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We study a delocalization transition for noninteracting quasiparticles moving in two dimensions,
which belongs to a new symmetry class. This symmetry class can be realized in a dirty, gapless
superconductor in which time-reversal symmetry for orbital motion is broken, but spin-rotation
symmetry is intact. We find a direct transition between two insulating phases with quantized Hall
conductances of zero and two for the conserved quasiparticles. The energy of the quasiparticles acts
as a relevant symmetry-breaking field at the critical point, which splits the direct transition into two
conventional plateau transitions. [S0031-9007(99)09003-1]

PACS numbers: 73.40.Hm, 71.70.Ej, 72.15.Rn, 74.40.+k

The variety of universality classes possible in single-tions and to thermal and spin conductivity in high tem-
particle models of disordered conductors is how appreperature superconductors [7—10]. Separately, the behav-
ciated to be quite rich. Three of these classes wer@r of massless Dirac fermions in two space dimensions,
identified early in the development of weak localizationscattered by particle-hole symmetric disorder in the form
theory [1]: they are distinguished by the behavior ofof a random vector potential, has been investigated inten-
the system under time reversal, by its spin propertiessively [11] as a tractable example of a disordered critical
and are termed orthogonal, unitary, and symplectic, irpoint. And much before this, the one-dimensional tight
analogy with Dyson’s classification of random matrice en-binding model with random nearest-neighbor hopping was
sembles. Further alternatives can arise by two differenshown [12] to have a delocalization transition and diver-
mechanisms. First, in certain contexts, most notably thgent density of states at the band center, the energy invari-
integer quantum Hall effect, the nonlinear model de- ant under the sublattice symmetry.
scribing a two-dimensional system may admit a topologi- In this paper, we study a new delocalization transi-
cal term [2], which results in the existence of extendedion in two dimensions that combines both of the above
states at isolated energies in an otherwise localized spefeatures: the transition separates phases with different
trum. Physically, such systems have more than one digguantized Hall conductances for the quasiparticles, and
tinct insulating phase, each characterized by its numbeat occurs in a system which has a discrete microscopic
of edge states and separated from other phases by delocajsmmetry. This transition can take place in a gapless su-
ization transitions. Second, it may happen that the Hamilperconductor under appropriate conditions: time-reversal
tonian has an additional, discrete symmetry, absent frormvariance for orbital motion must be broken by an ap-
Dyson’s classification. This is the case in two-sublatticeplied magnetic field, but the Zeeman coupling should be
models for localization, if the Hamiltonian has no matrix negligible, so that the full spin-rotation invariance remains
elements connecting states that belong to the same sublattact. A candidate system is a granular superconducing
tice [3,4]. It is also true of the Bogoliubov—de Gennesfilm in a magnetic field which frustrates the Jospehson
formalism for quasiparticles in a superconductor with dis-coupling between the grains, so that the order parameter
order [5,6]. One consequence of this extra symmetry iss spatially random [6]. Another is a dirty superconductor
that, at a delocalization transition, critical behavior canin which the order parameter hads:—,> + id,, symme-
appear not only in two-particle properties such as the cortry [13]. Formally, we suggest that the model whose be-
ductivity, but also in single-particle quantities, such as thehavior we examine numerically is a representative of the
density of states. symmetry class labeled by Altland and Zirnbauer [6],

Universality classes in systems with extra discrete symand that the delocalization transition is associated with
metries of this kind have attracted considerable attena topological term allowed in the field theory, as noted
tion from various directions. A general classification,by Senthil et al. [9]. The possibility of quantum Hall
systematizing earlier discussions [3,5], has been set ostates in superconductors with broken parity and time-
by Altland and Zirnbauer [6], who examined mesoscopicreversal symmetry has been emphasized by Laughlin [13].
normal-superconducting systems as zero-dimensional ré direct transition into such a phase, in the presence of
alizations of some examples. Very recently, quasipartidisorder, is of particular interest in connection with the
cle transport and weak localization have been studied itheory of the quantum Hall effect, since it is between
disordered, gapless superconductors in higher dimensionghases with Hall conductance differing by two units.
with applications to normal-metal/superconductor junc-Changes of Hall conductance by more than one unit at
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a delocalization transition are precluded in generic sys- Both the4 X 4 transfer matrix,T, and the larger ones
tems, by the standard scaling flow diagram [14] for thederived from it, which we denote here also By are in-
integer quantum Hall effect, and are possible in the modeVariant under an antiunitary symmetry operation represent-
we study only because of additional symmetry. In theing spin reversal. The corresponding operatoiQis=
presence of a symmetry-breaking coupling in the modell ® it, - K, where the Pauli matrix, acts on the two
of strengthA, the transition occurs in two stages with a spin states propagating along each lifiks theM; X M,
separation that varies @s? for small A, where¢ =~ 1.3.  unit matrix, andK is complex conjugation. The symme-
Such a coupling is introduced if one treats quasiparticléry, QTQ ! = T, holds forA = 0 only; it implies that the
motion at finite energy. Lyapunov exponents of the transfer matrix product have
The system we consider is formulated as a generak twofold degeneracy at = 0, which we exploit in the
ization of the network model [15] for the quantum Hall analysis of our simulations, as described below.
plateau transition. The original version of this model de- It is possible to relate this network model to a Hamil-
scribes guiding center motion of spin-polarized electrongonian, H, following Ref. [19], by constructing a unitary
within one Landau level of a disordered, two-dimensionalmatrix which can be interpreted as the evolution operator
system in a magnetic field. It therefore has broken timefor the system, for a unit time step. Taking the contin-
reversal symmetry for orbital motion and contains no spiruum limit, one obtains, in the case of the original network
degree of freedom. It is specified in terms of scattering omodel for a spin-polarized Landau level, a two-component
transfer matrices, defined on links and nodes of a latticeDirac Hamiltonian with random mass, scalar potential,
The model can be generalized in various ways. Spin caand vector potential. For the network model of current
be incorporated by allowing two amplitudes to propagaténterest, we get instead a four-component Dirac Hamil-
on each link. This has been done previously [16—18]tonian of the form
with the intention of describing a spin-degenerate Landau
level in which the two spin states are coupled by spin- 7 = (oipx + oepe tmoy) @l +10a-7, (3

