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Electronic Correlations in Transport through Coupled Quantum Dots
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The conductance through two quantum dots in series is studied using general qualitative arguments
and quantitative slave-boson mean-field theory. It is demonstrated that measurements of the
conductance can explore the phase diagram of the two-impurity Anderson model. Competition between
the Kondo effect and the interdot magnetic exchange leads to a two-plateau structure in the conductance
as a function to the gate voltage and a two or three peak structure in the conductance versus interdot
tunneling. [S0031-9007(99)09017-1]
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The recent observation of the Kondo effect in trans
port through a quantum dot [1–3] opened a new path f
the investigations of strongly correlated electrons. Ha
ing confirmed earlier theoretical predictions [4,5] that
quantum dot behaves as a magnetic impurity, these
periments also serve as a critical quantitative test for e
isting theories. In particular, unlike magnetic impuritie
in metals which have physical properties determined b
the host metal and the impurity atom, the correspondi
parameters in the quantum dot case can be varied conti
ously, enabling, for example, a crossover from the Kond
to the mixed-valence and the empty dot regimes in th
same sample [1,2].

The behavior of a lattice of magnetic impurities
such as a heavy-fermion system, is characterized by
competition between the Kondo effect and the magne
correlations between the impurities. An important ste
towards the understanding of this problem was taken
Jones and collaborators [6], who studied the two-impuri
problem. Their work demonstrated that this competitio
leads to a second-order phase transition when partic
hole symmetry applies. When this symmetry is broke
this transition is replaced by a crossover [7–9]. In view o
the extensive experimental research on transport throu
two dots in series [10,11], it is thus natural to try an
understand how this phase transition is manifested in t
double-dot system, both because such systems may h
important applications (such as a quantum-dot laser [12
and because such a tunable system may reveal deta
information on the corresponding phase diagram.

Transport through a double-dot system (see inset
Fig. 1) has already received much theoretical attentio
in particular in the high temperature, Coulomb blockade
regime [12,13]. In experiments the Coulomb chargin
energy and the excitation energy are much larger th
temperature. Accordingly, only a single state on eac
dot is important, and double occupancy of each dot c
be ignored. Denoting the energies of these states
e1 ; e0 1 De ande2 ; e0 2 De, respectively, and the
tunneling amplitude between the dots byt, the isolated
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double-dot system can contain zero, one, or two electron
depending on the chemical potential:N ­ 0 for m ,

e2, N ­ 1 for e2 , m , e1, andN ­ 2 for m . e1,
with e6 ­ e0 6

p
De2 1 t2. In the presence of a finite

antiferromagnetic spin exchangeJ between the dots, one
still has the three possibilities withe1 replaced bye1 2

3Jy4 [14]. In the Coulomb blockade regime there will be
two peaks in the conductance versus chemical potenti
at the degeneracy pointsm ­ e6. Alternatively, starting
from theN ­ 2 regime fort ­ 0, e1 will increase with
increasingt, until it crosses the chemical potential and the

FIG. 1. Plot of the conductance vs the tunneling between th
dots, t, obtained by slave-boson mean-field theory. Becaus
of the Kondo effect in the two-electron regimesN ­ 2d the
conductance has a peak att ­ G. As t increases beyondt1,
the Kondo effect is quenched, until the ground state contains
single electronsN ­ 1d, leading to a different Kondo state and
an enhanced conductance. For finite antiferromagnetic couplin
J (finite a ­ G2yUT 0

K ), the conductance peak is pushed to
smaller values oft and becomes narrower, as the singlet
formation destroys the Kondo state. In addition, a secon
maximum in the conductance in theN ­ 2 regime emerges.
Inset: The double-dot system discussed in this paper.
© 1999 The American Physical Society
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ground state will have a single electron in the double-d
system. Again we expect a peak in the conductance
t ­ t1 corresponding toe1st1d ­ m.

At low temperatures, in addition to a renormalizatio
of the above energy scales,e6 ! e6, and t1 ! t1, the
Kondo effect starts to play a significant role in the tran
port. The relevance of the Kondo effect in the doubl
dot system has been studied in [15,16]. Here, we foc
on the competition between the Kondo effect and an
ferromagnetic exchange, and present detailed predicti
for the conductance. (Recently Andreiet al. [17] have in-
vestigated a very different realization of this competitio
which applies to coupledmetallic islands,close to points
of charge degeneracy—i.e., near the Coulomb-blocka
peaks [18].) We find a rich phase diagram leading to i
teresting features in the conductance as a function of g
voltage and intradot tunneling. As the corresponding e
ergy and temperature scales are experimentally access
these predictions are relevant to transport experiments
double-dot systems.

To simplify notations, we assume in the following
e1 ­ e2 ­ e0 and VL ­ VR ­ V , whereVL sVRd is the
coupling to the left (right) lead. Then the eigenstates
the double-dot system are the even and odd states.
even-odd symmetry is broken anyway by the tunnelin
t, one can show that the above assumptions have li
effect on the underlying physics. Following Ref. [19], th
zero-temperature conductanceper spin channelthrough
the system can be expressed in terms of the retard
Green functions for the even and odd statesG ret

e,osvd
as g ­ e2

h G2jG ret
e sv ­ 0d 2 G ret

o sv ­ 0dj2 where G ;
prV 2 and r is the density of states in the leads a
the Fermi energy. Defining the correspondingscattering
phase shifts,da ; p 1 argG ret

a smd (such thatda is in
the0 p range), the conductance formula simplifies to

g ­
e2

h
sin2sde 2 dod . (1)

The Friedel sum rule relates the total chargeq per spin
channel,on the double-dot system, to these phase shif
q ­ sde 1 dodyp. There is, however, no individual
relation betweenda and the occupation of the corre
sponding state.

For m . e1 (or alternativelyt , t1), there areN ­ 2
electrons in the systemsq ­ 1d, and states withN ­ 0 or
N ­ 1 are high-energy states that can be eliminated fro
the Hilbert space. The effective low-energy Hamiltonia
involves only spin degrees of freedom on the dots. It c
be cast into the form of a model oftwo Kondo impurities,
with Kondo couplings to the even and odd combination
of the conduction electrons in the leads, an interimp
rity magnetic exchangeJ ~ t2yU, and a potential scat-
tering term in the leadsVe,o such thatVe 2 Vo ~ tV 2y
se2

0 2 t2d.
Previous studies of the two-impurity Kondo problem

[mainly using Wilson numerical renormalization grou
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(NRG)] [6,8] have already yielded information on how
the phase shiftsde, do behave as a function of the
couplings atT ­ 0 in this regime. Let us start with the
caseJ ­ 0. For t ­ 0 there is an even-odd symmetry
and each channel has its own Kondo effect, leading
de ­ do ­ py2, and naturally a zero conductance. A
tyG is increased, the differencede 2 do increases to
reach the valuepy4, at which point the conductance take
its maximum possible value:e2yh per spin channel. As
tyG is further increased, the Kondo effect is gradual
overcome by potential scattering and one reachesdo . 0,
de . p in the largetyG limit (but still with t ø t1). A
slave-boson mean-field theory (SBMFT) presented belo
(cf. also Ref. [16]) yields in this regimesJ ­ 0, q . 1d
d ; de 2 do ­ 2 tan21tyG, leading to

g ­
e2

h
4t2G2

st2 1 G2d2 , (2)

which reaches its maximum value att ­ G (solid curve
in Fig. 1). The Kondo temperature in this regime i
of order TK ­ c1T0

Kec2tyG, where thec’s are weakly
dependent ontyG andT0

K ; We2pje0jyG is the single-dot
Kondo temperature. (The SBMFT yieldsc1 ­ cosdy2
and c2 ­ dy2.) The crucial content of that formula is
that the coupled-dot Kondo temperature can bemuch
larger than the single-dot Kondo temperaturefor small
J and largetyG. This has important consequences for th
observability of the effects described in this paper.

Let us now consider the effect of a finiteJ. For t ­ 0,
the effective two-impurity Kondo model has particle
hole symmetry, and it is known from the work of [6
that a phase transitionexists at a critical value of the
coupling JcyT0

K . 2.2. For J , Jc, the spin of each
dot undergoes a Kondo effect with the leads andde ­
do ­ py2. For J . Jc, the two spins are locked into
a singlet state and the Kondo effect does not app
yielding do ­ 0, de ­ p. The phase-shift differenced
jumps discontinuously fromd ­ 0 for J , Jc to d ­ p

for J . Jc. (The conductance is, of course, zero fo
all J since t ­ 0). Turning on a small value oftyG is
known to be a “relevant perturbation” on this critical poin
(with dimension1

2 , identical to that ofJ 2 Jc [7,8]) and
therefore smears the transition into a rapid crossover fro
d ­ 0 to d ­ p. For J close to Jc, this smearing is
described by a crossover scaling function:

d

p
­ f

√
sJ 2 JcdyT0

K

tyG

!
, (3)

with fsx ! 2`d ­ 0 andfsx ! 1`d ­ 1. As a result,
the conductance has a very sharp maximum astyG

is increased for a fixed value ofJ close to Jc. For
J significantly larger thanJc, the conductance remains
very small with only a shallow maximum astyG is
increased. For intermediate values oftyG and JyT0

K , a
quantitative calculation ofd is needed in order to obtain
the conductance, using, e.g., NRG [6,8,20] or SBMF
3509
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However, much can be said on semiquantitative lev
by using existing knowledge on the two-impurity Kondo
problem. The phase shiftd is an increasing function
of J, which starts at the value given above Eq. (2
and increases until it saturates atd ­ p at a scaleJp.
From the above estimate ofTK the ratioJpyT0

K increases
exponentially withtyG. These considerations, and the
knowledge of the crossover aroundJc [Eq. (3)], lead
to a qualitative contour plot of the conductance in th
sJyT0

K , tyGd parameter space, through theN . 2 regime,
as displayed in Fig. 2.

