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Topological Spin Excitations of Heisenberg Antiferromagnets in Two Dimensions
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We discuss the construction and dynamics of vortexlike topological spin excitations in the Schwinger
boson description of Heisenberg antiferromagnets in two dimensions. The topological spin excitation
are Dirac fermions (with gap) when spin valueS is a half-integer. Experimental and theoretical
implications of these excitations are being investigated. [S0031-9007(99)08982-6]

PACS numbers: 71.10.Fd, 75.10.Jm, 75.40.Gb
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Recently, strong interest has been shown in the study
Heisenberg antiferromagnets on a two-dimensional squ
lattice. Early theoretical analysis showed that the lo
energy, long length scale behavior of the model shou
be described by the renormalized classical regime of t
s2 1 1dd O(3) nonlinear sigma model (NLsM) [1,2].
The analysis was believed to be valid as long as the len
scale under investigation was much larger than latti
spacing. More recently, in a series of experiments [3] a
Monte Carlo simulations [4–6], it was discovered that th
length scale at which the renormalized classicals-model
description becomes valid is surprisingly long (L $ 200
sites for spinS ­ 1y2) [5,6]. A quantum Monte Carlo
study of the low energy spectrum of the model on fini
size lattices also suggested that the spectrum in theS ­
1y2 case disagrees rather strongly with the predictio
of NLsM even when the size of the systemN is
not too smallsN # 32d [7]. These anomalous findings
suggest that contrary to usual beliefs, there may exist
intermediate energy/ length scale where the behavior
the system deviates strongly from NLsM.

On the other hand, it has been shown by Read a
Chakraborty [8] that fermionic spin excitations exist a
topological excitations in the short-ranged resonant v
lence bond (RVB) phase of 2DS ­ 1y2 Heisenberg
model, and their analysis has been generalized [9] to
case (for arbitrary spinS) where the system is described
by a Schwinger-boson mean-field theory (SBMFT) [10
These topological excitations are finite energy excitatio
of 2D Heisenberg antiferromagnets that do not appear
conventional NLsM description. However, the dynamics
of the topological spin excitations were not investigated
those works [8,9].

The purpose of this paper is to investigate, startin
from SBMFT, the dynamics of the topological spin ex
citations constructed in Ref. [9] under some very gene
assumptions. In particular, we shall show that the ex
tence of these topological excitations is consistent with t
recently observed anomalous behaviors in the Heisenb
model. We shall also point out, in the case ofS ­
1y2 Heisenberg antiferromagnet, an interesting connect
between the topological spin excitations and the spin e
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citations in the flux phase [11] of fermionic RVB mean
field theory.

We begin by reviewing briefly the construction of topo
logical spin excitations in SBMFT of the 2D Heisenber
model. Following Ref. [9] we assume that the low
energy physics of general spin-S 2D Heisenberg
model is described by the Schwinger-boson mean-fi
Hamiltonian

HMF ­ 2J
X
i,j

fDpsZi"Zj# 2 Zi#Zj"d

1 H.c. 2 jDj2g 1
X
is

lsZ̄isZis 2 2Sd ,

(1)

whereD sDpd andl are mean-field parameters determine
by the mean-field equationsD ­ ksZi"Zj# 2 Zi#Zj"dl and
kZ̄i"Zi"l 1 kZ̄i#Zi#l ­ 2S. Notice that in two dimensions,
long-ranged antiferromagnetic order exists at zero te
perature corresponding to bose condensationkZl fi 0 in
SBMFT. We shall consider finite temperatureT fi 0 and
kZl ­ 0 in the following. (The effect of Bose condensa
tion will be addressed at the end of this paper.) Noti
that SBMFT offers a fairly accurate description of the lo
energy physics of a Heisenberg model at two dimensio
[10], thus justifying the starting point of our theory.

To look for topological excitations in SBMFT, we no
tice that the structure of the mean-field theory resemb
very much the Bardeen-Cooper-Schrieffer (BCS) theo
for superconductivity, except that the spin pairs of boso
replace the electron (fermion) Cooper pairs in BCS theo
The resemblance of the two theories leads us to studyvor-
tex excitations in SBMFT, since vortices are stable top
logical excitations in BCS theory at two dimensions. I
BCS theory, a vortex located at$r ­ 0 is a solution of
the BCS mean-field equation, where the order parame
DBCSs$rd has a formDBCSs$rd ­ fsrdeiu in a polar co-
ordinate, wherefsrd is real and positive. To minimize
energy, a magnetic flux ofp-flux quanta is trapped in the
vortex core. The vortex solution in SBMFT has the sam
structure, except that the BCS order parameterDBCS is
replaced by the Schwinger-boson order parameterDij and
© 1999 The American Physical Society
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the vector potential$A does not represent the physical mag
netic field, but is a fictitious gauge field arising from phas
fluctuations of order parameterDij [9,12]. The existence
and stability of the vortex solution was demonstrated
Ref. [9] in an effective Ginsburg-Landau theory. Thes
vortex solutions are bosonic,S ­ 0, topological excita-
tions in SBMFT [9].

To construct topologicalspin excitations we note, that
like vortices in superconductors where electronic boun
states often exist inside the vortex core, boson bou
states may exist inside vortices in SBMFT. In particula
we argued in Ref. [9] that, for a vortex centered at
lattice site, a bound state of2S bosons must be formed
at the vortex center because of the constraint that there
always2S bosons per site in the Heisenberg model. I
particular, because of statistics transmutation associa
with binding quantum particles to a flux tube ofp-flux
quantum in two dimensions [13], the resulting excitatio
is a spin-S fermion when2S is odd [9].

We shall now supply the mathematical details. A
important difference between SBMFT and BCS theory
that the mean-field Hamiltonian (1) breaks the translation
symmetry of the Heisenberg model by one lattice sit
Correspondingly, there exist two lattice sites per unit ce
in SBMFT and the fluctuations of the order parameterDij

are described by two amplitude and two phase (unifor
and staggered) fields in the continuum limit [9,12], i.e.,

Di,i6n ­
1
2

∑
f

µ
i 6

n

2

∂
1 q6n

µ
i 6

n

2

∂∏
3 eif

Ri6ny2 $A?d $x1As
6n si6ny2dg, (2)

where q2n ­ 2qn, As
2n ­ 2As

n are “staggered” com-
ponents of the amplitude and phase fluctuations ofD,
respectively.f and

Rx $A ? d $x0 are the corresponding “uni-
form” components. The effective Ginsburg-Landau actio
for the continuum field variables is derived in Ref. [9
(see also Ref. [12]). We obtain to orderOsm0d [m is
the mass gap for spin-wave excitations in SBMFT whic
is very small at low temperaturesm , Je2JSyT d], Seff ­
Su 1 Ss, where

Su ,
Z

dt
Z

d2x

Ω∑
a 2 4

µ
S 1

1
2

∂∏
f 1 f2

1

µ
S 1

1
2

∂
fs≠mu 2 Amd2

æ
,

(3)

Ss ,
Z

dt
Z

d2x

∑µ
1
2

2
b
f

∂
sqmd2 1

1
2e2 F2

mn

1 icFmtqm

∏
,

where e2 , m, a , 4, and b and c are constants of
order O(1). Fmn ­ ≠mAs

n 2 ≠nAs
m anduy2 is the uniform

phase field for the Schwinger bosons. Notice that th
gauge symmetry of the uniform gauge field$A is broken
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by kDijl ­ f fi 0 in SBMFT. The existence of a stable
vortex solution in SBMFT is tied with the$A field as in the
usual superconductors.

