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Self-Organized Segregation within an Evolving Population
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An evolving population, in which individual members (“agents”) adapt their behavior according to
past experience, is of central importance to many disciplines. Because of their limited knowledge and
capabilities, agents are forced to make decisions based on inductive, rather than deductive, thinking.
We show that a population of competing agents with similar capabilities and knowledge will tend to
self-segregate into opposing groups characterized by extreme behavior. Cautious agents perform poorly
and tend to become rare. [S0031-9007(99)08990-5]

PACS numbers: 05.65.+b, 02.50.Le, 64.75.+g, 87.23.Ge

In physical systems, simple rules applied to a set ofind will adjust its strategy in order to survive. We find
N = 3 interacting objects can give rise to complex dy-that a population of such agents with similar capabilities
namical behavior. Although generally intractable analyti-will tend to polarize itself into opposing groups. Although
cally, such problems are simplified considerably by thea large number of possible strategies exist, the most suc-
fact that the interparticle interactions are typically instan-cessful agents are those who behave in an extreme way.
taneous, time independent, and decrease with increasinglnspired by Ref. [9] we consider the model of an
particle-particle separation. An arguably more complexodd numberN of agents repeatedly choosing whether
problem which is of central importance in social, eco-to be in room “0” or room “1.” These agents could
nomic, and biological sciences [1-5] is that of an evolv-be daily traders or rush-hour drivers: choosing room 0
ing population in which individual members (“agents”) denotes choosing to buy a given asset or choosing to take
adapt their interactions, and hence behavior, according tmute A, respectively, while 1 denotes choosing to sell
their past experiences. Even the two-pla§fér= 2) pris-  the asset or choosing to take route B. After every agent
oners’ dilemma game played by memoryless agents on laas independently chosen a room, the winners are those
lattice has been shown numerically to yield rich spatio-in the minority room, i.e., the room with fewer agents.
temporal patterns [6]. Evolutionary game theory has beeifhe “output” for each time step is a single binary digit
applied to such many-agent systems [7]. However, it iglenoting the winning room. Each agent is given a bit
well known that such analysis provides little insight into string of lengthm containing the previous: outcomes.
the system’s dynamics. Each agent also has access to a common register or

Of particular interest is the situation where agents‘memory” containing the outcomes from the most recent
repeatedly compete for a limited resource, or to be in @ccurrences of alk™ possible bit strings of lengtlw.
minority. Rush-hour drivers, facing the nightly choice Consider m = 3; denoting (xyz)w as them = 3 bit
between two alternative routes home, wish to choose thstring (xyz) and outcomewv, an example memory would
route containing the minority of traffic [8]. In financial comprise (000)1, (001)0, (010)0, (011)1, (100)0, (101)1,
markets, more buyers than sellers implies higher priceg110)0, (111)1. Following a run of three wins for room 0
hence, it is better for a trader to be in the minorityin the recent past, the winning room was subsequently
group of sellers. Animals (salesmen) foraging for foodl. Faced with a given bit string of length, it might
(customers) will do better if they hunt in areas with fewerseem sensible for an agent to simply predict the same
competitors. Regular attendees at a popular bar may trgutcome as that registered in the memory. The agent will
to avoid overcrowded evenings [2,5]. More generally, thehence choose room 1 following the next 000 sequence.
problem of how to flourish in a population of equally If O turns out to be the winning room, the entry (000)1
ambitious people with similar capabilities, but where therein the memory is replaced by (000)0. If &l agents act
are typically more losers than winners, is one that manyn this way, however, the system will be inefficient since
people face dalily. all agents will choose the same room and will hence lose;

Here we introduce a simple, yet realistic, model forall the agents are spotting the same trends and assuming
such an evolving population containing adaptive agentshat they will continue indefinitely. Because of this, the
who compete to be in the minority. Onlyartial infor-  trend fails to continue. The critical quality of a successful
mation about the system is available to the agents and rfinancial trader, for example, is the ability to follow a
a priori “best” strategy exists: Agents are hence forced tarend as long as it is valid and to correctly predict when
make decisions based on inductive, rather than deductivé, will end. Hence we assign each agent a single number
thinking. Each agent tries to learn from its past mistake®r “strategy” p: Following a givenm-bit sequencep
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is the probability that the agent will choose the same 8 —
outcome as that stored in the memory, i.e., he will follow I
the current prediction, whilé — p is the probability he 6 L

will choose the opposite, i.e., he will reject the current
prediction. Using the example memory, the agent (e.g.,
trader or driver) will choose 1 (e.g., sell or take route B)
with probability p after spotting the sequence 000 or 0
(e.g., buy or take route A) with probability — p.