In practice, the exchangeJ is not an independent
parameter, but is a function of the interdot tunneling,J ,
t2yU. The contour plot above must thus be intersected b
a curveJyT0

K ­ astyGd2, with a ; G2yUT0
K , in order to

follow the dependence of the conductance as a function
tyG. SinceT0

K is a very sensitive function of the energy
scales (such ase0 and G), the control parametera can
be varied continuously over many orders of magnitud
allowing an experimental investigation of most of the
phase diagram. Thus, as a function oft, the maximum
conductancee2yh is reached fort . G with a peak width
Dt ~ G for small a, while the peak is pushed down
to much lower transmissiont . Gy

p
a and becomes

very narrowDt . Gya for large a. In addition, as the
saturation scaleJp increases exponentially witht, one
may expect, for an intermediatea (middle broken curve
in Fig. 2), an additional peak in the conductance versust
in theN ­ 2 regime. These results are indeed confirme
by the SBMFT calculation (see Fig. 1).

As t is further increasedst . t1d, the equilibrium
charge decreases toN ­ 1 sq ­ 1y2d. In this regime the

FIG. 2. Schematic contour map of the conductance in th
N . 2 regime. Thicker lines denote higher conductance, th
thickest one corresponding tog ­ e2yh. The broken lines are
three physical contours (for different values ofa ; G2yUT 0

K )
along whichJ , t2yU.
3510
el

),

e

y

of

e,

d

e
e

effective Hamiltonian is that of asingle-impurityKondo
problem in the even parity sector [15], leading to unitar
scatteringde . py2. In the odd parity sector, we have
an almost empty resonant level withd0 . 0 [note that
sde 1 dodyp ­ q . 1y2 consistent with Friedel sum
rule]. Throughout this regime, we therefore expect th
zero-temperature conductance to be maximumg ­ e2yh
and essentially independent oft. In this regime, the
interdot exchangeJ plays little role.

Similar interesting behavior is expected as a functio
of gate voltage that controls the depth of the level energ
e0 with respect to the chemical potential (see Fig. 3). Fo
a very deep level the Kondo temperature is exponentia
small, and thusJyT

s0d
K is large and quenches the Kondo

effect. Ase0 increases, the Kondo temperature increas
and we enter thesN ­ 2d Kondo state, and a finite
conductance. This conductance remains constant (at z
temperature) at a valuesmaller thane2yh, determined by
the value oft, until e0 crosses the Fermi energy and a new
sN ­ 1d Kondo state is formed. There the conductanc
is given by its maximum value,e2yh per spin. Ase0 is
further increased the double-dot system becomes em
and the conductance drops to zero.

To substantiate these semiquantitative arguments
have performed a quantitative calculation of the pha
shifts and the conductance using a slave-boson me
field approximation. This method becomes exact as t
number of spin degrees of freedom goes to infinity, an
has been previously used in order to study the tw
impurity Anderson model in Ref. [7]. It was recently
applied in the present context in Ref. [16] but only in

FIG. 3. Plot of the conductance versus the level energy,
obtained from SBMFT (fort ­ 2 and UyG ­ 104). The
conductance rises from a very small value (the singlet regim
J ¿ TK ), to a t-dependent value (N ­ 2 Kondo regime,
J ø TK ), and then tog ­ e2yh (N ­ 1 Kondo regime) before
dropping to zero for an empty dot.
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the caseJ ­ 0. We have solved numerically the full
set of equations including the tunnelingt and exchange
J, but we quote here only the simplified version of th
equations [7] that hold in theq ­ 1 regime (one electron
in the double-dot system per spin state, corresponding
N ­ 2). For small enough values ofJyT0

K , the phase-
shift differenced is given by the solution of

2p

d
edty2G

√
sin

d

2
2

t
G

cos
d

2

!
­

J

T0
K

. (4)

As J is increased beyond a critical couplingJSB
c , d

reaches the valuep: This is either a smooth transition for
t . 1yp or a first-order jump fort , 1yp (determined
by free-energy considerations). The existence of a pha
transition even for nonzero values oftyG is an artifact
of the SBMFT approximation:JSB

c should actually be
interpreted as an estimate of the saturation scaleJp

discussed above. This spurious transition does not affe
qualitatively the behavior of the conductance, exce
when it becomes very small: there a strictly zero valu
of g can be found (as evident on Fig. 1), whereas th
real system would have only a very small but finiteg.
The SBMFT also provides a quantitative estimate of th
Kondo scale for the coupled-dot system in theq . 1
regime, as mentioned after Eq. (2).

In conclusion, we have demonstrated that measur
ments of the conductance through a double-dot system c
explore the phase diagram of the two-impurity Anderso
model. By changing the control parametera ­ G2yUT0

K
(which depends sensitively on the gate voltage), one c
make various cuts through the phase diagram (Fig. 2
leading to nontrivial features in the conductance vs ga
voltage and interdot tunneling (Figs. 1 and 3). As th
relevant temperature scale can be much higher than
single-dot Kondo temperature we believe that these pr
dictions could be tested experimentally.
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