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We study a delocalization transition for noninteracting quasiparticles moving in two dimensi
which belongs to a new symmetry class. This symmetry class can be realized in a dirty, ga
superconductor in which time-reversal symmetry for orbital motion is broken, but spin-rota
symmetry is intact. We find a direct transition between two insulating phases with quantized
conductances of zero and two for the conserved quasiparticles. The energy of the quasiparticle
as a relevant symmetry-breaking field at the critical point, which splits the direct transition into
conventional plateau transitions. [S0031-9007(99)09003-1]
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The variety of universality classes possible in sing
particle models of disordered conductors is now app
ciated to be quite rich. Three of these classes w
identified early in the development of weak localizatio
theory [1]: they are distinguished by the behavior
the system under time reversal, by its spin properti
and are termed orthogonal, unitary, and symplectic,
analogy with Dyson’s classification of random matrice e
sembles. Further alternatives can arise by two differ
mechanisms. First, in certain contexts, most notably
integer quantum Hall effect, the nonlinears model de-
scribing a two-dimensional system may admit a topolo
cal term [2], which results in the existence of extend
states at isolated energies in an otherwise localized s
trum. Physically, such systems have more than one
tinct insulating phase, each characterized by its num
of edge states and separated from other phases by del
ization transitions. Second, it may happen that the Ham
tonian has an additional, discrete symmetry, absent fr
Dyson’s classification. This is the case in two-sublatt
models for localization, if the Hamiltonian has no matr
elements connecting states that belong to the same su
tice [3,4]. It is also true of the Bogoliubov–de Genn
formalism for quasiparticles in a superconductor with d
order [5,6]. One consequence of this extra symmetry
that, at a delocalization transition, critical behavior c
appear not only in two-particle properties such as the c
ductivity, but also in single-particle quantities, such as t
density of states.

Universality classes in systems with extra discrete sy
metries of this kind have attracted considerable att
tion from various directions. A general classificatio
systematizing earlier discussions [3,5], has been set
by Altland and Zirnbauer [6], who examined mesoscop
normal-superconducting systems as zero-dimensiona
alizations of some examples. Very recently, quasipa
cle transport and weak localization have been studied
disordered, gapless superconductors in higher dimensi
with applications to normal-metal/superconductor jun
0031-9007y99y82(17)y3516(4)$15.00
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tions and to thermal and spin conductivity in high tem
perature superconductors [7–10]. Separately, the beh
ior of massless Dirac fermions in two space dimension
scattered by particle-hole symmetric disorder in the for
of a random vector potential, has been investigated inte
sively [11] as a tractable example of a disordered critic
point. And much before this, the one-dimensional tig
binding model with random nearest-neighbor hopping w
shown [12] to have a delocalization transition and dive
gent density of states at the band center, the energy inv
ant under the sublattice symmetry.

In this paper, we study a new delocalization trans
tion in two dimensions that combines both of the abov
features: the transition separates phases with differ
quantized Hall conductances for the quasiparticles, a
it occurs in a system which has a discrete microscop
symmetry. This transition can take place in a gapless
perconductor under appropriate conditions: time-rever
invariance for orbital motion must be broken by an ap
plied magnetic field, but the Zeeman coupling should
negligible, so that the full spin-rotation invariance remain
intact. A candidate system is a granular superconduc
film in a magnetic field which frustrates the Jospehso
coupling between the grains, so that the order parame
is spatially random [6]. Another is a dirty superconducto
in which the order parameter hasdx22y2 1 idxy symme-
try [13]. Formally, we suggest that the model whose b
havior we examine numerically is a representative of t
symmetry class labeledC by Altland and Zirnbauer [6],
and that the delocalization transition is associated w
a topological term allowed in the field theory, as note
by Senthil et al. [9]. The possibility of quantum Hall
states in superconductors with broken parity and tim
reversal symmetry has been emphasized by Laughlin [1
A direct transition into such a phase, in the presence
disorder, is of particular interest in connection with th
theory of the quantum Hall effect, since it is betwee
phases with Hall conductance differing by two units
Changes of Hall conductance by more than one unit
© 1999 The American Physical Society
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a delocalization transition are precluded in generic sy
tems, by the standard scaling flow diagram [14] for th
integer quantum Hall effect, and are possible in the mod
we study only because of additional symmetry. In th
presence of a symmetry-breaking coupling in the mod
of strengthD, the transition occurs in two stages with
separation that varies asDf for smallD, wheref ø 1.3.
Such a coupling is introduced if one treats quasipartic
motion at finite energy.

