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Self-Organized Segregation within an Evolving Population
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An evolving population, in which individual members (“agents”) adapt their behavior according
past experience, is of central importance to many disciplines. Because of their limited knowledge
capabilities, agents are forced to make decisions based on inductive, rather than deductive, thin
We show that a population of competing agents with similar capabilities and knowledge will tend
self-segregate into opposing groups characterized by extreme behavior. Cautious agents perform p
and tend to become rare. [S0031-9007(99)08990-5]
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In physical systems, simple rules applied to a set
N $ 3 interacting objects can give rise to complex dy
namical behavior. Although generally intractable analy
cally, such problems are simplified considerably by th
fact that the interparticle interactions are typically insta
taneous, time independent, and decrease with increas
particle-particle separation. An arguably more comple
problem which is of central importance in social, eco
nomic, and biological sciences [1–5] is that of an evol
ing population in which individual members (“agents”
adapt their interactions, and hence behavior, according
their past experiences. Even the two-playersN ­ 2d pris-
oners’ dilemma game played by memoryless agents o
lattice has been shown numerically to yield rich spati
temporal patterns [6]. Evolutionary game theory has be
applied to such many-agent systems [7]. However, it
well known that such analysis provides little insight int
the system’s dynamics.

Of particular interest is the situation where agen
repeatedly compete for a limited resource, or to be in
minority. Rush-hour drivers, facing the nightly choic
between two alternative routes home, wish to choose
route containing the minority of traffic [8]. In financial
markets, more buyers than sellers implies higher pric
hence, it is better for a trader to be in the minorit
group of sellers. Animals (salesmen) foraging for foo
(customers) will do better if they hunt in areas with fewe
competitors. Regular attendees at a popular bar may
to avoid overcrowded evenings [2,5]. More generally, th
problem of how to flourish in a population of equally
ambitious people with similar capabilities, but where the
are typically more losers than winners, is one that ma
people face daily.

Here we introduce a simple, yet realistic, model fo
such an evolving population containing adaptive agen
who compete to be in the minority. Onlypartial infor-
mation about the system is available to the agents and
a priori “best” strategy exists: Agents are hence forced
make decisions based on inductive, rather than deduct
thinking. Each agent tries to learn from its past mistak
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and will adjust its strategy in order to survive. We fin
that a population of such agents with similar capabiliti
will tend to polarize itself into opposing groups. Althoug
a large number of possible strategies exist, the most s
cessful agents are those who behave in an extreme wa

Inspired by Ref. [9] we consider the model of a
odd numberN of agents repeatedly choosing wheth
to be in room “0” or room “1.” These agents coul
be daily traders or rush-hour drivers: choosing room
denotes choosing to buy a given asset or choosing to
route A, respectively, while 1 denotes choosing to s
the asset or choosing to take route B. After every ag
has independently chosen a room, the winners are th
in the minority room, i.e., the room with fewer agent
The “output” for each time step is a single binary dig
denoting the winning room. Each agent is given a
string of lengthm containing the previousm outcomes.
Each agent also has access to a common registe
“memory” containing the outcomes from the most rece
occurrences of all2m possible bit strings of lengthm.
Consider m ­ 3; denoting sxyzdw as the m ­ 3 bit
string sxyzd and outcomew, an example memory would
comprise (000)1, (001)0, (010)0, (011)1, (100)0, (101
(110)0, (111)1. Following a run of three wins for room
in the recent past, the winning room was subseque
1. Faced with a given bit string of lengthm, it might
seem sensible for an agent to simply predict the sa
outcome as that registered in the memory. The agent
hence choose room 1 following the next 000 sequen
If 0 turns out to be the winning room, the entry (000
in the memory is replaced by (000)0. If allN agents act
in this way, however, the system will be inefficient sinc
all agents will choose the same room and will hence lo
all the agents are spotting the same trends and assum
that they will continue indefinitely. Because of this, th
trend fails to continue. The critical quality of a success
financial trader, for example, is the ability to follow
trend as long as it is valid and to correctly predict wh
it will end. Hence we assign each agent a single num
or “strategy” p: Following a givenm-bit sequence,p
© 1999 The American Physical Society
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is the probability that the agent will choose the sam
outcome as that stored in the memory, i.e., he will follo
the current prediction, while1 2 p is the probability he
will choose the opposite, i.e., he will reject the curre
prediction. Using the example memory, the agent (e.
trader or driver) will choose 1 (e.g., sell or take route B
with probability p after spotting the sequence 000 or
(e.g., buy or take route A) with probability1 2 p.