Each time an agent gets into the minority (majority) e
room, he gains (loses) one point. If the agent's score o Al
falls below a valued < 0, then his strategy is modified; 0 02 04 06 O
i.e., the agent gets a new value which is chosen with
an equal probability from a range of values, centered P
on the old p, with a width equal toR. Henced is 800
the number of times (or the amount of money) a driver
(or trader) is willing to be wrong (or to lose) before
modifying his/her strategy. Although this is a fairly 600
crude “learning” rule as far as machines are concerned - f
[10], in our experience it is not too dissimilar from £ 400 -
the way that humans actually behave in practice. Since -
0=p=1, we can for simplicity enforce reflective
boundary conditions. Our conclusions do not depend on
the particular choice of boundary conditions (see Fig. 1). 0
Upon strategy modification, the agent's score is reset to — —
zei)ro. Chan%}i/ngR allows the waygin which the agents 0 02 04 06 08 1
learn to be varied. FoR = 0, the strategies will never p
EZ?;r%eegZO;f%grtr}:weog}ﬁcr:g?ig/n\,\glrlt)e. ﬂcor%éltgéztraliglgﬁwa IG. 1. Distribution of (a) strategieB(p). At =0, P(p)

X . as chosen to be flat. The dashed line shoisp) at
R, the newp value is close to the old one. intermediate times. The solid line shows p) at large times.

As agents (e.g., traders or drivers) are constantly atth) Corresponding lifespans(p). The parameter® = 0.2,
tempting to do the opposite of other agents, a reasonabfé = 101, d = —4, and m = 3. The dotted lines show the
expectation is that they should eventually organize them't-?”@"tlme distributions using periodic (as opposed to reflective)

. - ... .boundary conditions.
selves so that their strategies are evenly spread within
0 = p = 1. Alternatively, given that na priori best
strategy exists, one might expect that agents would be anganizing themselves better than randomly. Furthermore,
bivalent as to whether a present trend will continue andhe root-mean-square (rms) separation of the strategies
hence cluster aroung = % Surprisingly, the opposite is is higher than the value for uniforrA(p), indicating the
true. Figure 1(a) shows the frequency distributiiip) at  desire of agents to do the opposite of the majority. It
various times. The distributioi( p) eventually becomes increases withV due to increased possibilities for self-
peaked aroungp = 0 and 1 (solid line) regardless of the organization. Even wheR is large and the strategy val-
initial P( p) distribution; these values, respectively, cor- ues are hence picked randomly upon modification, the rms
respond to always or never following what happened lasstrategy separation remains high. The rms strategy sepa-
time. The lifesparL(p), defined as the average length of ration and the average valuelfp) are typically maximal
time a strategyp survives between modifications, showsatR ~ 0.5; this is a compromise between a lack of learn-
similar behavior [solid line in Fig. 1(b)]. Henceforth we ing whenR ~ 0 and excessive strategy modification for
denoteP(p) andL(p) as representing the long-time lim- largeR. We also note that the standard deviation of the
its (solid lines). If we consider the game simply as a ran-actual attendance time series for room 0 (or room 1) is less
dom walk, with individual agents deciding randomly which than that obtained for agents choosing via independent coin
room to choose, we would expect the mean number inosses: This again confirms that the system is organizing
room O or 1 to beV /2 with a standard deviation QfN /4. itself better than random.
At each time step, the net number of points awarded will Varying the length of the bit string: has little effect
therefore be-+/N. The average lifespan would /N . on P(p) and L(p): Since all agents have similar
The observed average lifespan is indeed proportional toapabilities and available information, these benefits tend
d+/N. However, the average value of thép) in Fig. 1(b)  to cancel out. It is what each agent decides to do with
(solid line) is larger thand+/N by a factor of approxi- the common knowledge which matterg & 0,1 agents
mately 2 ford = —4, confirming that the agents are or- outperformp = % agents). Similarly if the memory is not
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TABLE |. Configuration classes showing the distribution of the three agents (each denatg¢dig the average points awarded
per time step for each strategy valpe Also given are the number of distinct configurations per class and the average number of
points per agent per time step.