The system we consider is formulated as a gener
ization of the network model [15] for the quantum Ha
plateau transition. The original version of this model d
scribes guiding center motion of spin-polarized electro
within one Landau level of a disordered, two-dimension
system in a magnetic field. It therefore has broken tim
reversal symmetry for orbital motion and contains no sp
degree of freedom. It is specified in terms of scattering
transfer matrices, defined on links and nodes of a lattic
The model can be generalized in various ways. Spin c
be incorporated by allowing two amplitudes to propaga
on each link. This has been done previously [16–18
with the intention of describing a spin-degenerate Land
level in which the two spin states are coupled by spi
orbit scattering. In that case, the random U(1) phas
which characterize propagation on the links of the orig
nal model are replaced with random U(2) matrices, mi
ing the two spin states without any rotational symmetr
In the work presented here, we choose instead rand
SU(2) matrices, preserving spin-rotational symmetry.

In detail, the transfer matrix associated with each lin
of the model is an SU(2) spin-rotation matrix of the form

U ­

√
eid1

p
1 2 x, 2eid2

p
x ,

e2id2
p

x, e2id1
p

1 2 x

!
, (1)

where d1, d2, x are random. The transfer matrix at th
nodes is parametrized bye 6

1
2 D so that the transmission

probability for the two spin states ish1 1 expf2pse 6
1
2 Ddgj21, respectively. The value ofe determines the Hall
conductance of the system, as measured at short distan
varying e drives the model through the delocalizatio
transition. A nonzero value forD breaks spin-rotation
invariance, and will, in fact, change the universality cla
for the transition. Collecting factors, the transfer matr
across one node and the links connected to it is a4 3 4
matrix of the form [16]

T ­

µ
U1 0
0 U2

∂ µ
C S
S C

∂ µ
U3 0
0 U4

∂
, (2)

where S ­ diag sa2, a1d, C2 2 S2 ­ 1, a6 ­
expf2psey2 6 Dy4dg, and Ui are as given in Eq. (1).
From these4 3 4 transfer matrices,T, one can build up a
larger transfer matrix, of size2Ml 3 2Ml , with Ml even,
to describe scattering in one slice of a system of widthMl

links (which hasM ; 2Ml scattering channels) by using
independent realizations ofT as diagonal blocks of the
larger matrix.
s-
e
el
e
el,
a

le

al-
ll
e-
ns
al
e-
in
or
e.
an
te
],

au
n-
es
i-
x-
y.
om

k

e

ces:
n

ss
ix

Both the4 3 4 transfer matrix,T, and the larger ones
derived from it, which we denote here also byT, are in-
variant under an antiunitary symmetry operation represe
ing spin reversal. The corresponding operator isQ ­
' ≠ ity ? K, where the Pauli matrixty acts on the two
spin states propagating along each link,' is theMl 3 Ml

unit matrix, andK is complex conjugation. The symme
try, QTQ21 ­ T, holds forD ­ 0 only; it implies that the
Lyapunov exponents of the transfer matrix product ha
a twofold degeneracy atD ­ 0, which we exploit in the
analysis of our simulations, as described below.

It is possible to relate this network model to a Hami
tonian,H, following Ref. [19], by constructing a unitary
matrix which can be interpreted as the evolution opera
for the system, for a unit time step. Taking the contin
uum limit, one obtains, in the case of the original netwo
model for a spin-polarized Landau level, a two-compone
Dirac Hamiltonian with random mass, scalar potentia
and vector potential. For the network model of curre
interest, we get instead a four-component Dirac Ham
tonian of the form

