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Topological Spin Excitations of Heisenberg Antiferromagnets in Two Dimensions
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We discuss the construction and dynamics of vortexlike topological spin excitations in the Schwinger-
boson description of Heisenberg antiferromagnets in two dimensions. The topological spin excitations
are Dirac fermions (with gap) when spin valdeis a half-integer. Experimental and theoretical
implications of these excitations are being investigated. [S0031-9007(99)08982-6]

PACS numbers: 71.10.Fd, 75.10.Jm, 75.40.Gb

Recently, strong interest has been shown in the study dfitations in the flux phase [11] of fermionic RVB mean-
Heisenberg antiferromagnets on a two-dimensional squarféld theory.
lattice. Early theoretical analysis showed that the low We begin by reviewing briefly the construction of topo-
energy, long length scale behavior of the model shouldogical spin excitations in SBMFT of the 2D Heisenberg
be described by the renormalized classical regime of thenodel. Following Ref. [9] we assume that the low
(2 + 1)d O(3) nonlinear sigma model (NEM) [1,2]. energy physics of general spih-2D Heisenberg
The analysis was believed to be valid as long as the lengtinodel is described by the Schwinger-boson mean-field
scale under investigation was much larger than latticéHamiltonian
spacing. More recently, in a series of experiments [3] and
Monte Carlo simulations [4—6], it was discovered that theHye = —J > [A"(Z4Z; — ZuyZjy)
length scale at which the renormalized classicainodel ij
description becomes valid is surprisingly long £ 200 _
sites for spinS = 1/2) [5,6]. A quantum Monte Carlo + H.c. — [AP] + ZA(ZioZia - 25),
study of the low energy spectrum of the model on finite 7 (1)
size lattices also suggested that the spectrum inSthe
1/2 case disagrees rather strongly with the predictiorwhereA (A*) andA are mean-field parameters determined
of NLoM even when the size of the systemi is by the mean-field equations = ((Z;Z; — Z;Z;1)) and
not too small(N = 32) [7]. These anomalous findings (Z1Z;;) + (Z;Z;;) = 2S. Notice that in two dimensions,
suggest that contrary to usual beliefs, there may exist along-ranged antiferromagnetic order exists at zero tem-
intermediate energy/length scale where the behavior gferature corresponding to bose condensation+ 0 in
the system deviates strongly from BM. SBMFT. We shall consider finite temperatufe# 0 and

On the other hand, it has been shown by Read andZ) = 0 in the following. (The effect of Bose condensa-
Chakraborty [8] that fermionic spin excitations exist astion will be addressed at the end of this paper.) Notice
topological excitations in the short-ranged resonant vathat SBMFT offers a fairly accurate description of the low
lence bond (RVB) phase of 2§y = 1/2 Heisenberg energy physics of a Heisenberg model at two dimensions
model, and their analysis has been generalized [9] to thg0], thus justifying the starting point of our theory.
case (for arbitrary spis) where the system is described To look for topological excitations in SBMFT, we no-
by a Schwinger-boson mean-field theory (SBMFT) [10].tice that the structure of the mean-field theory resembles
These topological excitations are finite energy excitationsery much the Bardeen-Cooper-Schrieffer (BCS) theory
of 2D Heisenberg antiferromagnets that do not appear ifor superconductivity, except that the spin pairs of bosons
conventional NloM description. However, the dynamics replace the electron (fermion) Cooper pairs in BCS theory.
of the topological spin excitations were not investigated inThe resemblance of the two theories leads us to stody
those works [8,9]. tex excitations in SBMFT, since vortices are stable topo-