orbit scattering. In that case, the random U(1) phaseﬁ/hereai andr; fori = x,y, z are two copies of the Pauli
which characterize propagation on the links of.the Origi'matrices,]l is the2 X 2 unit matrix, p, andp, are the two
nal model are replaced with random U(2) matrices, MiX-components of the momentum operator in the plane of the
ing the two spin states without any rotatlo_nal symmetry.system, the masa is proportional toe, the distance from
In the work presented here, we choose instead randofe critical point, and the real, three-component veaiqr,
SU(2) matrices, preserving spin-rotational symmetry. s 5 random function of position. This Hamiltonian has
In detail, the transfer matrix associated with each linkipo symmetryQHQ ! = —H [20], which is the defining
of the model is an SU(2) spin-rotation matrix of the form taature of the class labeled by Altland and Zirbauer
(VT —x,  —ei®x, [6]. A nonzero value forA in the network model
U= Tz, e T —x ) (1) introduces an additional tern#’ = Aoy, ® 7. into the
) Dirac Hamiltonian, breaking the symmetry. Equally,
where 8, 8,,x are random. The transfer matrix at the since the symmetry relates eigenstates with energiés
nodes is parametrized ey + ;A so that the transmission 4 |eaves invariant only those at enefgy= 0, nonzero
Fl’rObab'“ty for the two spin states id + ex—7(e = g |ike A, acts as a symmetry-breaking perturbation.
2A)]}7!, respectively. The value af determines the Hall  The models represented by Egs. (2) and (3) describe
conductance of the system, as measured at short distanc@gopagation of quasiparticles which are conserved, and
varying e drives the model through the delocalization which are obtained within the Bogoluibov—de Gennes for-
transition. A nonzero value foA breaks spin-rotation malism by making a particle-hole transformation on states
invariance, and will, in fact, change the universality classwith one spin orientation (see, for example, Ref. [6]).
for the transition. Collecting factors, the transfer matrix Specifically, starting from the Bogoluibov—de Gennes
across one node and the links connected to itds>a4  Hamiltonian for a singlet superconductor,

matrix of the form [16] " " bt .
HS == Z[hif(ciTCjT + cilcjl) + AijCichl + AijcjlciT]
T — Uy 0)\/C S\/Us 0 2 I
0 U,/J\S C/J\0 Uy) : :
and introducing transformed operatorg;; = ¢;;1 and

— A 2 Q2 — =
where S =diag(a-,ay), €' -8 =1 —ax= "t _ . oo pag

exd—m(e/2 = A/4)], and U; are as given in Eq. (1).
From thesetl X 4 transfer matricesT’, one can build up a B N A T\YY Yit

larger transfer matrix, of sizeéM; X 2M;, with M, even, Hg = Z(%‘T %‘1)<A’F. _l’l‘T'><')’jl>. (4)

to describe scattering in one slice of a system of width o " Y

links (which hasM = 2M, scattering channels) by using This Hamiltonian, like the SU(2) network model that we
independent realizations @ as diagonal blocks of the simulate, has the symmet@QHsQ ! = —Hj [6], where
larger matrix. hereQ = i7,K andr, acts on the particle-hole spinor of

