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Wigner Crystal Model of Counterion Induced Bundle Formation of Rodlike Polyelectrolytes
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A simple electrostatic theory of condensation of rodlike polyelectrolytes under influence of polyvalent
counterions is proposed. It is based on the idea that counterions form a Wigner crystal on a background
of a bundle of rods. It is shown that, depending on a single dimensionless parameter, this can be a
densely packed three-dimensional Wigner crystal or a two-dimensional crystal on the rod surfaces. For
DNA the location of charge on the spiral results in a model of the one-dimensional Wigner crystal. It
is also argued that the Wigner crystal idea can be applied to self-assembly of other polyelectrolytes, for
example, colloids and DNA-lipid complexes. [S0031-9007(99)08957-7]

PACS numbers: 61.20.Qg, 61.25.Hq, 77.84.Jd

Many rodlike polyelectrolytes, such as double helixattraction and the bundle formation. (This idea is similar
DNA [1], F-actin, microtubules, and tobacco mosaicto the theory of matter in a superstrong magnetic field
virus [2] are known to self-assemble into bundles ofof a neutron star where electrons behave as negative
parallel densely packed rods. All these macromoleculesods and nuclei form the WCR on the background of
are negatively charged and their lateral association islectron bundles [12].) For the case in which ions
induced byZ-valent cations whereZ = 2. For DNA  cannot penetrate the rods, the binding energy of the
this phenomenon is called condensation and is studiedundle per rod is calculated below as the function of
in connection with the dense packing of viral DNA. the dimensionless parametéb/r. The result is that for
According to the mean field Poisson-Boltzmann theoryZb/r > 1, the three-dimensional (3D) densely packed
two parallel rods should always repel each other. TwdVNCR is formed and interaction is not-pairwise-additive.
physical phenomena which are not included in this theoryn the opposite cas&,b/r < 1 the 2D WCR appears on
were suggested as possible reasons for the puzzlinge surface of each rod and the interaction becomes short-
attraction [3—11]. When distance between rods is largeange pairwise. My results in the first case qualitatively
their attraction is related to the correlation of thermalresemble Ref. [11], while in the second case this paper
fluctuations of screening atmospheres of two rods. Ais close to Ref. [9], where the idea of the surface WCR
smaller distances one should take into account that thevas originally suggested. None of these papers, however,
Manning condensation of ions on the surface of rodgroduced simple analytical dependencies similar to those
leads to strong spatial correlations of ions or even tawvhich | derive below usingZb/r as a large or small
their crystallization. In this situation, two crystals with parameter of the theory.
proper phases attract each other. Below | calculate the The second half of this paper concentrates on the
binding energy of a dense bundle and therefore talk onlgpecifics of DNA where surface charges form a spiral.
about the second mechanism. | also resolve an importahtshow that this leads to the appearance of the 1D spiral-
contradiction in the literature. Most of the publications like Wigner crystal of ions on the surface of each rod.
deal with two rods and calculate a pairwise force actingnteraction of such crystals may determine the DNA
between them [3-9]. On the other hand, two recentondensation. It is also argued that the idea of a WCR
publications [10,11] claim that bundles are formed bycan be applied not only to the rods, but also to the
non-pairwise-additive interaction. self-assembly of many other different polyelectrolytes. |

The first goal of this paper is to present a theory ofapply this theory to colloids and complexes of DNA with
attractive interactions of rodlike polyelectrolytes, basedcationic lipid membranes.
solely on electrostatic interactions. It considers formation Returning to the main problem of rods and pointlike
of densely packed bundles in a very dilute solution ofcounterions, | argue that for sufficiently large dimension-
cylindrical rodlike molecules of the radius and length less parameteZ ¢, where & = e?/bkkpT and k is the
L > r. It assumes that the cylindrical surface of a rod iseffective dielectric constant of the water-polymer sys-
negatively charged with the charge density/b per unit  tem, rods condense in the maximum density cylindrical
length of the rod. Pointlike positive ions with the chargebundles ofN parallel molecules. At largg€¢ the charge
Ze are added to the solution. of the bundle is almost completely compensated by the

The main idea of this paper is that a bundle of parallebpposite charge ofNL/b of positive ions which con-
rods can be considered as a uniform negative backgrourdense inside the bundle. To find a configuration of con-
at which condensed ions form the Wigner crystal (WCR).densed ions, one can view the bundle as the uniformly
The cohesive energy of this crystal is the reason for theharged cylindrical background. The potential energy of
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the Coulomb repulsion of ions in these conditions is muchheory is valid. Using Eq. (3) one can rewrite inequality
larger than their kinetic energy. Therefore, they form thekzT < ