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Electronic Correlations in Transport through Coupled Quantum Dots
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The conductance through two quantum dots in series is studied using general qualitative arguments
and quantitative slave-boson mean-field theory. It is demonstrated that measurements of the
conductance can explore the phase diagram of the two-impurity Anderson model. Competition between
the Kondo effect and the interdot magnetic exchange leads to a two-plateau structure in the conductance
as a function to the gate voltage and a two or three peak structure in the conductance versus interdot
tunneling. [S0031-9007(99)09017-1]

PACS numbers: 73.40.Gk, 72.15.Qm, 73.23.Hk

The recent observation of the Kondo effect in trans-double-dot system can contain zero, one, or two electrons,
port through a quantum dot [1-3] opened a new path fodepending on the chemical potentiai = 0 for u <
the investigations of strongly correlated electrons. Have_, N =1 fore- < u < ey, andN =2 for u > €4,
ing confirmed earlier theoretical predictions [4,5] that awith e+ = ey = vVA€2 + 2. In the presence of a finite
quantum dot behaves as a magnetic impurity, these exantiferromagnetic spin exchangebetween the dots, one
periments also serve as a critical quantitative test for exstill has the three possibilities with, replaced bye; —
isting theories. In particular, unlike magnetic impurities3J/4 [14]. In the Coulomb blockade regime there will be
in metals which have physical properties determined bywo peaks in the conductance versus chemical potential
the host metal and the impurity atom, the correspondingt the degeneracy poinjs = e+. Alternatively, starting
parameters in the quantum dot case can be varied continfrom the N = 2 regime forr = 0, e; will increase with
ously, enabling, for example, a crossover from the Kondancreasing, until it crosses the chemical potential and the
to the mixed-valence and the empty dot regimes in the
same sample [1,2].

The behavior of a lattice of magnetic impurities,
such as a heavy-fermion system, is characterized by th
competition between the Kondo effect and the magnetic ~
correlations between the impurities. An important step«g
towards the understanding of this problem was taken by =
Jones and collaborators [6], who studied the two-impurity '@ 4 |
problem. Their work demonstrated that this competition
leads to a second-order phase transition when particle &
hole symmetry applies. When this symmetry is broken,
this transition is replaced by a crossover [7—-9]. In view of
the extensive experimental research on transport throug
two dots in series [10,11], it is thus natural to try and
understand how this phase transition is manifested in the
double-dot system, both because such systems may ha
important applications (such as a quantum-dot laser [12] 0.0
and because such a tunable system may reveal detaile 0 2 4 YT 6 8 10
information on the corresponding phase diagram.

Transport through a double-dot system (see inset oflG. 1. Plot of the conductance vs the tunneling between the

. . . . _dots, ¢, obtained by slave-boson mean-field theory. Because
Fig. 1) has already received much theoretical attention f the Kondo effect in the two-electron regimi&/ = 2) the

in particular in the high temperature, Coulomb blockadeq;onductance has a peakat= I'. As  increases beyond, ,
regime [12,13]. In experiments the Coulomb chargingthe Kondo effect is quenched, until the ground state contains a
energy and the excitation energy are much larger thagingle electror(N = 1), leading to a different Kondo state and
temperature. Accordingly, only a single state on eactn enhanced conductance. For finite antiferromagnetic coupling

o i -T2 0 i
dot is important, and double occupancy of each dot cad (finite @ = I"/UT%), the conductance peak is pushed to
smaller values ofr and becomes narrower, as the singlet

be ignored. Denoting the energies of _these states b%rmation destroys the Kondo state. In addition, a second
€1 = € + Ae ande; = €y — Ag, respectively, and the maximum in the conductance in thé = 2 regime emerges.
tunneling amplitude between the dots bythe isolated Inset: The double-dot system discussed in this paper.
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ground state will have a single electron in the double-do{NRG)] [6,8] have already yielded information on how
system. Again we expect a peak in the conductance dhe phase shiftss,, 6, behave as a function of the
t = t+ corresponding t&+(r+) = w. couplings atT = 0 in this regime. Let us start with the
At low temperatures, in addition to a renormalizationcaseJ = 0. Fort = 0 there is an even-odd symmetry,
of the above energy scales; — €+, andry — 74, the and each channel has its own Kondo effect, leading to
Kondo effect starts to play a significant role in the trans-6. = 6, = 7 /2, and naturally a zero conductance. As
port. The relevance of the Kondo effect in the double-t/I" is increased, the differencé, — 8, increases to
dot system has been studied in [15,16]. Here, we focuseach the valuer /4, at which point the conductance takes
on the competition between the Kondo effect and antiits maximum possible values?/h per spin channel. As
ferromagnetic exchange, and present detailed predictiongI' is further increased, the Kondo effect is gradually
for the conductance. (Recently Andedial. [17] have in-  overcome by potential scattering and one readhes: 0,
vestigated a very different realization of this competition,5, =  in the larget/T" limit (but still with r < 7;). A
which applies to coupledetallic islandsclose to points slave-boson mean-field theory (SBMFT) presented below
of charge degeneracy—i.e., near the Coulomb-blockad&f. also Ref. [16]) yields in this regim&/ = 0,q = 1)
peaks [18].) We find a rich phase diagram leading to in$ = §, — 6, = 2tan !¢/T, leading to
teresting features in the conductance as a function of gate e2 42T
voltage and intradot tunneling. As the corresponding en- A A PR 2)
ergy and temperature scales are experimentally accessible,
these predictions are relevant to transport experiments iyhich reaches its maximum value at= I' (solid curve
double-dot systems. in Fig. 1). The Kondo temperature in this regime is
To simplify notations, we assume in the following Of order Tx = ¢;Tge®/T, where thec’s are weakly
€, = e = e, andV, = Vg =V, whereV, (Vg)is the dependent om/T andTy = We~"%l/T" is the single-dot
coupling to the left (right) lead. Then the eigenstates ofKondo temperature. (The SBMFT yields = cos5/2
the double-dot system are the even and odd states. /&hdc, = §/2.) The crucial content of that formula is
even-odd symmetry is broken anyway by the tunnelinghat the coupled-dot Kondo temperature can rbach
¢, one can show that the above assumptions have littli@rger than the single-dot Kondo temperatui@ small
effect on the underlying physics. Following Ref. [19], the / and larger/T". This has important consequences for the
zero-temperature conductanper spin channethrough observability of the effects described in this paper.
the system can be expressed in terms of the retarded Let us now consider the effect of a finife Fort = 0,
Green functions for the even and odd sta§!(w) the effective two-impurity Kondo model has particle-
_ ot — () (aret( . — M [2 _  hole symmetry, and it is known from the work of [6]
asg = ;17160 = 0) ~ G;(w = O] where I" = that aphase transitionexists at a critical value of the
coupling J./Ty = 22. For J < J., the spin of each
dot undergoes a Kondo effect with the leads ahd=
6, = m/2. ForJ > J., the two spins are locked into
5 a singlet state and the Kondo effect does not apply,
g = € Sirt(s, — 5,). (1) Yielding 6, =0, 5, = 7. The phase-shift differencé
h jumps discontinuously frond = 0forJ < J.t06 = 7
The Friedel sum rule relates the total chargger spin for J > J.. (The conductance is, of course, zero for
channel,on the double-dot system, to these phase shiftsall / sinces = 0). Turning on a small value of/I" is
g = (8. + 8,)/m. There is, however, no individual known to be a “relevant perturbation” on this critical point
relation betweens, and the occupation of the corre- (with dimension%, identical to that of/ — J. [7,8]) and
sponding state. therefore smears the transition into a rapid crossover from
For u > €, (or alternativelyr < 7.),therearev =2 6 =01to 6 = w. ForJ close toJ., this smearing is
electrons in the systeffg = 1), and states wittv = 0 or  described by a crossover scaling function:
N = 1 are high-energy states that can be eliminated from S ((J _ Jc)/TI%>
the Hilbert space. The effective low-energy Hamiltonian — = — |
; ; T t/T
involves only spin degrees of freedom on the dots. It can
be cast into the form of a model bko Kondo impurities, with ¢(x — —©) = 0 and¢(x — +o) = 1. As aresult,
with Kondo couplings to the even and odd combinationghe conductance has a very sharp maximum:tAE
of the conduction electrons in the leads, an interimpuis increased for a fixed value of close toJ.. For
rity magnetic exchangée « ¢?/U, and a potential scat- J significantly larger thar/., the conductance remains
tering term in the lead¥,, such thatv, — V, « tV?/  very small with only a shallow maximum ag/T" is
(e — 12). increased. For intermediate values:gf and J/T2, a
Previous studies of the two-impurity Kondo problem quantitative calculation o6 is needed in order to obtain
[mainly using Wilson numerical renormalization group the conductance, using, e.g., NRG [6,8,20] or SBMFT.

mpV? and p is the density of states in the leads at
the Fermi energy. Defining the correspondsaattering
phase shiftsg, = 7 + argg’'(x) (such thatd, is in
the0—7 range), the conductance formula simplifies to

3)
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However, much can be said on semiquantitative leveéffective Hamiltonian is that of aingle-impurityKondo

by using existing knowledge on the two-impurity Kondo problem in the even parity sector [15], leading to unitary

problem. The phase shif6 is an increasing function scatteringé, = 7 /2. In the odd parity sector, we have

of J, which starts at the value given above Eg. (2),an almost empty resonant level with, = 0 [note that

and increases until it saturates &t= 7 at a scale/*. (8. + 8,)/7 = g = 1/2 consistent with Friedel sum

From the above estimate @ the ratioJ* /Ty increases rule]. Throughout this regime, we therefore expect the

exponentially withz/I". These considerations, and the zero-temperature conductance to be maximum ¢?/h

knowledge of the crossover arounfl [Eq. (3)], lead and essentially independent of In this regime, the

to a qualitative contour plot of the conductance in theinterdot exchangéd plays little role.