3517



VOLUME 82, NUMBER 17 PHYSICAL REVIEW LETTERS 26 ARIL 1999

Eq. (4). For singlet pairing (maintaining spin-rotation in- sfooo ocoo

variance);; is symmetric while; ; is Hermitian and the Lot E+ i & 8 @ !
symmetry undeq is obvious; time-reversal symmetry is Lk -

broken ifh # h* or A # A*. Since quasiparticle charge - ¢

in a superconductor is not conserved, and charge respons ® éu/M: o u N

is controlled by the condensate, the localization problem ¢, /2m, o5 |- +

of interest in a disordered superconductor, as emphasize 05| ° o ©

in Ref. [9], involves spin and energy transport, rather than 04 K3 gg o9
charge transport. We stress that the Hall conductance ex 02 L z o ; 3
amined below is a property of quasiparticles described by oo . & . ! .
a Hamiltonian such as Eq. (3). We emphasize also that 0 0.2 04 06 0.8 1

since our identification of the SU(2) network model as a IG. 1. Normalized localization lengtty /M. The symbols
description of a supercond_uctor is _based on symmetry alE’ 4.0, X, and A correspond 1o %ystem]widtw )c/)f 16,
guments rathe_r than_ & MmICroscopic mapping, We expech 4 128, and 256, respectively. The symmetry-breaking
only to determine universal aspects of the plateau transparameter is\ = 2 (region I) orA = 0.2 (region II).

tion from our calculations.

We study the model defined from Eq. (2) at a range offeviation from Kramer's degeneracy of the smallest two
values fore and A. Preliminary calculations, reported Positive Lyapunov exponents,; and A,, of the transfer
earlier [21], were limited toA = 0. We compute the Mmatrix product that represents the sample, defirgng
normalized localization lengttg,, /M;, for strips of width ~ M(A2 — Ay). Finite size scaling of bott¥ and &y is
M = 16,32, 64, with periodic boundary conditions. For shown in Fig. 3 (curves Il and Ill), as a function of
small A we find it necessary also to ugé = 128,256, along the symmetry line = 0. We find for deviations
in order to identify more clearly the critical properties. from Kramers degeneracy = f, (AM,I/“) and for the
The matricedU associated with each link are distributed |pcalization lengthg,, /M = fz(AMll/“), with u ~ 1.45.
with the Haar measure on SU(2). Runs were carried out \ve propose, then, that= A = 0 is a critical point at

for strips of length 60000 (fo# = 16,32), 240000 (for  \hich e parameterizes the symmetry-preserving relevant
M = 64), and 480000 & = 128,256). The errors are djrection, andA is a symmetry-breaking field, so that

typically 0.5%, except foM = 256. £v/M; is described near the fixed point by a two-
The behavior at nonzem is shown in Flg 1. FoA = parameter Scaling function'

2.0, extended statest(;/M; independent of\f) appear /v m

clearly at two energieste., with e.(A = 2) ~ 0.6. A Em/My = f(eM;,AM;"), (5)

one-parameter scaling fit fafy /M = f[(e — €.)M'/"]  wjth » = 1.12 and u ~ 1.45. In the presence of a
yields vy = 2.5, the conventi_onal guantum Hall exponent symmetry-breaking fieldA # 0, scaling flow is away
[16,21,22]. ForA = 0.2, €. is too small to be resolved from the new fixed point, giving quantum Hall plateau
by this method (Fig. 1, region Il). Proceeding in this phases except on trajectories which connect this unstable
way at a range of values fak, we construct the phase fixed point to fixed points at finite\, representing the
diagram for the model shown in Fig. 2. With # 0,  conventional universality class for plateau transitions. At
the two phases a¢ < —1 and e > +1 are separated these, a finite criticak.(A) is expected with an exponent
by an intermediate, smadl, phase. Counting edge states ;) 5o that & ~ [e — e.(A)]*. Since the values of

in each phase in the strong-coupling limé - *o at  ¢p71/» andAM!/# on a critical trajectory serve to define a

fixed A, and A — = at € = 0, respectively), we find one-parameter curve, we expegtA) = =cA#/*. Thus,
that the quasiparticle Hall conductance takes the values

0, 1, and 2 in successive phases with increasiag If

A is made smaller, the boundaries of the intermediate
phase approach each other, andat 0 there is a direct
transition between phases with Hall conductance differing
by two units.

To study this direct transition, we examine behavior
at small A in more detail. On the lineA = 0, the
localization length diverges at a single critical point, 05 1
e, = 0, with an exponenty = 1.12, which is different
from that at the conventional plateau transition (Fig. 3,
curve 1). Close to this line, scaling with system size o s . 5 5 a5 N
is quite complex and, in particular, the variation of A

ému/M with M is not monotonic. In order to extract FiG. 2. Phase diagram. The symbols indicate fitted posi-
scaling properties at small, nonzefq we monitor the tions of extended states, and the lines are =0.25A'3.

ak i
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a derivation of the SU(2) network model from a theory of
edge states for @,.—,» + id,, superconductor. In the
other, Ref. [24], the SU(2) network model is mapped onto
the two-dimensional percolation problem.
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