Each time an agent gets into the minority (majority
room, he gains (loses) one point. If the agent’s sco
falls below a valued , 0, then his strategy is modified;
i.e., the agent gets a newp value which is chosen with
an equal probability from a range of values, center
on the old p, with a width equal toR. Hence d is
the number of times (or the amount of money) a driv
(or trader) is willing to be wrong (or to lose) before
modifying his/her strategy. Although this is a fairly
crude “learning” rule as far as machines are concern
[10], in our experience it is not too dissimilar from
the way that humans actually behave in practice. Sin
0 # p # 1, we can for simplicity enforce reflective
boundary conditions. Our conclusions do not depend
the particular choice of boundary conditions (see Fig.
Upon strategy modification, the agent’s score is reset
zero. ChangingR allows the way in which the agents
learn to be varied. ForR ­ 0, the strategies will never
change (though the memory will). IfR ­ 2, the strategies
before and after modification are uncorrelated. For sm
R, the newp value is close to the old one.

As agents (e.g., traders or drivers) are constantly
tempting to do the opposite of other agents, a reasona
expectation is that they should eventually organize the
selves so that their strategies are evenly spread wit
0 # p # 1. Alternatively, given that noa priori best
strategy exists, one might expect that agents would be a
bivalent as to whether a present trend will continue a
hence cluster aroundp ­ 1

2 . Surprisingly, the opposite is
true. Figure 1(a) shows the frequency distributionPspd at
various times. The distributionPspd eventually becomes
peaked aroundp ­ 0 and 1 (solid line) regardless of the
initial Pspd distribution; thesep values, respectively, cor-
respond to always or never following what happened la
time. The lifespanLspd, defined as the average length o
time a strategyp survives between modifications, show
similar behavior [solid line in Fig. 1(b)]. Henceforth we
denotePspd andLspd as representing the long-time lim
its (solid lines). If we consider the game simply as a ra
dom walk, with individual agents deciding randomly whic
room to choose, we would expect the mean number
room 0 or 1 to beNy2 with a standard deviation of

p
Ny4.

At each time step, the net number of points awarded w
therefore be2

p
N. The average lifespan would bed

p
N .

The observed average lifespan is indeed proportional
d
p

N. However, the average value of theLspd in Fig. 1(b)
(solid line) is larger thand

p
N by a factor of approxi-

mately 2 ford ­ 24, confirming that the agents are or
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FIG. 1. Distribution of (a) strategiesPspd. At t ­ 0, Pspd
was chosen to be flat. The dashed line showsPspd at
intermediate times. The solid line showsPspd at large times.
(b) Corresponding lifespansLspd. The parametersR ­ 0.2,
N ­ 101, d ­ 24, and m ­ 3. The dotted lines show the
long-time distributions using periodic (as opposed to reflectiv
boundary conditions.

ganizing themselves better than randomly. Furthermo
the root-mean-square (rms) separation of the strateg
is higher than the value for uniformPspd, indicating the
desire of agents to do the opposite of the majority.
increases withN due to increased possibilities for self
organization. Even whenR is large and the strategy val
ues are hence picked randomly upon modification, the r
strategy separation remains high. The rms strategy se
ration and the average value ofLspd are typically maximal
at R , 0.5; this is a compromise between a lack of lear
ing whenR , 0 and excessive strategy modification fo
largeR. We also note that the standard deviation of th
actual attendance time series for room 0 (or room 1) is le
than that obtained for agents choosing via independent c
tosses: This again confirms that the system is organiz
itself better than random.

Varying the length of the bit stringm has little effect
on Pspd and Lspd: Since all agents have simila
capabilities and available information, these benefits te
to cancel out. It is what each agent decides to do w
the common knowledge which matters (p ­ 0, 1 agents
outperformp ­ 1

2 agents). Similarly if the memory is not
3361
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TABLE I. Configuration classes showing the distribution of the three agents (each denoted byx) and the average points awarded
per time step for each strategy valuep. Also given are the number of distinct configurations per class and the average numb
points per agent per time step.

