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Classical Atomic Form Factor
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The general trends exhibited in the variation of the inelastic form factor in collisional transitions
nl — n'l', when I’ is changed andn, I, and n’ are kept fixed, are explained solely in terms
of classical mechanics. Previous quantal results are reproduced from purely classical mechanics
principles. Our conclusions are valid not only for large quantum numbers (which provide the
usual classical correspondence) but also for other cases, which, up to now have been described
only by quantal or semiclassical methods. The interesting trends exhibited in the form factor are
directly reflected in experimental and theoretical treatments of collisions involving excited atoms.
[S0031-9007(99)09037-7]

PACS numbers: 32.80.Cy, 31.15.Gy, 34.50.—s

With the advent of new technology which chilitates Poiwi(q) = [(purn | WY = Z [0 1m0 | nim) |2
the accurate measurement [1] of electron-excited atom !
collision cross section there has also been renewed interest 3)
in the theory [2] of collisions involving Rydberg atoms. ) . ) )
Recent experiment [1], in particular, has confirmed thafiSO deduced in [5]. The probability of any impulsive
the cross section for the quadrupaks — 3°D transition f transmqn,_whe_ther due to particle collisions or
in e — He(235) collisions is much higher than that for the €lectromagnetic field, is therefore
pure dipole23S — 33P transition at low and intermediate , T ()2
energies, in accord with the theoretical predictions of Pia) = 1Fn@l “)
Ref. [3] (Born and multichannel eikonal approximations).which provides physical significance to the inelastic form
Flannery and McCann [4] have noted that this unexpectethctor, a fundamental property of the atom. For impulsive
behavior is only part of a more general systematiccollisions between a particle 1 and a Rydberg electron 2
trend in that (a) the2’S — »n3D collisional transitions bound to a core 3, the overall transition matrix elemgnt
are predominant over all other transitions to the same decomposes as [5]
value, even for transitions to the electronic continuum,
and (b) there is a unique valug,, of the final angular Tip(@) = Fri(@T(a), )
mom_e_ntuml’ that is preferentially populated m/ — n'l" " \where T1», the matrix element for (1-2) free-free elastic
transitions £’ > n) in collisions between Rydberg atoms scattering in the (1-2) center of mass, is a function only of

and electrons or atoms. _ q, as for Coulomb scatterin@,, = 4wh2e?/q?, or for
The origin of this general behavior was traced [4] to thegorry's approximation, Ty, = | V(r12) expliqr//i) drya.
variation with/' of the quantum mechanical inelastic form the probability of transition in the target atom per

factor ’ each (1-2) impulsive encounter B, = |Ti|*/1T12I%, in
Fril@) = Wrmle/ yi(r)) = (ds(p + @)l i(p))  agreementwith (4). o
) The cross section is obtained by the following integra-

tion of the form factor (5) over momentum change,

for i(n,1) — f(n',!’) transitions between atomic states; 5 b+
Y ¢(r) are the wave functions in position space and _ _ ™ f ’ N2 2
Bir(D) = QR [ g (0) expl(—ipr /) dr, the oif (M122Ui2> o | Fri( @ |fr2(@)|” g dg, (6)
wave functions in momentum space.

When an instantaneous impulse applied &t #, trans-
fers momentunq to an atomic electron, the exact solution
of Schrodinger’s equation under Hamiltonian

wherek; ; are the initial and final wave numbers of rela-
tive motion of the projectile-target system of reduced
massM and g = filk; — K| is the momentum change.
The scattering amplitude for (1-2) collisions of reduced
H(p,r,t) =p*/2m — */r —r - q8(t — t9) (2)  massMy, is f1» = @My2/4m )Ty, For (1-2) slow col-
is lisions with scagtering lengthz, the Fermi interaction
4 V(ry) = [4ma(hi=/M13)]6(r; — ry) also yields decom-
W(r,0) = [1+ (/" = DO — 10)]pum(x). p((,sifiim (E,) Wit(hfl/z ot = w) alsoy
where# is the Heaviside step function. The probability The inelastic quantal form factor therefore not only
for i = |nl) — f = |n'l') transitions from the2l + 1)  exerts primary importance in collision studies, but also
initial sublevels is then has a deep physical reality. In recent experimental studies
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of excitation of Rydberg atoms by short unipolar half-
cycle electromagnetic pulses the transition amplitude is
determined directly by the inelastic form factor [6].
Analytical quantal [7,8] and semiclassical [9] form radial density
factors are available, although general systematic trends n=20 1=8
cannot be easily extracted from them. A classical form
factor for n — n’ has been deduced [10] from binary
encounter impulse theory and from a microcanonical
distribution in energy space. A key point of this paper
is that a complementary classical approachrdbe n'l’
transitions can also be developed in a way which reveals,
quite succinctly, important aspects which remain hidden
within the quantal treatment. 100 200 300 400 500 600 <r(a.u.)