The purpose of this paper is to investigate, startindogical excitations in BCS theory at two dimensions. In
from SBMFT, the dynamics of the topological spin ex- BCS theory, a vortex located & = 0 is a solution of
citations constructed in Ref. [9] under some very generalhe BCS mean-field equation, where the order parameter
assumptions. In particular, we shall show that the exisAgcs(7) has a formAgcs(7) = f(r)e’? in a polar co-
tence of these topological excitations is consistent with th@rdinate, wheref(r) is real and positive. To minimize
recently observed anomalous behaviors in the Heisenbernergy, a magnetic flux af-flux quanta is trapped in the
model. We shall also point out, in the case $f=  vortex core. The vortex solution in SBMFT has the same
1/2 Heisenberg antiferromagnet, an interesting connectiostructure, except that the BCS order parametges is
between the topological spin excitations and the spin exreplaced by the Schwinger-boson order paramg&jeand
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the vector potential does not represent the physical mag-by (A;;) = ¢ # 0in SBMFT. The existence of a stable
netic field, but is a fictitious gauge field arising from phasevortex solution in SBMFT is tied with tha field as in the
fluctuations of order parametdy;; [9,12]. The existence usual superconductors.
and stability of the vortex solution was demonstrated in To derive vortex dynamics we concentrateSatand
Ref. [9] in an effective Ginsburg-Landau theory. Theseintroduce vortex 3-current” in the phase fieldy, 0 —
vortex solutions are bosoni¢, = 0, topological excita- 9,0 + 9,0', where ¢ is multivalued and ju =
tionsin SBMFT[9]. o €4029,9,0" # 0. In the London limit where we treap

To construct topologicabpin excitations we note, that as constant, a duality transformation can be performed

like vortices in superconductors where electronic boundyhere we can integrate out the field to obtain an
states often exist inside the vortex core, boson boundffective actions, for vortices [14],

states may exist inside vortices in SBMFT. In particular, 1
we argued in Ref. [9] that, for a vortex centered at a S, = j dr] d%c[—(v X a)?
lattice site, a bound state @f§ bosons must be formed 49
at the vortex center because of the constraint that there is
always2S bosons per site in the Heisenberg model. In
particular, because of statistics transmutation associated
with binding quantum particles to a flux tube ef-flux . (42)
guantum in two dimensions [13], the resulting excitationwhereV X a ~ (V' — A) and corresponds to the trans-
is a spin$ fermion wher2S is odd [9]. verse part of the supercurrent field in superconductors.
We shall now supply the mathematical details. AnNotice that the amplitude fielgp goes to zero at the cen-
important difference between SBMFT and BCS theory ister of the vortex. As a result, there exists an additional
that the mean-field Hamiltonian (1) breaks the translationatontribution to the vortex actior§® ~ {(energy needed
symmetry of the Heisenberg model by one lattice siteto create vortex cores,) X (length of vortex trajectory
Correspondingly, there exist two lattice sites per unit cellin space-timg) For N vortices,

in SBMFT and the fluctuations of the order paramegr N N 1 (a5 \
. . . 0) _ Xi
are described by two amplitude and two phase (uniform S~ ~ €y Z dl; = €, Z dr, |1 + 2 ,
i=1 i=1 v

+ia- (jY —VXZ)}+SS’),

and staggered) fields in the continuum limit [9,12], i.e., dr
o [ S (4b)
hizy = Pli = o) Ta=iE where ;(7) represents the trajectory of thigh vortex
i[f,-i,,/z/zld}ﬂx (i£9/2)] in Euclidean space-time, ang, is the limiting velocity.
X e SR, (2)  Notice that the suppression of the field at the vortex

ponents of the amplitude and phase fluctuationsAof phase fluctuations through the ter(mg)qi in S, [9].
respectively.¢ and [* A - dx’ are the corresponding “uni- We shall first consides$,, in the following.

form” components. The effective Ginsburg-Landau action The dynamics of a single vortex can be obtained by
for the continuum field variables is derived in Ref. [9] minimizing S at real time. We find thas{”’ describes
(see also Ref. [12]). We obtain to ordér(m®) [m is  relativistic particles with energy = ye,, wherey =

the mass gap for spin-wave excitations in SBMFT WhIChl/‘ll — 1:}_22 and v is the vortex Ve|ocity_ In the absence