To derive vortex dynamics we concentrate atSu and
introduce vortex 3-current$jy in the phase field,≠mu !
≠mu 1 ≠mu0, where u0 is multivalued and jy

m ­
emnl≠n≠lu0 fi 0. In the London limit where we treatf
as constant, a duality transformation can be perform
where we can integrate out theu field to obtain an
effective actionSy for vortices [14],

Sy ­
Z

dt
Z

d2x

"
1

4f
s= 3 $ad2

1 i $a ? s $jy 2 = 3 $Ad

#
1 Ss0d

y ,

(4a)

where= 3 $a , s=u0 2 $Ad and corresponds to the trans
verse part of the supercurrent field in superconducto
Notice that the amplitude fieldf goes to zero at the cen-
ter of the vortex. As a result, there exists an addition
contribution to the vortex action,Ss0d

y , h(energy needed
to create vortex core,ey) 3 (length of vortex trajectory
in space-time)j. For N vortices,

Ss0d
y , ey

NX
i­1

Z
dli ­ ey

NX
i­1

Z
dt

s
1 1

1
c2

y

√
d $xi

dt

!2

,

(4b)

where $xistd represents the trajectory of theith vortex
in Euclidean space-time, andcy is the limiting velocity.
Notice that the suppression of thef field at the vortex
core also couples vortices to the staggered amplitude a
phase fluctuations through the terms2 b

f dq2
m in Ss [9].

We shall first considerSy in the following.
The dynamics of a single vortex can be obtained b

minimizing Ss0d
y at real time. We find thatSs0d

y describes
relativistic particles with energyE ­ gey, where g ­

1y
q

1 2
$y2

c2
y

and $y is the vortex velocity. In the absence

of the= 3 $A term, the particles have “charge” (vorticity)
and interact with each other through an effective U(
gauge field $a. For boson vortices the correspondin
quantum field theory is a relativistic theory of scala
electrodynamics with charged bosons (vortices) [14].
the presence of a trapped magnetic flux inside vortex co
s= 3 $A 2 $jy , 0d, the electric 3-current$jy is screened
and the bosons decoupled from the gauge field$a. The
resulting theory is a relativistic theory of bosons wit
short-ranged interactions, as is the case of vortices
usual superconductors [14].

To derive dynamics for the topological spin excita
tions we assume that, once the boson spins are bo
to the vortex core, their spatial degree of freedom
quenched and the only modifications to the pure vort
action (4a) and (4b) are (1) the vortices now carry spin i
dicesm ­ 2S, 2S 1 1, . . . , S, and there are2S 1 1 spin
3505
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component of vortices, and (2) vortices become ferm
ons when2S is odd. In particular, since the vortex ac
tion (4a) and (4b) is Lorentz invariant, the dynamic
of the topological spin excitations must be described
s2 1 1dd-relativistic field theories of bosons whenS is an
integer and by s2 1 1dd-relativistic field theories of
fermions whenS is half-integer. To proceed further,
we examine more carefully the symmetry constraints
SBMFT. The existence of two lattice sites per unit cell i
SBMFT implies that there are also two quantum fieldscA

s

andcB
s in the continuum theory, representing spin-s vor-

tices centered atA- andB-sublattice sites, respectively [9].
Under reflection or rotation bypy2 around the center of a
square plaquette, theA andB sublattices are interchanged
and, correspondingly, alsocA

s and cB
s . Notice that we

have considered finite temperature wherekZl ­ 0 in our
discussion and, correspondingly, parity (space-time refle
tion) symmetry is unbroken. In order to describe couplin
of the bound boson spins at the vortex center to the fi
titious gauge fields$A and $As, the quantum fieldscA

s and
cB

s must also carry charge and are complex.
With these kinematics constraints, the quantum fie

theories for the topological spin excitations can be d
termined [15]. In the case of integer spins where th
topological spin excitations are bosons, we constru
quantum fieldsc1s2d

s ­ cA
s 6 cB

s which are eigenstates
of py2 rotation and reflection with eigenvalues61. The
dynamics of thec1s2d

s fields are described separately b
relativistic theories of complex scalar fields. In the ca
of half-integer spins where the spin excitations are ferm
ons, the corresponding theory which respects parity is
theory of Dirac fermions ins2 1 1dd [15]. In the fol-
lowing we shall concentrate on the case of half-integ
spin systems.