(J/T2,¢/T) parameter space, through tNe= 2 regime, Similar interesting behavior is expected as a function

as displayed in Fig. 2. of gate voltage that controls the depth of the level energy
In practice, the exchangé is not an independent ¢, with respect to the chemical potential (see Fig. 3). For

parameter, but is a function of the interdot tunneliigr ~ a very deep level the Kondo temperature is exponentially

t*/U. The contour plot above must thus be intersected bgmall, and thusI/T,(?) is large and quenches the Kondo
acurvel /Ty = a(t/T)?, witha = I'2/UTg, inorderto  effect. Ase, increases, the Kondo temperature increases
follow the dependence of the conductance as a function agfnd we enter the N = 2) Kondo state, and a finite
t/T. SinceTy is a very sensitive function of the energy conductance. This conductance remains constant (at zero
scales (such ag, and I'), the control parametes can  temperature) at a valusmaller thane?/k, determined by
be varied continuously over many orders of magnitudethe value oft, until €, crosses the Fermi energy and a new
allowing an experimental investigation of most of the (N = 1) Kondo state is formed. There the conductance
phase diagram. Thus, as a functionrofthe maximum is given by its maximum values?/h per spin. Ase is
conductance?/h is reached for = I' with a peak width  further increased the double-dot system becomes empty
At « I" for small a, while the peak is pushed down and the conductance drops to zero.
to much lower transmission = I'/\/a and becomes  To substantiate these semiquantitative arguments we
very narrowAr = I'/a for large «. In addition, as the have performed a quantitative calculation of the phase
saturation scale/* increases exponentially with, one  shifts and the conductance using a slave-boson mean-
may expect, for an intermediate (middle broken curve field approximation. This method becomes exact as the
in Fig. 2), an additional peak in the conductance versus number of spin degrees of freedom goes to infinity, and
inthe N = 2 regime. These results are indeed confirmechas been previously used in order to study the two-
by the SBMFT calculation (see Fig. 1). impurity Anderson model in Ref. [7]. It was recently
As ¢ is further increased: > 7+), the equilibrium applied in the present context in Ref. [16] but only in
charge decreases ™ = 1 (¢ = 1/2). In this regime the

1.0

¢T /

o
o
T

o
o
T

(Kondo)

1
FS

I
o
T

N=2
singlet

conductance per spin (e2/h)

2
(e;—m/T

————

0.0 :
= -6 )

T/ Ty J /T,
FIG. 3. Plot of the conductance versus the level energy, as
FIG. 2. Schematic contour map of the conductance in thebtained from SBMFT (fort =2 and U/T = 10%). The
N = 2 regime. Thicker lines denote higher conductance, theconductance rises from a very small value (the singlet regime,
thickest one corresponding o= ¢?/h. The broken lines are J > Ty), to a r-dependent value M\ = 2 Kondo regime,
three physical contours (for different values @f= I'2/UTY) J < Tk), and then tqg = ¢2/h (N = 1 Kondo regime) before
along whichJ ~ ¢2/U. dropping to zero for an empty dot.
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the caseJ = 0. We have solved numerically the full
set of equations including the tunnelingand exchange
J, but we quote here only the simplified version of the
equations [7] that hold in thg = 1 regime (one electron
in the double-dot system per spin state, corresponding td®
N =2). For small enough values of/T¢, the phase-
shift differenced is given by the solution of

27 i gin® _ s ) = L
5 e Sln2 T 0052 = Tl(g .

[5]

@) [7]

As J is increased beyond a critical coupling’®, &
reaches the value: This is either a smooth transition for
t > 1/7 or a first-order jump for < 1/7 (determined
by free-energy considerations). The existence of a phasefg]
transition even for nonzero values ofI" is an artifact

of the SBMFT approximation7S® should actually be
interpreted as an estimate of the saturation scele 1o
discussed above. This spurious transition does not affect
qualitatively the behavior of the conductance, except
when it becomes very small: there a strictly zero value

of g can be found (as evident on Fig. 1), whereas the
real system would have only a very small but finite

The SBMFT also provides a quantitative estimate of thd1l]
Kondo scale for the coupled-dot system in the= 1
regime, as mentioned after Eq. (2). 12]

In conclusion, we have demonstrated that measuré—
ments of the conductance through a double-dot system c i3]
explore the phase diagram of the two-impurity Anderson
model. By changing the control parameter= I'2/UTy
(which depends sensitively on the gate voltage), one can
make various cuts through the phase diagram (Fig. 2),
leading to nontrivial features in the conductance vs gate
voltage and interdot tunneling (Figs. 1 and 3). As the
relevant temperature scale can be much higher than the
single-dot Kondo temperature we believe that these pre-
dictions could be tested experimentally.
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