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Wigner Crystal Model of Counterion Induced Bundle Formation of Rodlike Polyelectrolytes

B. I. Shklovskii
Theoretical Physics Institute, University of Minnesota, 116 Church Street S.E., Minneapolis, Minnesota 55455

(Received 1 October 1998)

A simple electrostatic theory of condensation of rodlike polyelectrolytes under influence of polyvalent
counterions is proposed. It is based on the idea that counterions form a Wigner crystal on a background
of a bundle of rods. It is shown that, depending on a single dimensionless parameter, this can be a
densely packed three-dimensional Wigner crystal or a two-dimensional crystal on the rod surfaces. For
DNA the location of charge on the spiral results in a model of the one-dimensional Wigner crystal. It
is also argued that the Wigner crystal idea can be applied to self-assembly of other polyelectrolytes, for
example, colloids and DNA-lipid complexes. [S0031-9007(99)08957-7]

PACS numbers: 61.20.Qg, 61.25.Hq, 77.84.Jd
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Many rodlike polyelectrolytes, such as double heli
DNA [1], F-actin, microtubules, and tobacco mosai
virus [2] are known to self-assemble into bundles o
parallel densely packed rods. All these macromolecul
are negatively charged and their lateral association
induced by Z-valent cations whereZ $ 2. For DNA
this phenomenon is called condensation and is stud
in connection with the dense packing of viral DNA
According to the mean field Poisson-Boltzmann theor
two parallel rods should always repel each other. Tw
physical phenomena which are not included in this theo
were suggested as possible reasons for the puzzl
attraction [3–11]. When distance between rods is lar
their attraction is related to the correlation of therma
fluctuations of screening atmospheres of two rods.
smaller distances one should take into account that t
Manning condensation of ions on the surface of rod
leads to strong spatial correlations of ions or even
their crystallization. In this situation, two crystals with
proper phases attract each other. Below I calculate t
binding energy of a dense bundle and therefore talk on
about the second mechanism. I also resolve an import
contradiction in the literature. Most of the publication
deal with two rods and calculate a pairwise force actin
between them [3–9]. On the other hand, two rece
publications [10,11] claim that bundles are formed b
non-pairwise-additive interaction.

The first goal of this paper is to present a theory o
attractive interactions of rodlike polyelectrolytes, base
solely on electrostatic interactions. It considers formatio
of densely packed bundles in a very dilute solution o
cylindrical rodlike molecules of the radiusr and length
L ¿ r. It assumes that the cylindrical surface of a rod
negatively charged with the charge density2eyb per unit
length of the rod. Pointlike positive ions with the charg
Ze are added to the solution.

The main idea of this paper is that a bundle of parall
rods can be considered as a uniform negative backgrou
at which condensed ions form the Wigner crystal (WCR
The cohesive energy of this crystal is the reason for t
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attraction and the bundle formation. (This idea is simil
to the theory of matter in a superstrong magnetic fie
of a neutron star where electrons behave as nega
rods and nuclei form the WCR on the background
electron bundles [12].) For the case in which ion
cannot penetrate the rods, the binding energy of
bundle per rod is calculated below as the function
the dimensionless parameterZbyr. The result is that for
Zbyr ¿ 1, the three-dimensional (3D) densely packe
WCR is formed and interaction is not-pairwise-additiv
In the opposite case,Zbyr ø 1 the 2D WCR appears on
the surface of each rod and the interaction becomes sh
range pairwise. My results in the first case qualitative
resemble Ref. [11], while in the second case this pa
is close to Ref. [9], where the idea of the surface WC
was originally suggested. None of these papers, howe
produced simple analytical dependencies similar to th
which I derive below usingZbyr as a large or small
parameter of the theory.

The second half of this paper concentrates on
specifics of DNA where surface charges form a spir
I show that this leads to the appearance of the 1D spi
like Wigner crystal of ions on the surface of each ro
Interaction of such crystals may determine the DN
condensation. It is also argued that the idea of a WC
can be applied not only to the rods, but also to t
self-assembly of many other different polyelectrolytes.
apply this theory to colloids and complexes of DNA wit
cationic lipid membranes.