In this case, the topological spin excitations are Dira
spinors described by four-component spinor fieldcs, with

cssxd ­

√
cA

ssxd
cB

ssxd

!
, cAsBd

s sxd ­

√
c

AsBd
1s sxd

c
AsBd
2s sxd

!
, (5)

wherecAsBd
s ’s are two component fermion fields neede

to describe positive and negative energy solutions of t
Dirac equation. In terms ofcs the effective Lagrangian
which transforms correctly under parity is

Leff ­
X
s

i
2

fc̄sgms≠mcsd 2 s≠mc̄sdgmcsg

2 mc̄scs 2 c̄sgmcsAm , (6)
where gm’s are usual4 3 4 Dirac matrices ins2 1

1dd with m ­ 0, 1, 2. $A is the uniform gauge field.
Notice that the staggered gauge field$As decouples from
the cs field in this level, as can be checked easi
from the transformation ofLeff under staggered gauge
transformationcA

s ! cA
seiu, andcB

s ! cB
se2iu. Notice

also that the spin degrees of freedoms appear asinternal
degrees of freedom for the Dirac fermions.

It is interesting to compare the effective actionLeff with
the flux phase [11] of the fermionic mean-field theory o
3506
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the Heisenberg model in the caseS ­ 1y2. In both cases,
pockets of Dirac fermions describe the fermionic spi
excitations at low energy. The number of species of Dira
fermions are the same in both cases—there are four “ha
pockets” of Dirac fermions at aboutskx , kyd ­ s6 p

2 , 6
p

2 d
in the flux phase, and there are two “full-pockets” of Dira
fermions coming from two independent combinations o
cA

s and cB
s in the present theory. The position of the

“Dirac-pockets” in $k space cannot be determined with
certainty in our effective theory. Nevertheless, to mak
comparison with the flux phase we shall assume th
the fermion pockets in our theory are centered aroun
skx , kyd ­ s6 p

2 , 6
p

2 d. With this assumption the only
difference betweenLeff and the flux phase is that there
is a gapey in the Dirac-fermion spectrum in our theory.
In fact, in the limitey ­ 0, it can be checked directly that
Leff describes the continuum theory for the flux phas
The strong similarity between our effective theory an
flux phase leads us to speculate that the flux phase in f
describes a new spin-disordered phase of 2D Heisenb
antiferromagnets, where antiferromagnetism is destroy
by driving the fermion mass gapey to zero. We shall
discuss this scenario in a future publication.

Next we consider the experimental consequences
the topological spin excitations. We shall first conside
S ­ 1y2 as an example. In terms ofc, the spins carried
by the Dirac fermions in theS ­ 1y2 case are described
by the operators

$SAsBdsxd ­
1
2

X
m,m0

X
k­1,2

f: c
1AsBd
km sxd $smm0c

AsBd
km0 sxd :g ,

(7)

where $SAsxd and $SBsxd are spin operators in theA and
B sublattices, respectively, and$s are Pauli matrices,
m, m0 ­ 6

1
2 . : Ô :­ Ô 2 kÔlG are normal-ordered op-

erators. The uniform and staggered spin operators can
constructed from$SAsBd, where $ms $nd ­ $SA 1 s2d $SB de-
scribes spin fluctuations around momenta$q ­ s0, 0d and
$q ­ sp, pd. Notice that, because of the constraint tha
there is one spin per site in the original Heisenberg mod
the Dirac fermions together with the original boson spin
must satisfy the constraintX

s

"√ X
k­1,2

: c1a
ks sxdca

kssxd :

!
1 Z̄a

s sxdZa
s sxd

#
­ 1 ,

(8)

which introduces additional coupling between boson spi
and topological spin excitations not included inLeff.

