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Crossover from Fermi Liquid to Wigner Molecule Behavior in Quantum Dots
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The crossover from weak to strong correlations in parabolic quantum dots at zero magnetic fiel
studied by numerically exact path-integral Monte Carlo simulations for up to eight electrons. By
use of a multilevel blocking algorithm, the simulations are carried out free of the fermion sign proble
We obtain a universal crossover governed only by the density parameterrs. For rs . rc, the data are
consistent with a Wigner molecule description, while, forrs , rc, Fermi liquid behavior is recovered.
The crossover valuerc ø 4 is surprisingly small. [S0031-9007(99)08929-2]
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Quantum dots can be considered as solid-state artific
atoms with tunable properties. Confining a small num
ber of electronsN in a two-dimensional electron gas in
semiconductor heterostructures, a number of interesting
fects arising from the interplay between confinement a
the Coulomb interaction between the electrons can be
served [1,2]. Since the confinement potential is usua
quite shallow, the long-ranged Coulomb interaction amo
the electrons plays a prominent role, and in contrast to co
ventional atoms effective single-particle approximation
quickly become unreliable. In the low-density (strong
interaction) limit,rs ! `, classical considerations sugges
a Wigner crystal-like phase with electrons spatially a
ranged in shells [3]. With quantum fluctuations, such
phase is best described as a Wigner molecule. In contr
for high densities (weak interactions),rs ! 0, a Fermi
liquidlike description is expected to be valid, where it i
more appropriate to think of the behavior as resulting fro
the single-particle orbitals being filled. The noninteractin
limit [4] is then typically used as a starting point for the
theoretical description of quantum dots.

To date, no reliable information exists for the crossov
between these two limits. This is mainly due to a com
plete lack of sufficiently accurate methods that are able
cover the full range ofrs, especially when no magnetic
field is present. Exact diagonalization techniques are li
ited to very small particle numbers and smallrs; other-
wise, a large error due to the truncation of the Hilbert spa
arises [5]. Hartree-Fock calculations become increasin
unreliable for largers and are known to incorrectly favor
spin-polarized states [6]. Similarly, density functional ca
culations [7] introduce uncontrolled approximations in th
absence of exact reference data. In principle, the quant
Monte Carlo (QMC) method is the best candidate for pr
ducing reliable data for quantum dots. Unfortunately, th
notorious fermion sign problem makes direct QMC simu
lations almost impossible [8]. To avoid the sign problem
the fixed-node approximation and a related variational a
proach have been employed in Ref. [9], but the results a
no longer exact.
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In this Letter, we adopt a radically different approac
to fermion QMC simulations, based on the recen
developed multilevel blocking (MLB) algorithm [10,11]
The MLB algorithm is able to provide numerically exac
QMC results free of the sign problem. In this Lette
we report large-scale simulation results for the weak-
strong-correlation crossover for up to eight electrons. T
numerical results at largers are shown to agree with a
Wigner molecule description.

Model.—We study a two-dimensional parabolic qua
tum dot at zero magnetic field,
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where the positions (momenta) of the electrons are deno
by xjs pjd. The effective mass ismp, and the dielectric
constant isk. The MLB calculations are carried out a
fixed N and fixedS ­ sN" 2 N#dy2, the z component of
the total spin. We present results for the energy,E ­
kHl, the radial charge and spin densitiesrsrd and szsrd
normalized to

R`

0 dr 2prrsrd ­ N and
R

dr 2prszsrd ­
S, and the two-particle correlation function
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+
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gS is isotropic, and withy ­ ryl0 prefactors are cho-
sen such that

R`

0 dy ygSs yd ­ 1. The length scalel0 ­p
h̄ympv0 from the confinement allows the interactio

strength to be parametrized byl ­ l0ya ­ e2ykv0l0,
wherea is the effective Bohr radius. For any givenN and
l, the dimensionless density parameterrs can then be ob-
tained from the data,rs ­ rpya, whererp corresponds to
the first maximum in

P
S gSsrd. The values forrs obtained

this way agree well with the predictions of an electrosta
point-charge model [12]. In all simulations, the temper
ture was set toT ­ 0.1h̄v0ykB.