Returning to the main problem of rods and pointlik
counterions, I argue that for sufficiently large dimensio
less parameterZj, wherej  e2ybkkBT and k is the
effective dielectric constant of the water-polymer sy
tem, rods condense in the maximum density cylindric
bundles ofN parallel molecules. At largeZj the charge
of the bundle is almost completely compensated by
opposite charge ofNLyb of positive ions which con-
dense inside the bundle. To find a configuration of co
densed ions, one can view the bundle as the uniform
charged cylindrical background. The potential energy
© 1999 The American Physical Society
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the Coulomb repulsion of ions in these conditions is mu
larger than their kinetic energy. Therefore, they form th
WCR on the negative background. Assume first thatN
is so large that the radius of the bundlerN1y2 is much
larger than the lattice constant of the WCRR. In this
case ions form a densely packed 3D crystal. One can e
ily calculateR from the condition that the charge of the
Wigner-Seitz cell,R3ybr2, equalsZ. This gives

R , sZbr2d1y3. (1)

ComparingR with the bundle radiusrN1y2 one finds that
the 3D case takes place atN ¿ Nc  sZbyrd2y3. ( In the
opposite caseN ø Nc ions form 1D crystal as shown
below.) I assume that ions cannot penetrate rods. Th
ions can fit in the free space between rods without stro
deformation of the 3D crystal only atR ¿ r. According
to Eq. (1) this inequality means thatZbyr ¿ 1. Now
we see how the important parameterZbyr appears in the
theory. Assuming, for the beginning, that rods are narro
and weakly charged so thatZbyr ¿ 1 one finds that
Nc ¿ 1 so that both situationsN ¿ Nc and N ø Nc

have to be considered.
The binding energy of a crystal per ion,́i, can be

estimated as the energy of interaction of an ion with i
Wigner-Seitz cell

´i ,
Z2e2

kR
. (2)

SubstitutingR from Eq. (1) one obtains

´i ,
Ze2

kb
sZbyrd2y3 sZbyr ¿ 1; N ¿ Ncd . (3)

If N ø Nc, the bundle is narrow and the ions form
1D WCR, lattice constant of which,R, is equal toZbyN .
Then, the energy of interaction of an ion with its Wigne
Seitz cell is

´i ,
Ze2N

kb
lnsNcyNd sZbyr ¿ 1; N ø Ncd . (4)

It is easy to verify that Eq. (2) matches Eq. (3) atN ,
Nc. Thus, atZbyr ¿ 1, the energy per ion,́ i, grows
linearly at smallN and reaches saturation atN ¿ Nc.
This is a clear demonstration of a nonpairwise additiv
interaction. Of course, the surface correction to th
energy of the bundle provides some growth even atN ¿
Nc and leads to formation of macroscopic bundles.

In order to obtain the binding energy per molecul
Eqs. (3) and (4) have to be multiplied by the numb
of ions per molecule,M  LybZ. This transition does
not change the dependence onN . Therefore below I will
continue to present results in the form of´i.

Before switching to the more complicated cas
Zbyr ø 1, I discuss the condition on the temperatur
T or, in other words, on the parameterZj at which
the theory suggested above is valid. Consider a lar
almost neutral bundle of 3D densely packed WCR.
kBT ø ´i the thermal motion can be neglected and m
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theory is valid. Using Eq. (3) one can rewrite inequali
kBT ø ´i as

Zj ¿ sryZbd2y3. (5)

At Zbyr ¿ 1 this inequality is much weaker than th
standard conditionZj ¿ 1 of the Manning condensation
of ions with chargeZ at an isolated molecule, becaus
of the simultaneous interaction of each ion with man
rods. Even if one usesk  81 of pure water,j , 4 at
room temperature, and the condition of Eq. (5) is eas
fulfilled.

One can also argue that at finiteT even a large bun-
dle filled by the WCR becomes charged and therefo
nonpairwise repulsion energy should be taken into a
count. To estimate corresponding correctionD´i to the
binding energy per ion recall that according to Onsag
Manning theory a long cylindrical bundle ofN rods has
uncompensated chargekskBT dysZed per unit length. This
charge creates energykLskBT d2ysZ2e2d per unit length of
the bundle. HereL  lnsrsyrN1y2d , lns1ycd, rs is the
screening radius of the bulk solution, andc is relative con-
centration of ions in the solution. To calculateD´i this
energy should be divided by the number of ions per u
length,NysZbd. Using then Eq. (3) one obtains

D´i

´i


sryZbd2y3

NsZjd2 lns1ycd ø 1 . (6)

The last inequality follows from Eq. (5) and inequalit
NZj ¿ lns1ycd, which in turn is easy to satisfy for
large N at Z  3 (Zj , 12) and for any reasonablec.
Thus, net charge of the bundle does not create stron
limitations for this theory than Eq. (5).

It is obvious that when Eq. (5) is valid, the maximum
density bundle is more strongly bounded than one w
the smaller density. Indeed, the decreasing density res
in the increase of the lattice constantR and, according
to Eq. (2), substantially diminisheśi. At the same time
the increase of the entropy term in free energy cann
compensate for this loss in the binding energy.

As stated above, this theory works ifkBT ø ´i.
Actually the WCR melts whenkBT is yet numerically
much smaller thań i, so in experimental conditions one
deals with strongly correlated liquid, not a crystal. Thi
however, does not change the estimate for its correlat
energy and for´i and leaves unchanged the validit
criterion of the theory. The fact that it is the short rang
order of ions which is responsible for the attraction
rods at a finite temperature was emphasized in Ref. [
Below, I continue to use the WCR language because
creates a simpler image.

