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Adsorption of Polyelectrolyte onto a Colloid of Opposite Charge

E. Gurovitch and P. Sens*
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israe

(Received 26 March 1998)

We study theoretically an idealized model for the adsorption of a weakly charged polyelectro
chain onto an oppositely charged colloidal particle. Within the framework of the self-consistent fi
theory, and using an analogy with the quantum theory of the atom, we show that the connec
between the charges of the polymer leads to an “overcharge” of the colloidal particle, which can ad
a chain of total charge up to15y6 times its own charge. [S0031-9007(98)08181-2]

PACS numbers: 61.25.Hq, 68.10.–m, 82.70.Dd
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The motivation for studying the interaction betwee
polyelectrolytes and colloidal particles stems from man
sources. First, the presence of polymers, in many ca
charged, has a salient effect on the stabilization of co
loidal suspensions [1,2]. Industrial applications rang
from stabilization of ink to wasted water treatment an
paper making [1,3]. On the other hand, charged pol
mers, as building blocks of living matter, are of fun
damental importance in biology and biochemistry [4
Most proteins and nucleic acids, and more generally h
drosoluble macromolecules are charged and their inter
tions in the intercellular fluid affect the behavior of the
cell. Third, the understanding of the interactions betwee
charged chains and another charged object presents a
tain theoretical challenge. Despite important efforts [5,6
the understanding of charged systems, which exhibit ve
distinct properties than neutral polymers, is still largel
unsatisfactory. The main complexity introduced by th
presence of charges on the chain is the long-range nat
of the Coulombic interaction, complicated by such phe
nomena as the counter-ion condensation [7] and scre
ing effects [8]. For neutral polymers, the interactions a
usually short range and scaling or self-consistent field a
proaches have proved their efficiency [9,10]. For charg
chains, on the other hand, even asymptotic results are
ten model dependent.

The adsorption of polyelectrolytes onto a charged su
face has already been actively studied in the past [11,1
More recently, the self-consistent field approaches we
adopted to describe the adsorption of a polyelectroly
chain onto a flat charged surface. The nonlinear Poisso
Boltzmann equation determining the polymer concentr
tion profile and the amount of polymer adsorbed on
the surface was solved either numerically [13] or afte
linearization in the limit of weak absorption analytically
[14]. The attraction between two like-charged particle
via polyelectrolyte adsorption has been investigated
well [15]. The specific problem of the overcompensa
tion of a surface charge by adsorption of polyelectrolyt
namely, the fact that a charged surface may attract a po
mer of total charge higher than its own, is nowadays a
tively studied, either in spherical [16,17] or planar [18
geometries. In those studies, the overcharging is the
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sult of particular configurational considerations [16], an
of counter-ionysalt effects [17,18].

In this Letter, we address the problem of the adsorptio
of a weakly charged chain onto a small colloidal particle o
opposite charge. We consider the limit of strong dilutio
where the colloids can be considered as independent
one another, and we show how the “three dimensiona
(spherical) geometry has crucial effects on the chai
colloid system and brings quite a new physics.

Thanks to the classical work of Debye and Hückel [8
the physics of a charged colloid surrounded by a clou
of pointlike ions is now well understood [19]. As is
shown below, the most striking effect of the connectivit
between the charges of the polyelectrolyte chain is th
colloidal particle of charge2Qq is able to absorb a chain
of sizeN and charge fractionf such that at least

fN
Q

­
15
6

. (1)

The small colloidal particle may thus absorb a chai
with a larger total charge than its own, and this charge
complex is thermodynamically stable. To prevent an
misunderstanding we note that the total neutrality of th
system is, of course, preserved by counter-ions in solutio
The system is assumed to be very dilute, so that t
concentration of counter-ion around the colloid is very low

As will be developed below, the problem can be
thought of as an analog of the Hartree calculation o
atomic structures [20]. The result of Eq. (1) has bee
obtained using a restricted class of trial functions t
describe the configuration of the polyelectrolyte chain.
more careful analysis, such as the numerical determinati
of the distribution function, could show only a larger
overcharging effect.

