-Liouville operator include
long-range memory effects which are typically found
complex systems, and consequently a single mode rela
now slowly in time, following the Mittag-Leffler decay.
It is worth mentioning that fractional kinetic equation
have been suggested to model anomalous diffusion in r
dom environments [13–15], and for chaotic Hamiltonia
systems [12]. These fractional equations have been u
to describe Lévy flights or diverging diffusion. In con
trast, we describe subdiffusive systems close to therm
equilibrium.

Recent works have pointed out that nonextensive th
mostatistics proposed by Tsallis is the statistical mecha
cal foundation of anomalous diffusion [31,32]. Here w
have shown that anomalous diffusion can be based u
(extensive) Boltzmann statistics.
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