Consider now more strongly charged and thicker ro
for whichZbyr ø 1. In this caseNc ø 1 and, therefore,
one has to deal only with a 3D problem. However, th
rods are so thick that their radius is larger than the latt
constant of the optimal densely packed crystal. If, as
assumed, ions cannot penetrate rods, the optimal den
3269
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packed crystal cannot be formed. Under this restrictio
ions condense at the surface of each rod forming the
WCR [9] with the lattice constant

R , sZbrd1y2. (7)

An insulated rod has a similar crystal at its surface. T
binding energy of the bundle originates in narrow conta
stripes where rods pairwise contact each other so t
their WCRs overlap. The widthW of this stripe will
be calculated below. Inside the stripe, densities of bo
negative background and positive ions are doubled and
local lattice constantRs becomes smaller (Rs  Ry

p
2).

As a result, according to Eqs. (2), the cohesive energy
the crystal per ion of the stripe becomes larger than for t
case of the two separated rods. Combining Eqs. (2) a
(7), one finds that the binding energy of the bundle p
one ion of the stripe equalsZ3y2e2ysbrd1y2. To get´i one
must multiply this energy by the fraction,p , Wyr, of
all ions of the bundle which reside in the contact stripe
The widthW can be found from the condition that at th
distanceW from the line of contact, the surfaces of two
contacting rods diverge from each other at the distance
the order ofR. Indeed, the interaction between 2D Wigne
crystals is exponentially weak if the distance betwee
parallel planes in which they are situated is larger than th
lattice constantR. A simple geometrical estimate gives
W , srRd1y2. Finishing the calculation of́ i one obtains

´i ,
Ze2

kb
sZbyrd3y4 sZbyr ø 1; N ¿ 1d . (8)

Together Eqs. (3) and (8) give binding energy per io
of a 3D crystal at all valuesZbyr. At Zbyr  1 they
obviously match each other. AtZbyr ø 1 energy given
by Eq. (8) is smaller than the one from Eq. (3). Th
is a natural result of the restriction that ions do no
penetrate rods.

Consider now the validity of the main assumption
that an array of negative discrete charges on the r
surface can be effectively replaced by an uniform negati
background. This idea works exactly only in the lim
Z ¿ 1. On the other hand, it fails atZ  1 because in
the low temperature limit all ions and discrete negativ
charges form neutral Bjerum pairs and nothing depen
on the mutual positions of the rods. Thus,´i  0 at
Z  1. What happens atZ $ 2 depends on the spatia
distribution of the discreet negative charges. If they a
distributed randomly, then atZ  2 Eqs. (3), (4), and
(8) overestimaté i roughly by a factor of 2, while at
Z $ 3 they work well. On the other hand, when negativ
charges are clustered,´i can be much lower even atZ  3.
Imagine, for example, that negative charges form comp
triplets. Each one would be neutralized by an ion and´i

would vanish. A more interesting effect of concentratio
of negative charges in DNA is discussed below.

But first assume that the surface of DNA is uniforml
negatively charged. For DNAb  0.17 nm and r 
1 nm, so thatZ  6 is the border between range of validity
3270
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of Eqs. (3) and (8). This means that for DNA in thi
model, attraction is due to the short range pairwise intera
tion of molecules induced by correlation between their su
face WCRs. This conclusion is in agreement with Ref. [9

Recall now that in DNA, negative charges are locate
along two spirals which are separated by wide and narr
grooves. For simplicity, assume that the width of the na
row one is zero, which leaves only one spiral of the neg
tive charge with the double density. (This approximatio
of course, overestimates the inhomogeniety of the negat
charge distribution and can be easily avoided with min
change in the result.) Ions tend to concentrate on the sa
spiral and form the 1D Wigner crystal along it. When tw
parallel DNA rods touch each other by these crystaline s
rals (for this purpose one rod should be shifted along th
direction by the half of the helical period) they create a sp
with larger binding energy per ion. Thus, attraction is pro
duced in a way very similar to the case of contacting 2
crystals discussed above. Extending this analogy for t
contacting DNA molecules, one can introduce the conta
stripe where attraction is generated. The only difference
that the width of this stripeW is smaller for DNA, because
the WCR spirals of the two contacting DNA molecules d
verge not only in the plain perpendicular to the rods b
also along the direction of the rods (spirals cross at a
nite angle). One can find thatW , Rrynb , R, where
R  pryn is a period of the 1D crystal andn  10 is the
number of base pairs in the helix period. Thus, rough
speaking, only one ion per helix period adjusts its positio
due to the contact and contributes to the binding energy
the two contacting rods. Multiplying Eq. (2) by the frac
tion of such ionsRy2pr one obtains

´i ,
Ze2

kb
Zb

2pr
. (9)

At Zbyr ø 1, Eq. (9) gives smaller energy than Eq. (8
This is an effect of concentration of negative charges
the spiral. Note that this effect is exactly opposite to th
prediction of Ref. [13]. The reason for this differenc
is that the authors of Ref. [13] assumed that charge
ions is uniformly distributed over DNA surface, so tha
negative and positive charges are strongly separated. S
a separation of charge costs a large electrostatic energy
can happen only if nonelectrostatic forces dominate. The
forces are beyond the scope of this work.