Method.—The simulation method is based on a sta
dard discretized path-integral representation of the obse
ables of interest, where the sampling is done according
© 1999 The American Physical Society
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the MLB algorithm described in detail in Ref. [10]. A
sample number [10] of at mostK ­ 600 was sufficient to
eliminate bias from the algorithm, and at the same tim
cured the sign problem. The simulations have been c
ried out on up to five levels in the MLB scheme. Dat
were collected from several104 samples for each parame-
ter sethN , S, lj, with a typical CPU time requirement of a
few days (for each set) on a SGI Octane workstation. A
a validation for this procedure, we have accurately repr
duced the exact diagonalization results forN ­ 2 elec-
trons [5].

Charge and spin densities.—Figure 1 shows the charge
density rsrd of the spin-polarized state forN ­ 5 to
8 electrons. While forl ­ 2 increasingN does not
changersrd qualitatively, the situation is different for
strong interactions (l ­ 8), signifying the onset of shell
formation in real space. Such a structure is clear eviden
for Wigner molecule behavior. The classical shell filling
sequence has been predicted recently [3]. ForN , 6,
there is only one shell, but the sixth electron ente
a new inner shell (1-5). Furthermore, forN ­ 7 the
shell filling is 1-6, and forN ­ 8 it is 1-7. These
predictions are in accordance with our data. Addition
simulations for up to 12 electrons atl ­ 8 (not shown
here) further verify the classical filling sequence. Th
only exception isN ­ 10, where we find a 3-7 instead
of the predicted 2-8 structure. Clear indications of
spatial shell structure atN $ 6 can be observed even
for l ­ 4, albeit significantly less pronounced than fo
l ­ 8. For l * 4, the charge densities are found to b
quite insensitive toS. This is expected for a Wigner
crystal where particle statistics and spin influence energ
or density correlations only weakly. Our numerica
results for the spin density in this regime simply follow
the corresponding charge density according toszsrd .
sSyNdrsrd. A significant S dependence of charge and
spin densities is observed only for weak correlations.

Crossover.—To quantitatively investigate the crossove
from weak to strong correlations, we employ the quantit

jN srsd ~
X
S,S0

Z `

0
dy yjgSs yd 2 gS0s ydj , (3)

normalized such that in the absence of interactio
jN ­ 1. The correlation functiongSsrd in Eq. (2) is a very
sensitive measure of Fermi statistics, in particula
revealing the spin-dependent correlation hole. Sin
interactions tend to destroy the Fermi surface, the sp
sensitivity ofgSsrd is largest for a Fermi gas,rs ­ 0. In
fact, for rs ! `, the correlation functiongSsrd becomes
completely spin independent. Hence the quantityjN srsd
decays from unity atrs ­ 0 down to zero asrs ! `. The
functional form of this decay is indicative of the crossove
under consideration.

As seen in Fig. 2, the crossover curvejN srsd becomes
remarkably universal and depends only weakly onN .
Its decay defines a crossover scalerc, where a simple
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exponential fit for smallrs yields rc ø 4. For rs . rc,
the functional form ofjsrsd is better described by

jsrsd ~ exp
≥
2

q
rsyr 0

c

¥
, (4)

wherer 0
c ø 1.2. We mention in passing that the WKB

estimate forkcSjHjcSl 2 kcS0 jHjcS0l exhibits the same
large-rs dependence. One can therefore argue that
spin sensitivity of the square of the eigenfunctionsjcSj2

also shows this behavior, and thereby rationalize Eq. (
The valuerc ø 4 is consistent with the appearance of sp
tial shell structures in the density profile. In addition, th
energy spectrum is in accordance with a Wigner mol
cule description forrs . rc (see below). Summarizing,
the crossover from weak to strong correlations is chara
terized by the rather small valuerc ø 4.