Class p=0 p=1/2 p=1 No. configs. Avg. pts/agent
(i) xxx[—1/2][—1/2][-1/2] 1 [—1/2]
(i) x[—1/2] xx[—1/2][—1/2] 3 [-1/2]
(iii) xx[—1][—1] x[0] 3 [-2/3]
(iv) xxx[—=1][—=1][~1] 1 [—1]
(V) xxx[—1][=1][~1] 1 [—1]
(vi) x[1] xx[—1][—1] 3 [—1/3]
(vii) xx[—1][—1] x[1] 3 [-1/3]
(viii) x[0] x[—1] x[0] 6 [—1/3]
(ix) xx[—1/2][—1/2] x[—1/2] 3 [—1/2]
(x) x[0] xx[—1][—1] 3 [-2/3]

updated dynamically according to the recent outcomes awii), and (viii) are optimal, having maximum points. To
discussed earlier but is instead kept constant (i.e., timebtain the average distributioP(p) and L(p), we must
independent) or is randomly chosen at each time ste@verage over all 27 configurations. Since some classes are
thenP(p) andL(p) are also essentially unchanged. Oncemore favorable (i.e., more points) we should weight the
again, the memory is common to all agents and hencdistributions in an appropriate way. Inthe extreme case of
all agents agree on the current prediction: No agenkarge weighting, we include only the optimal classes (vi),
hence has any relative advantage in terms of availablgvii), and (viii), yielding P(0):P(5):P(1) = 2.5:1:2.5 and
information [11]. It has been shown for the basic minorityL(o);L(%);L(l) = 5:1:5. For zero weighting, we instead
game [12], in contrast to the claim in Ref. [11], that consider the system as visiting all configurations with
the memory is relevant since it can introduce hidderequal probability regardless of points gained per agent;
correlations into the winning-room time series. Thissuch a zero-weight averaging is similar to that for the
point will be discussed in detail for the present modelmicrostates in a gas within the microcanonical ensemble
elsewhere. and yieldsP(0):P(5):P(1) = 1:1:1 andL(0):L(3):L(1) =

We now provide some analytic analysis. The simplest:1:1. For an intermediate case, whereby all classes are
example of our system containé = 3 agentsi, j, k with  weighted by the average points per agent, we obtain
brain sizem and three discretg valuesp = 0, %,1. (The p(());P(%);P(1) = 1.1:1:1.1 and L(O):L(%):L(l) = 1.5:1:
fact that N < 3 is impossible suggests that our system1.5. In fact, any sensible weighting which favors the
contains the level of complexity typically associated withmore profitable configurations yields a nonunifoftp)
three-body, versus two-body, problems). All agents agreandL(p) as observed numerically. This implies that the
on the current prediction (say 0). Agentwill choose population, by self-segregating, has also managed to self-
0 or 1 with probability p; and 1 — p;, respectively— organize itself around the most profitable configurations.
likewise forj (p;) andk (px). The2® possible decisions We emphasize that the system is dynamic since the
for ijk are 000, 001, 010, 100, 110, 101, 011, 111.membership of the various configurations is constantly
There are3® = 27 possible configuration$p;, p;, px).  changing {, j, and k interdiffuse) butP(p) remains
For a given (p;, p;, pr), the eight possible decisions essentially constant. For genefdlwe can loosely think
yield the expected gain for the agents. For exampleof i, j, k as three equal-size groups of like-minded agents.
for (pi, pj» px) = (0,0,3), i and j both choose 1 while  In summary, we have shown that an evolving popu-
k chooses 0 with probability%. Hence k wins with  Ilation of agents with similar capabilities and information
probability%,whereas’ and; both lose. The net number will self-segregate. To flourish in such a population,
of points gained per agent per turn, given by the pointsin agent should behave in an extreme way= 0 or
awarded minus the points deducted-$ for i, —1 for p = 1).
j» and O fork. The total is hence-2. Given that the We thank D. Challet and P. Binder for discussions.
maximum is—1 (there is a maximum of one winner) we
see that0,0, 1) is not optimal.

Table | shows the various configuration types or
classes. Il'he last colgmn S,hOWS the average points pefl] P. Bak, How Nature Works(Oxford University Press,
agent: [—3] for class (i) implies the average agent loses ™~ oyforg 1997); S. KauffmanThe Origins of Order:

—3 point per turn and would hence modify its stratégy  Seif-Organization and Selection in Evolutioxford
after time 2d. Such strategy modification allows the University Press, New York, 1993); I. Stewaitjfe’s

system to sample the 27 configurations. Classes (vi), Other Secre{John Wiley, New York, 1998).
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