H ­ ssxpx 1 szpz 1 msyd ≠ ' 1 ' ≠ a ? t , (3)

wheresi andti for i ­ x, y, z are two copies of the Pauli
matrices,' is the2 3 2 unit matrix,px andpz are the two
components of the momentum operator in the plane of t
system, the massm is proportional toe, the distance from
the critical point, and the real, three-component vector,a,
is a random function of position. This Hamiltonian ha
the symmetryQHQ21 ­ 2H [20], which is the defining
feature of the class labeledC by Altland and Zirnbauer
[6]. A nonzero value forD in the network model
introduces an additional term,H 0 ­ Dsy ≠ tz into the
Dirac Hamiltonian, breaking the symmetry. Equally
since the symmetry relates eigenstates with energies6E,
and leaves invariant only those at energyE ­ 0, nonzero
E, like D, acts as a symmetry-breaking perturbation.

The models represented by Eqs. (2) and (3) descr
propagation of quasiparticles which are conserved, a
which are obtained within the Bogoluibov–de Gennes fo
malism by making a particle-hole transformation on stat
with one spin orientation (see, for example, Ref. [6]
Specifically, starting from the Bogoluibov–de Genne
Hamiltonian for a singlet superconductor,

HS ­
X
ij

fhijscy
i"cj" 1 c

y
i#cj#d 1 Dijc

y
i"c

y
j# 1 Dp

ijcj#ci"g

and introducing transformed operators,gi" ­ ci" and
g

y
i# ­ ci#, one has

HS ­
X
ij

s g
y
i" g

y
i# d

µ
hij Dij

D
p
i,j 2hT

ij

∂ µ
gj"

gj#

∂
. (4)

This Hamiltonian, like the SU(2) network model that w
simulate, has the symmetryQHSQ21 ­ 2HS [6], where
hereQ ­ ityK andty acts on the particle-hole spinor o
3517
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Eq. (4). For singlet pairing (maintaining spin-rotation in
variance)Dij is symmetric whilehi,j is Hermitian and the
symmetry underQ is obvious; time-reversal symmetry is
broken if h fi hp or D fi Dp. Since quasiparticle charge
in a superconductor is not conserved, and charge respo
is controlled by the condensate, the localization proble
of interest in a disordered superconductor, as emphasi
in Ref. [9], involves spin and energy transport, rather th
charge transport. We stress that the Hall conductance
amined below is a property of quasiparticles described
a Hamiltonian such as Eq. (3). We emphasize also t
since our identification of the SU(2) network model as
description of a superconductor is based on symmetry
guments rather than a microscopic mapping, we exp
only to determine universal aspects of the plateau tran
tion from our calculations.

We study the model defined from Eq. (2) at a range
values fore and D. Preliminary calculations, reported
earlier [21], were limited toD ­ 0. We compute the
normalized localization length,jMyMl , for strips of width
M ­ 16, 32, 64, with periodic boundary conditions. Fo
small D we find it necessary also to useM ­ 128, 256,
in order to identify more clearly the critical properties
The matricesU associated with each link are distribute
with the Haar measure on SU(2). Runs were carried o
for strips of length 60 000 (forM ­ 16, 32), 240 000 (for
M ­ 64), and 480 000 (M ­ 128, 256). The errors are
typically 0.5%, except forM ­ 256.

The behavior at nonzeroD is shown in Fig. 1. ForD ­
2.0, extended states (jMyMl independent ofM) appear
clearly at two energies,6ec, with ecsD ­ 2d ø 0.6. A
one-parameter scaling fit forjMyM ­ ffse 2 ecdM1yn0 g
yieldsn0 ø 2.5, the conventional quantum Hall exponen
[16,21,22]. ForD ­ 0.2, ec is too small to be resolved
by this method (Fig. 1, region II). Proceeding in thi
way at a range of values forD, we construct the phase
diagram for the model shown in Fig. 2. WithD fi 0,
the two phases ate ø 21 and e ¿ 11 are separated
by an intermediate, smalle, phase. Counting edge state
in each phase in the strong-coupling limit (e ! 6` at
fixed D, and D ! ` at e ­ 0, respectively), we find
that the quasiparticle Hall conductance takes the valu
0, 1, and 2 in successive phases with increasinge. If
D is made smaller, the boundaries of the intermedia
phase approach each other, and atD ­ 0 there is a direct
transition between phases with Hall conductance differi
by two units.

To study this direct transition, we examine behavi
at small D in more detail. On the lineD ­ 0, the
localization length diverges at a single critical poin
ec ­ 0, with an exponent,n ­ 1.12, which is different
from that at the conventional plateau transition (Fig.
curve I). Close to this line, scaling with system siz
is quite complex and, in particular, the variation o
jMyM with M is not monotonic. In order to extrac
scaling properties at small, nonzeroD, we monitor the
3518
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FIG. 1. Normalized localization lengthjMyMl . The symbols
e, 1, h, 3, and n correspond to system widthsM of 16,
32, 64, 128, and 256, respectively. The symmetry-breaking
parameter isD ­ 2 (region I) orD ­ 0.2 (region II).

deviation from Kramer’s degeneracy of the smallest tw
positive Lyapunov exponents,l1 and l2, of the transfer
matrix product that represents the sample, definingj̄ ­
Msl2 2 l1d. Finite size scaling of both̄j and jM is
shown in Fig. 3 (curves II and III), as a function ofD

along the symmetry linee ­ 0. We find for deviations
from Kramers degeneracȳj ­ f1sDM

1ym

l d and for the
localization lengthjMyM ­ f2sDM

1ym

l d, with m ø 1.45.
We propose, then, thate ­ D ­ 0 is a critical point at

which e parameterizes the symmetry-preserving releva
direction, andD is a symmetry-breaking field, so that
jMyMl is described near the fixed point by a two
parameter scaling function,

jMyMl ­ fseM
1yn
l , DM

1ym

l d , (5)

with n ­ 1.12 and m ø 1.45. In the presence of a
symmetry-breaking field,D fi 0, scaling flow is away
from the new fixed point, giving quantum Hall plateau
phases except on trajectories which connect this unsta
fixed point to fixed points at finiteD, representing the
conventional universality class for plateau transitions. A
these, a finite criticalecsDd is expected with an exponent
n0, so that j , fe 2 ecsDdg2n0 . Since the values of
eM1yn andDM1ym on a critical trajectory serve to define a
one-parameter curve, we expectecsDd ­ 6cDmyn . Thus,

FIG. 2. Phase diagram. The1 symbols indicate fitted posi-
tions of extended states, and the lines aree ­ 60.25D1.3.
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FIG. 3. Scaling functions: (I) Normalized localization length
jMyMl as a function ofeM1yn with n ­ 1.12 for D ­ 0.
(II) Deviation from Kramer’s degeneracȳj as a function of
DM1ym with m ­ 1.45 for e ­ 0. (III) jMyMl as a function
of DM1ym with m ­ 1.45 for e ­ 0. Symbols denote system
widths as in Fig. 1.

asD approaches zero, extended states coalesce, havin
separation,2ec ~ D1.3 (the line in Fig. 2), which is much
smaller thanD, their separation in the absence of couplin
between the two spin orientations.

A further aspect of the critical point which is of interest
but not accessible within our numerical approach, is th
behavior of single-particle quantities such as the dens
of states, discussed recently in Ref. [23]. We expect f
the Hamiltonian of Eq. (3) a finite density of states at a
energies providedD fi 0, and singularities in the density
of states at zero energy whenD ­ 0, with a different
nature according to whethere ­ 0 or e fi 0.

In conclusion, we have shown that quantum Ha
plateau transitions belonging to a new universality cla
occur in a model for a gapless superconductor which
invariant under spin rotations, but which has time-revers
symmetry broken for orbital motion. In contrast to th
conventional plateau transition, the Hall conductance f
conserved quasiparticles changes at this transition by t
units. We have examined critical behavior, and show
that there is a symmetry-breaking perturbation which
relevant at the critical point, splitting the transition into
two, with extended states that coalesce as the symme
breaking field is removed.
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Note added.—Since submission of this paper, two
replated preprints have appeared. One, Ref. [23], includ
g a
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a derivation of the SU(2) network model from a theory o
edge states for adx22y2 1 idxy superconductor. In the
other, Ref. [24], the SU(2) network model is mapped ont
the two-dimensional percolation problem.
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