Parenthetically, we contrast this result with the valu
rWC

c ø 37 found for clean [13] andrdis
c ø 7.5 for disor-

dered [14] unbounded systems. The latter result provid
evidence that breaking the continuous translation inva
ance stabilizes the crystallized phase. The even smallerc

found here should then be due to the confinement. Caut
is advised with the thermodynamic limit,v0 ! 0 with rs

fixed, where plasmon modes eventually govern the lo
energy physics. There the valuerWC

c becomes relevant.
For GaAs-based structures withrs ­ 4, we estimate that

FIG. 1. Densityrsrd of the spin-polarized state (S ­ Ny2)
for l ­ 2 (top) and l ­ 8 (bottom). Dashed, solid, dash-
dotted, and dotted curves correspond toN ­ 5, 6, 7, and 8,
respectively. Units are such thatl0 ­ 1.
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spin-sensitive properties lose their significance only f
very large electron numbers,N * 104.

Energies.—MLB results for the energy at different
parameter setshN , S, lj are listed in Table I. For givenN
andl, if the ground state is (partially) spin polarized wit
spinS, the simulations should yield the same energies
all S0 , S. Within the accuracy of the calculation, thi
consistency check is indeed fulfilled.

Detailed data are given in Table I. ForN ­ 3 electrons,
asrs is increased, a transition occurs from theS ­ 1y2 to
a spin-polarizedS ­ 3y2 ground state at an interaction
strengthl ø 5 corresponding tors ø 8. For N ­ 4, we
encounter a Hund’s rule case. By using perturbation th
ory in rs, one may show that the interactions lead to
S ­ 1 ground state. From our data, this standard Hund
rule (which applies for smallrs) is seen to hold through-
out the full range ofrs, and the ground state spin stay
S ­ 1 even for largers. A similar situation arises for
N ­ 5 electrons, where the ground state is characteriz
by S ­ 1y2 for all rs. Turning toN ­ 6, while one has
filled orbitals and hence a zero-spin ground state for we
correlations, our results forl ­ 8 reveal a transition to a
S ­ 1 ground state asrs is increased. A similar transition
from a S ­ 1y2 ground state for weak correlations to
partially spin-polarizedS ­ 5y2 ground state is found for
N ­ 7 electrons. Finally, forN ­ 8, as expected from
Hund’s rule, aS ­ 1 ground state is observed for sma
rs. However, forl * 4, corresponding tors * 10, the
ground state is seen to have spinS ­ 2, in contrast to the
conventional Hund’s rule prediction.

For strong correlations,rs . rc, the energy levels and
their spin splittings differ considerably from what is ex
pected from a Fermi liquidlike orbital picture. In particu
lar, the ground state spinS can change and the excitatio

FIG. 2. Numerical results forjN srsd. Statistical errors are
of the order of the symbol size. The dotted curve, given
exps2rsyrcd with rc ­ 4, is a guide to the eye only. The inse
shows the same data on a semilogarithmic scale as a func
of

p
rs. The dashed line is given by Eq. (4).
3322
or

h
for
s

e-
a
’s

s

ed

ak

a

ll

-
-
n

by
t
tion

energy of higher-spin states becomes much smaller t
h̄v0. This level structure reflects the onset of shell form
tion in real space. In fact, our large-rs data in Table I can
be rationalized by starting from crystallized electrons l
cated at positions fixed by electrostatics, and then eva
ating the quantum corrections due to particle exchan
processes, namely, rotation and tunneling. Generaliz
the method of Ref. [15] by using semiclassical estimat
and group theory to satisfy the Pauli principle, detaile
predictions for low-energy spectra can be made in ter
of such aWigner molecule.While a detailed discussion
of the Wigner molecule will be given elsewhere, it is a
ready apparent from our previous discussion that the va
for rs where the ground state spin changes is not giv
by rc ø 4 but is typically larger. Therefore such trans
tions should be amenable to the Wigner molecule conce
which is indeed the case.