Let us consider a pointlike colloidal particle of charge
2Qq in contact with a weakly, homogeneously charge
polyelectrolyte chain ofN monomers, a fractionf of which
carries a chargeq. The fraction of charged monomers is
supposed to be small enough for the neutral section b
tween the two consecutive charges to be flexible. We al
concentrate on the limit of infinite polymer dilution and
zero salt concentration, and we neglect any counter-ion
fect, the Debye length of the solution being much large
© 1999 The American Physical Society 339
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than any scale of interest. Such conditions are expe
mentally accessible [21,22], but they let aside importa
problems (counter-ions condensation, electrostatic scre
ing, size of the colloidal particle, . . .). However, these sim
plifications allow for a simple analytical treatment of th
problem, within the framework of a self-consistent fiel
theory.

The two ingredients of our model polyelectrolyte ar
the electrostatic interactions and the connectivity betwe
charges. The total electrostatic energy of the chargei
located inri consists of two terms: the attraction by th
charge2Q of the colloidal particle, and the repulsion by
thefsN 2 1d other chargesq of the polyelectrolyte chain.
The electrostatic potential experienced by the segmeni
can be written

fsrid ­ 2
Q

ejrij
1

Z
dr

qcsrd
ejr 2 rij

, (2)

where csrd is a smoothed number density of (polyelec
trolyte) charges atr, and e is the permittivity of the
solution. The connectivity between charges is intr
duced following Edwards’ description of a polymer chain
where the polymer order parameterc is defined such as
fN jcsrdj2 ­ csrd. In the situation of ground state domi
nance [9], the free energy per charge reads

F ­
Z

dr

(
kT

a2

6
j=cj2 1 Fsrd jcsrdj2

)
, (3)

wherek is the Boltzmann constant,T the temperature, and
a the averaging distance between neighboring charg
The gradient term accounts for the entropy of the cha
and the potentialFsrd describes the electrostatic energ
due to all the charges of the system,

Fsrd ­ kTlb

√
2

Qyq
jrj

1
fN
2

Z
d3r 0 c2sr0d

jr 2 r0j

!
, (4)

wherelb ­ q2ysekT d is the so-called Bjerrum length of
the solution. Note that the potentialF differs from the
electrostatic potential Eq. (2) by a factor of one-half i
front of the integral, which avoids the double counting o
the charge-charge interaction.

The functional minimization of the free energy Eq. (3
with the normalization condition

R
d3r csrd ­ 1, leads

to a Schrödinger-like equation forc: Ĥc ­ e0csrd with

Ĥ
kT

; 2
a2

6
=2 1 lb

√
2

Qyq
jrj

1 fN
Z

d3r 0 c2sr0d
jr 2 r0j

!
.

(5)

In this equation,Ĥ is the Hamiltonian operator of the
chain, ande0 plays the role of a chemical potential which
ensures the normalization ofc.

To calculate the distribution of charges around th
colloid, one should solve Eq. (5). However, the sel
consistency of the electrostatic potential makes th
problem quite hard. Instead, we notice that Eq. (5)
reminiscent of the Hartree equation for an atom, whe
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electrons gravitate around a charged nucleus [20], and th
equivalence allows us to take advantage of the numero
computations, both numerical and analytical, of the
eigenfunction of electrons in atoms. To calculate the fre
energy of the complex, we use a function resembling th
ground state of the hydrogen atom, to which our problem
is equivalent if one lets aside the interactions betwee
the charges of the polyelectrolyte. This trial function has
been used by Hartree in the case of more complex atom
as well [23],

csrd ­
z3y2

p1y2 e2zr , (6)

wherez is the trial parameter which will be determined
by minimization of the free energy (3).

Insertion of Eq. (6) into Eq. (3) gives the total energy
per charge

Eszd
kT

­
a2z2

6
2 Qlbz 1

5
16

fNlbz . (7)

The minimization with respect toz giveszp ­ 3lbya2Qp

and the ground state energy

Ep ­ 2
3
2

kT

√
lb

a
Qp

!2

with Qp ; Q 2
5
16

fN . (8)

This is the main result of this paper. It tells us
that because of the connectivity of the polyelectrolyte
a colloid of charge2Q may attract a polyelectrolyte
of total chargeNf larger (and opposite), and this up
to chargesfN ­ 16y5Q. This is very different from
the natural resultN # Q for nonconnected ions. It is
thus possible to formstable charged complexes, since
a positively charged chain will tend to collapse onto
a negatively charged colloid even if the resulting tota
charge is larger than zero. At this point, it is necessary t
stress that the precise form of the trial function, Eq. (6), i
not crucial to describe the overcharging we observe, bu
merely influences the numerical factor (16y5 here).

If fN , 16y5Q, the distribution of the segment is ob-
tained by insertingzp in Eq. (6), and leads to the defi-
nition of the collapse radius of the complexRcolps ;
a2ys6lbQpd. The charge distribution decreases exponen
tially over this length ifQp . 0, and the chain is col-
lapsed onto the colloid. WhenQp , 0, the charge of the
chain is too large for the polymer to be entirely collapsed
One may then expect the formation of a starlike com
plex where parts of the chain are collapsed and parts a
stretched away from the core, the size of these branch
being linear in the number of charges they contain. Ou
description of the collapsed state does not take into a
count the hard core repulsion between monomers. It
clear that if the collapse radiusRcolps is smaller than
the radius corresponding to the close packing configura
tion (Rpack ~ N1y3b whereb the monomer size) the latter
would better characterize the size of the complex.
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At this point, we need to investigate the validity of
our treatment. An isolated, weakly charged, flexibl
polyelectrolyte can be pictured as a “rod” formed b
electrostatic blobs of sizej ­ bs f2lbybd21y3 [5]. The
chain is Gaussian inside a blob, while the interaction
between blobs are essentially electrostatic. The adsorb
polymer chain considered in this work is pictured a
wrapped around the colloidal particle, forming a laye
of thicknessh defined by eitherRcolps or Rpack. It is
thus necessary that the polymer be flexible (Gaussia
on the scale of the corona. Takingh ­ Rpack and
b . lb, the condition becomesf , 1y

p
N. For typical

polymer sizes, we obtainf , 5%, a fraction accessible
experimentally. Furthermore, this constraint is less stron
when the radius of the colloid is larger.

The self-consistent field approach is usually valid if th
interactions between components are less than the ther
energykT [9]. This assumption is certainly not valid deep
in the core of the colloid-polyelectrolyte complex, where
the charges are in close contact, but should be satisfi
in the outskirts of the charge distribution forr . Rcolps.
Our treatment should thus enable us to determine wheth
the polyelectrolyte is in a collapsed (Rcolps finite) or
unbounded statesRcolps ! `d. A related assumption is
the one of the ground state dominance, which requir
that the difference between the energies of the first excit
stateE1 and of the ground stateE0 of the polymer is much
larger thankT . It is reasonable to assume thatE1 is of
the same scaling form asE0 ­ fNEp, whereEp is given
by Eq. (8), which leads to the conditionfNEp . kT . In
summary, the system should be close enough from t
collapse to unbounded transition and the polyelectroly
should be large enough:lb , Rcolps , fNlb .

Another approximation is the use of a class of tria
function instead of the solution of Eq. (5). The validity
of this approximation is difficult to estimate without
performing the full numerical resolution of Eq. (5). In
atomic physics, the chosen trial function turns out t
be very close to the solution obtained by numerica
minimization of the free energy (see [20] and referenc
therein). This is a good indication that such a clas
of trial function is satisfactory for our problem as well.
Furthermore, it has already been mentioned that t
precise form of the trial function is not crucial. It
merely influences the numerical factor (16y5 here; see
next paragraph). One effect not taken into accou
by the use of a smoothly varying distribution function
is the existence of large loops in the polyelectrolyt
configuration, which may stretch away from the charge
complex. However, even if such loops exist for a polyme
in the bound state, one can expect that they do n
participate in the electrostatic balance, and can on
increase the overcharging effect.