One might wonder whether each contacting pair
DNA molecules in a bundle can gain the energy give
by Eq. (9). This can be easily done in a square latti
of rods, with one square sublattice shifted along the r
direction by the half of the helical period. In a dense
packed hexagonal lattice one can shift in the same w
every second layer, so that each rod is attracted to fo
of its neighbors. Thus in the approximation of one spir
both lattices have the same energy.

Note that, literally speaking, this theory is applicabl
only to molecules of DNA which are shorter than it



VOLUME 82, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 19 APRIL 1999

ons
e
rm

nd
g
o
he
e

is
he

d
to
ing
ct
ts

of
he
s

.
e
ter

r.

nd

.
-

.

,

persistent length. It is known that in a weak DNA solutio
of longer molecules, each molecule self-assembles in
a toroidal particle, where locally strands of all turns ar
parallel to each other. Theory of this paper is applicab
to toroidal particles as well.

Although three-dimensional densely packed WCR o
ions is not realized in DNA bundles (forZ , 6), many
other rodlike polyelectrolytes are known. Some of the
are narrower or more weakly charged so thatZbyr ¿ 1
and 3D crystal of ions should appear. PPP3 withbyr , 2
is a good example [14].

The idea of WCR can be applied also to the attractio
of rigid spheres. Thinking about colloids, assume that th
surface of sphere is charged negatively and positive io
cannot penetrate it. If spheres are large enough, ions fo
the 2D WCR at the surface of a sphere. This leads
contact attraction of spheres similar to the one calculat
above for two contacting cylinders. The binding energ
of two spheres with the radiusr and the charge2Qe,
originates in the contact disc of the radiussrRd1y2, where
r is the sphere radius,R is the lattice constant of the
WCR. (This disc is an analog of the contact stripe fo
two cylinders. See computer simulation of such a dis
in Ref. [15]). The additional energy per ion of the dis
is gained, because the disc has a denser background
a larger ion density than the rest of the surfaces of t
spheres. Once moréi is given by Eq. (2). Multiplying
this energy by the number of ions in such a disc,ryR,
and substitutingR , rsZyQd1y2 one gets a surprisingly
simple expression for the binding energy of two spheres

´ ,
ZQe2

kr
, (10)

which looks like a Coulomb attraction energy of the
spherical colloid particle and a single ion at its surfac
Equation (10) fails with the decrease of the ion conce
tration in the solution,c, when each sphere acquires th
net negative charge sufficient to overcome calculated
traction. This happens atkBT lns1ycd , Z2e2ykR. At
lower temperature Eq. (10) gives energy which is larg
than proportional toT depletion energy of Ref. [15].

There are other applications of the WCR concep
Counterions should not necessarily be small. One c
consider condensation of larger and stronger charg
counterions, for example, micelles, on a charged rig
surface. Because of strong Coulomb repulsion th
should form a 2D WCR. Rodlike counterions als
condense on a charged surface. Parallel rods form
periodic array so that their crossections form 1D WCR
In the case of DNA condensed on a supported cation
membrane beautiful images of such a crystal are availa
[16]. The uniform 3D background for rodlike counterion
can be provided by the stack of positive parallel shee
Complexes of DNA with cationic lipid membranes are
good examples of such a system [17]. All the rods orie
themselves parallel to each other and to the sheets. A
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small enough sheet thickness, the circular cross secti
of rods should form the 2D WCR similar to vortex lattic
in superconductors, while at larger thicknesses they fo
parallel 1D crystals in the gaps between sheets.

In conclusion, this paper studies the attraction a
self-assembly of rigid polyelectrolytes due to stron
correlations in positions of polyvalent counterions. T
describe these correlations, I adopt the notion of t
WCR. For rods I find that, depending on the valu
of a single dimensionless combination,Zbyr, optimal
cofiguration of ions on the background of a bundle
the 3D densely packed WCR or the 2D crystal on t
surface of rods. When applying this theory to DNA
condensation I introduce the notion of 1D spiral WCR an
estimate the binding energy of two DNA helixes due
the contact of these crystals. I also calculate the bind
energy of two colloidal particles created by the conta
of WCRs of ions on their surfaces. Future developmen
of this work should include such factors as behavior
the dielectric constant of water at small distances, t
finite size of counterions, and more realistic distribution
of polyelectrolyte charges.
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