'ConSIder a Rydberg atom in a stationaw, /) state FIG. 1. Classical and quantal radial densities of probability
with energy E and angular momentum. If the atom  of |ocalization for the stationary state of the hydrogen atom
is perturbed by any general impulsive field [as in Eq. (2)[E = —1/(2 X 20%) and! = 8§].
or the Fermi interaction], then the transition probability to
the final statén’, I’) (of energyE’ and angular momentum
L) is the inelastic form factor.

The quantal probability density for finding the electron
in the radial intervalr, r + dr) is

Classical and quantal

The classical distribution is zero outside the accessible
region, bounded bR *.

By using definition (1) the transition probability (3) can
pm(r) = r*Ru?, (7)  be converted to the new form

where R,; is the hydrogenic radial wave function ex- _ _ 3 x
pressed in terms of the generalized Laguerre polynomial. Pi(@) = @mh) / pullX-R)pyy (TP + @) drdp,
The phase space of a classical atom, with Hamil- (11)
tonian H(r,p) = p?/2m + V(r), angular momentum T . .
L(r,p) =r X p, and periodr, = v, in stationary where the quantal dlstrltgl/le:lons in phqse space fre given
state(n, ) is populated according to the microcanonical®’ pi(r,p) = (2mh) >“(r)exp—ip - r/I)¢"(p).
distribution [8,10] Thls_form is now s_,wtable f_o_r classical correspondence
obtained by replacing densitiegs? by the phase space
distributions (8). The basic definition of the classical
form factor is therefore given by (8) and (11). The
physical significance is that the initial and final states
correspond to definite regions in phase space, populated
according to the microcanonical distribution (8), and
that the transition probability is given, in a geometric
21 +1 2 sense, by the amount of overlap of these regions. In
Tdr’ configuration space alone, the regions are spherical
, . . . shells with inner and outer radii given by Eg. (10),
\I/Evher(‘e/( ;he (erI?}z)zsgf/zd s gé\g?n tr?yﬂl(/ezzplzer the pericenter K~) and apocenterR*) of the Kepler
IRALEE mr. , orbit.
atom G = 27n’ a.u.) andpy (ina.u.) is Analytical expressions with explicit dependence on
. 1 2 1 (I +1/2)? -1/2 q for quantal and classical probabilities fai — n'l’,
pulr) = — - 2 nl — n', n — n transitions are developed in a separate
paper [8]. Rather than examining thevariation of (11)
_ 11 ) for a giveng, the key results are more readily deduced
and r(r)’ and are easily transparent by investigating the probability

The quantal (7) and classical (9) radial probability den-Or @ll momentum transfers

sities are illustrated in Fig. 1. As in the textbook example 3 . .
of the harmonic oscillator, the classical distribution hasni—n1 = f Pis(q)dq = (27h) [R dr py(x)py(r),
singularities at the corresponding turning points given by (12)

the radii (in a.u.)
+ o o, 5 ) 21/2 where R is the overlapping region in configuration
R =n*{l = e} = n*{l £ [1 = (1 + 1/2)*/n?]"}. space defined by intersection of;(,R;") and ®R;,R;)
(10) intervals.

dr dp
8

Q2mh)3 ®)

normalized to(2/ + 1) states in all of phase space. On

integrating over the momentum spaeeand angular part
7 of the configuration spaaeg the classical distribution is

pu drdp = {hv, id(H — E)S(IL| — L)}

pu(r)dr =

Tnl

r n2 r2
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Inserting p(r) = 47 p¢(r)r* with (9) in (12) gives the Region Ill, Ry > R;.—Here the initial and final

classical form factor (CFF) trajectories no longer intersect, since the pericenter of the
, QU + 1) [Rmax  gp/p2 final stat_e is greater than the ap_o_center of the initial state.
Foimpy = 20— —, (13) This region whereg(i — f) transitions do not occur, as
n3n” - Jrmin 7i(r)7y(r) illustrated by(n’ = 8, I’ = 5,6,7) orbits in Fig. 2, is the
where Rmin = maxR; ,R;) and Rpax = min(R,-*,Rf) classically |nac<_:e55|ble region.
define the bounds of the overlapping regiBn Different The boundaries between regions | and Il and between

overlap situations are illustrated in Fig. 2 for a represenfegions Il and IIl occur, respectively, dt = /, where
tative case. The gray region is the accessible region foRs (#',1") = R; (n,1) and at!’ = I, where R (n',l') =
the initial state and the curves are possible final state traR: (n,1). Thus!; andl, are given by

jectories. Transitions occur only when the final state tra- 2

jectory penetrates the initial state accessible region. Thélm + —) =n(1 7 e)[2 - (1 Fen?/n?], (@14)
longer time spent by the electron on the final state trajec

tory within the initial state accessible region, the bigger isyheree is the eccentricitf1 — (I + 1/2)2/n?]'/2 of the
the transition probability. initial orbit.