- ~ Jo—ISIT = -
'SSVE% ‘STV?]I(L:’;[ low temperaturen ~ Je*S/T)], Serr = of theV X A term, the particles have “charge” (vorticity)
" 5 and interact with each other through an effective U(1)
S, ~ def P {[a _ 4(S . l)}lﬁ e gauge fielda. For boson vortices the corresponding
2 guantum field theory is a relativistic theory of scalar
1 electrodynamics with charged bosons (vortices) [14]. In
+ (S + 5>¢>(8,L0 - AM)Z}, the presence of a trapped magnetic flux inside vortex core
3) (VXA — j, ~ 0), the electric 3-currenj, is screened
and the bosons decoupled from the gauge fieldThe
2 1 b ’ 1 resulting theory is a relativistic theory of bosons with
S5 ~ def d x[(f - ¢>(qu) + 502 Fu short-ranged interactions, as is the case of vortices in
usual superconductors [14].
+ icFWin|, To derive dynamics for the topological spin excita-
tions we assume that, once the boson spins are bound
where ¢ ~ m, a <4, and b and ¢ are constants of to the vortex core, their spatial degree of freedom is
order O(1). F, = 9,43 — d, A}, ande /2 is the uniform  quenched and the only modifications to the pure vortex
phase field for the Schwinger bosons. Notice that theaction (4a) and (4b) are (1) the vortices now carry spin in-
gauge symmetry of the uniform gauge fieddis broken dicesm = —§,—-S + 1,...,S, and there ar@S + 1 spin

where ¢g_, = —q,, A, = —A$ are “staggered” com- core also couples vortices to the staggered amplitude and
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component of vortices, and (2) vortices become fermithe Heisenberg model in the case= 1/2. In both cases,
ons when2S is odd. In particular, since the vortex ac- pockets of Dirac fermions describe the fermionic spin
tion (4a) and (4b) is Lorentz invariant, the dynamicsexcitations at low energy. The number of species of Dirac
of the topological spin excitations must be described byfermions are the same in both cases—there are four “half-
(2 + 1)d-relativistic field theories of bosons whénis an  pockets” of Dirac fermions at abo(k,, k,) = (x5, *75)
integer and by (2 + 1)d-relativistic field theories of inthe flux phase, and there are two “full-pockets” of Dirac
fermions whenS is half-integer. To proceed further, fermions coming from two independent combinations of
we examine more carefully the symmetry constraints ing? and 2 in the present theory. The position of the
SBMFT. The existence of two lattice sites per unit cell in“Dirac-pockets” ink space cannot be determined with
SBMFT implies that there are also two quantum fieJds  certainty in our effective theory. Nevertheless, to make
andyJ in the continuum theory, representing spinvor-  comparison with the flux phase we shall assume that
tices centered at- andB-sublattice sites, respectively [9]. the fermion pockets in our theory are centered around
Under reflection or rotation by /2 around the center of a (ks ky) = (i%,i%). With this assumption the only
square plaguette, theandB sublattices are interchanged difference betweerL.;; and the flux phase is that there
and, correspondingly, alsg;; and 5. Notice that we s a gape, in the Dirac-fermion spectrum in our theory.
have considered finite temperature wheZe¢ = 0 in our  In fact, in the limite, = 0, it can be checked directly that
discussion and, correspondingly, parity (space-time reflect.;; describes the continuum theory for the flux phase.
tion) symmetry is unbroken. In order to describe couplingThe strong similarity between our effective theory and
of the bound boson spins at the vortex center to the ficflux phase leads us to speculate that the flux phase in fact
titious gauge fieldst andA,, the quantum fieldg/2 and  describes a new spin-disordered phase of 2D Heisenberg
8 must also carry charge and are complex. antiferromagnets, where antiferromagnetism is destroyed
With these kinematics constraints, the quantum fieldby driving the fermion mass gap, to zero. We shall
theories for the topological spin excitations can be dediscuss this scenario in a future publication.
termined [15]. In the case of integer spins where the Next we consider the experimental consequences of
topological spin excitations are bosons, we constructhe topological spin excitations. We shall first consider
quantum fieldsyf ™) = ¢4 + 2 which are eigenstates § = 1/2 as an example. In terms gf, the spins carried
of 7 /2 rotation and reflection with eigenvaluesl. The by the Dirac fermions in th& = 1/2 case are described
dynamics of they, (™) fields are described separately by by the operators
relativistic theories of complex scalar fields. In the case

of half-integer spins where the spin excitations are fermi- §46)(y) — L S O3 L v P @i () 1,
ons, the corresponding theory which respects parity is a 2 o K512
theory of Dirac fermions in2 + 1)d [15]. In the fol- (7)

lowing we shall concentrate on the case of half'intege(/vhere§A(x) and §B(x) are spin operators in thé and

spin systems. . . L . B sublattices, respectively, and are Pauli matrices,
In this case, the topological spin excitations are Dirac