Experimentally, the Dirac fermion spectrum can b
observed directly in a neutron scattering experime
at energy v . 2ey. Its contribution to the dynamic
structure factorSs $q, vd at $q , s0, 0d and $q , sp, pd can
be calculated directly using Eqs. (6) and (7). We find th
the contributions are similar toSs $q, vd calculated from
flux phase, except that a gap,2ey is found in the spectral
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function. The existence of a Dirac-fermion spectrum al
affects spin correlation at lower temperatures. To see th
we consider the antiferromagnetic spin-correlation leng
jsT d. In pure SBMFT,jsT d is given at low temperature
by [10]

jsT d ­
p

2
DJ
T

exp

√
2pDJ

T
nB

!
, (9)

where nB is the density of bose-condensed spins
SBMFT atT ­ 0. In the presence of the Dirac-fermion
spectrum, the system gets more disordered atT fi 0
because of the thermal effect associated with the ex
degrees of freedom andjsT d decreases. The effect
can be estimated in a mean-field approximation usi
the constraint (8) [16], where the average number
Schwinger bosons per siteknSBl is given by

knSBl ­ 1 2
X

k­1,2,s

k:c1a
ks ca

ks:l .

It is straightforward to show that, at low temperature
knSBl , 1 2 2 exps2 ey

T d, and the leading correction a
low temperature tojsT d is obtained by replacingnB !
nB 2 2 exps2 ey

T d in Eq. (9). The reduction injsT d
continues untilT , ey, when the number of thermally
excited fermion spin excitations becomes large, and t
spin correlation becomes qualitatively different from th
prediction of SBMFT or NLsM. For general spin value
S, ey , JS2 and the temperature at which the NLsM
description becomes invalid occurs atT , JS2 which is
deep inside the “quantum critical” regime for large value
of S. For a small value ofS, where there is no clear
separation between energy scalesSJ andS2J, the whole
quantum critical regime may be washed away by th
existence of topological spin excitations. Such a scena
indeed seemed to be observed in Monte Carlo simulatio
of the S ­ 1y2 2D Heisenberg antiferromagnet [4–6]
where the quantum critical regime predicted by th
NLsM description seems to be missing. Notice th
for integer spin systems the contribution to dynamic
structure factorSs $q, vd from topological spin excitations
is quite different from half-integer spin systems becau
of different statistics. However the effect onjsT d should
be qualitatively similar.

Finally we discuss the effects of gauge field$A. In
the T ! 0 limit, where bose condensation of the boso
spin takes placeskZl fi 0d, the gauge field$A becomes
confining [17] and the topological spin excitations ar
confined in pairs by linear confining potential. At finite
temperatures the confining potential is effective up
length scale, correlation lengthjsT d, and the effect of
confinement is expected to be strong at low temperatu
when the system is at the “renormalized classical” regim
As a result, the topological spin excitation spectrum
$q , s0, 0d is expected to be strongly modified from th
free-Dirac-fermion prediction (for half-integer spins) a
so
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low temperature. However, the behavior of the topolog
cal spin-excitation spectrum at$q , sp, pd is determined
by the short-distance behaviors of spin pairs and shou
not be affected strongly by confinement. As a result, w
expect that our predictions forSs $q, vd at $q , sp, pd and
jsT d remain qualitatively valid.

In summary, using SBMFT, we show in this pape
that stable topological spin excitations exist in Heisenbe
antiferromagnets at two dimensions. The topologica
spin excitations are described by relativistic quantum
field theories of complex scalars when spin valueS
is an integer, and they are Dirac fermions whenS
is half-integer. We have discussed the theoretical an
experimental consequences of these excitations and ha
pointed out that the existence of these spin excitation
may be the reason for the anomalous results observ
in recent experiments [3] and Monte Carlo simulation
[4–7]. In particular, these excitations can be observe
directly in neutron scattering experiments, and woul
provide a direct test of our theory.
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