Class p ­ 0 p ­ 1y2 p ­ 1 No. configs. Avg. pts.yagent

(i) · · · xxxf21y2g f21y2g f21y2g · · · 1 f21y2g
(ii) xf21y2g xxf21y2g f21y2g · · · 3 f21y2g
(iii) xxf21g f21g xf0g · · · 3 f22y3g
(iv) xxxf21g f21g f21g · · · · · · 1 f21g
(v) · · · · · · xxxf21g f21g f21g 1 f21g
(vi) xf1g · · · xxf21g f21g 3 f21y3g
(vii) xxf21g f21g · · · xf1g 3 f21y3g
(viii) xf0g xf21g xf0g 6 f21y3g
(ix) · · · xxf21y2g f21y2g xf21y2g 3 f21y2g
(x) · · · xf0g xxf21g f21g 3 f22y3g
are
e
of

i),

th
nt;
e

ble

are
ain

e

e
elf-
s.

the
tly

ts.
u-
n
n,
updated dynamically according to the recent outcomes
discussed earlier but is instead kept constant (i.e., ti
independent) or is randomly chosen at each time st
thenPspd andLspd are also essentially unchanged. Onc
again, the memory is common to all agents and hen
all agents agree on the current prediction: No age
hence has any relative advantage in terms of availa
information [11]. It has been shown for the basic minori
game [12], in contrast to the claim in Ref. [11], tha
the memory is relevant since it can introduce hidd
correlations into the winning-room time series. Th
point will be discussed in detail for the present mod
elsewhere.

We now provide some analytic analysis. The simple
example of our system containsN ­ 3 agentsi, j, k with
brain sizem and three discretep valuesp ­ 0, 1

2 , 1. (The
fact that N , 3 is impossible suggests that our syste
contains the level of complexity typically associated wi
three-body, versus two-body, problems). All agents agr
on the current prediction (say 0). Agenti will choose
0 or 1 with probability pi and 1 2 pi , respectively—
likewise forj spjd andk spkd. The23 possible decisions
for ijk are 000, 001, 010, 100, 110, 101, 011, 11
There are33 ­ 27 possible configurationsspi , pj , pkd.
For a given spi , pj , pkd, the eight possible decisions
yield the expected gain for the agents. For examp
for spi , pj , pkd ­ s0, 0, 1

2 d, i and j both choose 1 while
k chooses 0 with probability1

2 . Hence k wins with
probability 1

2 , whereasi andj both lose. The net number
of points gained per agent per turn, given by the poin
awarded minus the points deducted, is21 for i, 21 for
j, and 0 fork. The total is hence22. Given that the
maximum is21 (there is a maximum of one winner) we
see thats0, 0, 1

2 d is not optimal.
Table I shows the various configuration types

classes. The last column shows the average points
agent: f2 1

2 g for class (i) implies the average agent lose
2

1
2 point per turn and would hence modify its strateg

after time 2d. Such strategy modification allows the
system to sample the 27 configurations. Classes (
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vi),

(vii), and (viii) are optimal, having maximum points. To
obtain the average distributionPspd and Lspd, we must
average over all 27 configurations. Since some classes
more favorable (i.e., more points) we should weight th
distributions in an appropriate way. In the extreme case
large weighting, we include only the optimal classes (v
(vii), and (viii), yielding Ps0d:Ps 1

2 d:Ps1d ­ 2.5:1:2.5 and
Ls0d:Ls 1

2 d:Ls1d ­ 5:1:5. For zero weighting, we instead
consider the system as visiting all configurations wi
equal probability regardless of points gained per age
such a zero-weight averaging is similar to that for th
microstates in a gas within the microcanonical ensem
and yieldsPs0d:Ps 1

2 d:Ps1d ­ 1:1:1 andLs0d:Ls 1
2 d:Ls1d ­

1:1:1. For an intermediate case, whereby all classes
weighted by the average points per agent, we obt
Ps0d:Ps 1

2 d:Ps1d ­ 1.1:1:1.1 and Ls0d:Ls 1
2 d:Ls1d ­ 1.5:1:

1.5. In fact, any sensible weighting which favors th
more profitable configurations yields a nonuniformPspd
andLspd as observed numerically. This implies that th
population, by self-segregating, has also managed to s
organize itself around the most profitable configuration
We emphasize that the system is dynamic since
membership of the various configurations is constan
changing (i, j, and k interdiffuse) but Pspd remains
essentially constant. For generalN we can loosely think
of i, j, k as three equal-size groups of like-minded agen

In summary, we have shown that an evolving pop
lation of agents with similar capabilities and informatio
will self-segregate. To flourish in such a populatio
an agent should behave in an extreme way (p ­ 0 or
p ­ 1).

We thank D. Challet and P. Binder for discussions.
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