: ; L . m,m' = +3. : 0 := O — (0)¢ are normal-ordered op-
spinors described by four-component spinor figld with erators. The uniform and staggered spin operators can be

" A(B) I S| A
e(x) = Vg (x) yAB (x) = 1o (x) (5)  constructed fromSA® wherem(ii) = 4 + (—)S? de-

B ) A(B) >
A(B) &%) Yoo (X) scribes spin fluctuations around momegta= (0,0) and
where '*)’s are two component fermion fields needed >

: o X ; = (7r, ). Notice that, because of the constraint that
to describe positive and negative energy solutions of thgrler

) . he effect . e is one spin per site in the original Heisenberg model,
Dirac equation. In terms af,, the effective Lagrangian e pirac fermions together with the original boson spins
which transforms correctly under parity is

; must satisfy the constraint
l - -
Less = _[ o M(a 0') - (a 0') 'u 0'] -
2 2 oy o) = (b)Y Z[( S @) ) " Zf:(x)Z;‘“(x)} 1.
- moho — '»bo'y'ul//UA,us (6) 7 k=12
where y#’s are usual4 X 4 Dirac matrices in(2 + (8)
1d with = 0,1,2. A is the uniform gauge field. which introduces additional coupling between boson spins
Notice that the staggered gauge fielgd decouples from and topological spin excitations not includedZig;.
the ¢, field in this level, as can be checked easily Experimentally, the Dirac fermion spectrum can be
from the transformation of..;s under staggered gauge observed directly in a neutron scattering experiment
transformationy? — y4e'?, andy®? — yBe~ 1%, Notice at energyw > 2¢,. Its contribution to the dynamic
also that the spin degrees of freedonappear aiternal  structure factoS(g, w) atg ~ (0,0) andg ~ (#r, 7r) can
degrees of freedom for the Dirac fermions. be calculated directly using Egs. (6) and (7). We find that
It is interesting to compare the effective actibg; with the contributions are similar t6(g, w) calculated from
the flux phase [11] of the fermionic mean-field theory of flux phase, except that a gafe, is found in the spectral
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function. The existence of a Dirac-fermion spectrum alsdow temperature. However, the behavior of the topologi-
affects spin correlation at lower temperatures. To see thatal spin-excitation spectrum at~ (s, 7) is determined

we consider the antiferromagnetic spin-correlation lengttby the short-distance behaviors of spin pairs and should
&(T). In pure SBMFT,£(T) is given at low temperature not be affected strongly by confinement. As a result, we

by [10] expect that our predictions foél(g, w) atg ~ (7, 7) and
AJ 27 AT &(T) remain qualitatively valid.
&(T) = 2 exp = ns |, 9) In summary, using SBMFT, we show in this paper

. ) .. that stable topological spin excitations exist in Heisenberg
where np is the density of bose-condensed spins ingpiiferromagnets at two dimensions. The topological

SBMFT atT = 0. In the presence of the Dirac-fermion gnin excitations are described by relativistic quantum
spectrum, the system gets more disorderedl'at 0 fie|d theories of complex scalars when spin valSie
because of the thermal effect associated with the extrg an integer, and they are Dirac fermions whén

degrees of freedom and(7) decreases. The effect g pajt.integer. We have discussed the theoretical and
can be estimated in a mean-field approximation using,nerimental consequences of these excitations and have
the constraint (8) [16], where the average number Ofysinted out that the existence of these spin excitations
Schwinger bosons per sisg) is given by may be the reason for the anomalous results observed
(nsp) =1 — > Cyiapay. in recent experiments [3] and Monte Carlo simulations
k=120 [4-7]. In particular, these excitations can be observed
It is straightforward to show that, at low temperature,directly in neutron scattering experiments, and would
(ns) ~ 1 — 2exp(— %), and the leading correction at provide a direct test of our theory.
low temperature t&(7) is obtained by replacings — The author thanks Professor N. Nagaosa and Professor
np — 2exp(—%) in Eq. (9). The reduction inf(T)  p.A. Lee for many interesting discussions and also thanks
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