As [ increases from zero to its maximum value for Variation of the CFF (13), with final angu|ar momen-
circular orbits,R~ increases from zero to®, while R*  tym /' is then determined both by the lower integration
decreases fror2n? to the same value?. For final states  |imit Rmin (Which is a constan®; in region | and in-
n' > \/2n, then Ruax = R;" for all values of/’. Three creases a®; in region Il) and by the integrant;)~".
regions of overlap are then apparent and are, respectivelgjgure 3 illustrates the general pattern. /Ass increased
accessed ak is increased. from 0 to /; (region 1), the increase in CFF originates

Region I,R; < R; .—Here the overlap regioR =  purely from the increasing integrarig;)~'. As !’ is var-
(Ri ,R;") is determined solely by the initial state and hasied from, to /», the increasing integrand is offset by the
spatial extent which remains constant/ag varied from  decreasing rang(_:R]T,Ri*) of integration (region I1). For
zero to some valug whereR; = R; . Thereis always [, < |’ <n — 1, CFF is zero because transitions are not
an orientation of the final orbit which will then intersect classically allowed in region lIl.

the initial orbit, as exhibited in Fig. 2, fan = 3, [ = 2) At I’ = [, the trajectories touch only at their corre-

and(n’ = 8, I' = 0 — 2) orbits. Thel’ variation of (13)  sponding pericenters and CFF has a turning point sin-

is contained solely within the increasing integrdng) ~'.  gularity characteristic of classical descriptions. The zero
Region Il,R;” < R;.—Here the overlap regio®R =  radial speed of the electron at the contact point of both

(Rf, R;") includes thef pericenter and has spatial extent initial and final orbits causes the infinite CFF (transition
which decreases, d$increases, eventually to zero when probability).

Ry = R;". In this region, the initial and final orbits can  As is evident from Figs. 3—5, the agreement between
intersect each other, as for tiie’ = 8, I’ = 4) orbit in  the classical and quantal results is excellent in region |,
Fig. 2. The!’ variation of (13) results from variation even for small quantum numbers. In region Il, the quantal
of both the increasing lower limik, and the increasing results oscillate about CFF. Since classical motion is
integrand(r¢)~!. confined to a definite region, the dramatic fall for large

I is steeper than that for the quantal case where states

(8,7) %1073
(8.6) ITI
(8,5)
84)  \ =
(82) 5
8,0 \ &
) 2
3,2 ﬂ . §
1 2 3 4 5 ; 7
4 I,

FIG. 3. Characteristic dependence of the inelastic form factor
FIG. 2. Various final state(n’ =8, I’ = 1-7) trajectories on the final angular momentuiii, for fixed n (= 3), [ (= 2),
and the initial accessible region corresponding (o= 3, andn’ (= 8). Classical calculations: solid line; quantal results:
[ =2). dots.
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%1078 pushed slightly to lower values. This theoretical predic-
14 tion is also confirmed by the quantal results [4].
—~ 1 . . When the energ¥’ of the final orbit is not sufficient to
o . accommodate the value bf deduced aboven( < +/2 1),
0 - the peak in CFF (as in Fig. 5) is given by, provided the
61 8 e oo % initial / is large enough. When the final is sufficiently
® small so that the lowerl; cannot be accommodated,
3 \ i.e., Iy >n’ — 1, CFF and the quantal result exhibit a
u monotonic increase confined to region I, which is always
2 . characterized by excellent agreement between quantal and
, classical results.
10 20 0 0 so | In summary, the pattern exhibited by tifevariations

FIG. 4. Classical (solid line) and quantal (dots) inelastic form(Figs. 3—5) is essentially identical with the quantal pat-
factor for transitions from state:(= 35, / = 30) to (2" = 55, tern. The positions of maxima of thévariation of CFF
= 0 — 54) states. depend strongly on the initial and only weakly on the
initial 7, in agreement with the quantal calculations [4],
have exponential tails within the classical inaccessibl%’.\/h'?h were restricted to certain cases. Excellent quan-
region Ill. As expected from correspondence principles itative agreement between classical and quantal re.sults
akes the classical form factor a very useful tool particu-

for the larger quantum numbers, the quantum form facto];rI
tends to CFF, even in the regions Il and lll, as shown inarly at large quantum numbers (Rydberg atoms) where

Fig. 4. For guasielastic transitiom$ — n/’ the classical e;ﬁCtO?lﬁ%EgrirS;ﬁIgsairs tgolffsé/lfg t% bttﬁ;”éie';ﬁ‘egggiﬁg_‘"
and quantal results are in excellent agreement for aff®" y ’ gnly

angular momenta (Fig. 5). The quantal results exhibi{.lOry nature of the wave function. Although the empha5|s_
maxima in the neighborhood &f = 1, , where CEF has ere is on the electron form factors, the present analysis

the classical singularities. The position hfdefined by Irz a.‘gf;'f;?;? ;zz;%;%gggcltgf for transitions between
(14) in the limit of largel, where the eccentricity — 0, vioratl yies.

; T o N2T/2 This work was supported by AFOSR Grant
IS [l —n — 1) = nv2[l = 1/20n/n)]2 = 12,80 2060006170147 and NSF Grant No, 98-02622
exquisite result for initial circular orbits. Fot’ > n, Oné of us (D.V.) thanks Motorola and Gil Amelio for '
[, tends from the bottom td,(I — n — 1,n’ > n) = s

ny/2 — 1/2, a key result in detailed agreement with support.
that previously derived from consideration of the quantal
momentum-space overlap [4].
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