A major approximation of this work is the pointlike
nature of the colloidal particle. This is a sensitive poin
since the overcharging effect does not exist for a fl
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surface (it can arise due to the counter-ions [18]), whi
indicates that a crossover must exist for a finite partic
radius. The use of the wave function of the electron in
hydrogen atom in the2p state [24] can give indications on
the influence of the radius of the colloid [25]. It define
the lowest energy state of the hydrogen atom which h
a zero probability at the origin. For a colloidal particl
of radiusR, we write it c2 ­ asr 2 Rde2zsr2Rd, where
a is a normalization factor. IfR ­ 0, we obtained the
same results as before, withQp ­ Q 2 93y256fN and
Ep ­ 29y8slbyaQpd2 instead of Eq. (8). We can thus
qualitatively describe the overcharging effect with th
trial function as well. We have studied the variation o
the free energy Eq. (3) and the optimum inverse dec
length zp [Eq. (8)], with the radius of the colloid. The
main effect of an increase of the colloid radius is
decrease the energy scale. Hence, we have defined
maximum radius for which the overcharging effect ca
still be observed, by the radius for which the minimum
of energy for N ­ Q 1 1 is of order kBT . One can
easily show that this criterion gives a maximum radiu
Rmax ­ bQlb, beyond which there is no overcharging (b

is a numerical factor which is equal to1y2 with this given
trial function). Interestingly, this condition is reminiscen
of the condition for the condensation of counter-ions on
a charged sphere, to within a factor which contains t
logarithm of the counter-ion concentration [26]. One ca
thus expect an interesting competition between count
ion condensation and overcharging due to polyelectrol
adsorption in less dilute colloidal solutions. One shou
notice that if the charge of the colloid is mostly locate
at its surface, the charge and the size of the particle
related byQ , sRybd2 whereb is a molecular size, and
the condition for overcharging becomesR . b2ylb .

The previous description should hold as long as the c
loid can be considered as a sphere for the polymer adso
tion. When the thickness of the adsorbed layer becom
of the order of the radius of the colloidsR , Rcolps ­
bN1y3d, the behavior of the adsorbed chain should cro
over smoothly to the behavior of a polyelectrolyte a
sorbed onto a charged flat surface. Hence, the overch
ing effect should be present forb2ylB , R , bN1y3,
which defines a very large range of radii. Note th
the upper bound is probably much higher than compu
above, where we have supposed a close packing situa
in the adsorbed corona.

Several extensions of this work could be of inte
est. Upon increasing the concentration of colloids, o
may wish to investigate the creation of bridges forme
by a polyelectrolyte chain adsorbed onto several p
ticles [15]. This bridging effect, of crucial importance fo
colloid-colloid interaction and the stabilization of colloida
suspension, could be investigated using the Hartree f
malism. If one assumes that the form of the polym
distribution function around a colloid is only weakly af
fected by the presence of other colloids, one can assoc
341
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the formation of bridges with the overlapping of the distri
bution functions around two colloids. It is not clear how
well the chosen trial function could describe the bridge
state, and this question is currently under investigation.

Another effect in more concentrated systems is th
screening of the electrostatic interactions due to the i
crease of the counter-ion concentration around th
charged complex. Such a screening can also be obser
by the adjunction of salt in the solution. The simples
way to deal with the screening is to substitute the Yukaw
screened electrostatic potential to the simple1yr potential
in Eqs. (2) and (4). However, such a procedure woul
not describe properly a possible rearrangement of th
polymer layer. The electrostatic repulsion felt by a give
monomer when the colloid is overcharged would b
screened by the counter-ions if this monomer is beyon
the screening length. This would lead to an increas
of the total charge of the complex. We have seen th
the reversal of the colloid charge, and the counter-io
condensation onto the colloid are related effects. A loo
in the polymer distribution might lead to the condensatio
of counter-ions. The effective charge of the colloid
along with the charge reversal, would then be reduce
In summary, the presence of a second length (the Deb
length lD) leads to a much more complex situation. If
this length is much larger than the collapse radius, th
present description is correct. IflD ø Rcolps on the
other hand, the interaction potential will be the Yukawa
potential, and the overcharging effect is weakened. Th
most complex and interesting case arises when bo
lengths are of the same order. This situation necessita
a much more thorough study, beyond the scope of th
present work.

Finally, we have seen that the geometry of the colloida
particle is of great importance in this problem. It would
be enlightening to derive the polymer distribution func
tion for any size of the colloidal particle radius. This way
we could describe more rigorously the crossover sketch
above, between a small spherical colloid with an impor
tant charge reversal, and the limit of a flat surface, whe
no overcharging is observed.
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