The preceding findings for the energy imply sever
novel and nontrivial consequences for transport expe
ments made by weakly coupling the dot to electrodes.
particular, the addition energies following from Table I de
termine the positions of the conductance peaks measu
experimentally by capacitance spectroscopy [1] or by li
ear transport [2]. Furthermore, high spins occurring clo
to the ground state energy can lead to negative differen
conductances in transport measurements, or even to
disappearance of a conductance peak at low temperat

TABLE I. MLB data for the energy for varioushN , S, lj pa-
rameter sets. Bracketed numbers denote statistical errors.

N S l Eyh̄v0 N S l Eyh̄v0

3 3y2 2 8.37(1) 5 5y2 8 42.86(4)
3 1y2 2 8.02(1) 5 3y2 8 42.82(2)
3 3y2 4 11.05(1) 5 1y2 8 42.75(2)
3 1y2 4 10.98(1) 5 5y2 10 48.79(2)
3 3y2 6 13.43(1) 5 3y2 10 48.78(3)
3 3y2 8 15.59(1) 5 1y2 10 48.76(2)
3 3y2 10 17.60(1) 6 3 8 60.42(2)
4 2 2 14.30(5) 6 1 8 60.37(2)
4 1 2 13.414(8) 7 7y2 8 80.59(4)
4 2 4 19.42(1) 7 5y2 8 80.45(4)
4 1 4 18.941(8) 8 4 2 48.3(2)
4 2 6 23.790(12) 8 3 2 47.5(4)
4 1 6 23.624(8) 8 2 2 45.8(3)
4 2 8 27.823(11) 8 1 2 45.6(3)
4 1 8 27.714(8) 8 4 4 69.2(1)
4 2 10 31.538(12) 8 3 4 67.6(3)
4 1 10 31.476(5) 8 2 4 67.3(3)
5 5y2 2 21.29(6) 8 1 4 67.4(3)
5 3y2 2 20.5(1) 8 4 6 86.92(6)
5 1y2 2 20.02(4) 8 3 6 86.82(5)
5 5y2 4 29.12(6) 8 2 6 86.74(4)
5 3y2 4 28.96(4) 8 1 6 86.69(3)
5 1y2 4 28.81(3) 8 4 8 103.26(5)
5 5y2 6 36.44(3) 8 3 8 103.19(4)
5 3y2 6 36.34(2) 8 2 8 103.08(4)
5 1y2 6 36.21(2)



VOLUME 82, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 19 APRIL 1999

nd
e

v.

,

.

.

(spin blockade) [16]. According to Table I,N ­ 6 would
be a possible candidate in which to find negative differe
tial conductances for the transition toN ­ 5 for rs * 15,
corresponding tōhv0 & 0.4 meV in a GaAs-based quan-
tum dot. Furthermore, the spin-polarized ground state f
N ­ 3 at l * 5 implies that the direct transition into the
S ­ 0 ground state forN ­ 2 is spin forbidden. The cor-
responding conductance peak should then disappear
h̄v0 & 0.5 meV. A similar situation arises for theN ­ 7
to N ­ 6 transition ath̄v0 & 0.4 meV. Such phenom-
ena cannot occur in the weakly interacting regimers , rc,
where entering or escaping electrons are accommodate
effective single-particle orbitals together with their spins
We note that sufficiently large quantum dots allowing fo
experimental studies of the Wigner molecule phase a
within reach of current technology [17].

To conclude, we have presented numerically exa
QMC results for parabolic quantum dots covering th
full crossover from weak (rs ! 0) to strong (rs ! `)
correlations. The turnover from Fermi liquid to Wigne
molecule-like behavior is basically independent of th
particle number and characterized by an astonishing
small crossover scale,rc ø 4. Energy spectra in the low-
density regimers . rc differ from single-particle expec-
tations but can be described within a Wigner molecu
approach. Detailed predictions have been made for t
Wigner molecule phase, which should be directly acce
sible to current experiments. It is straightforward (an
left to future MLB studies) to study other confinements o
interaction potentials, or to include a magnetic field.
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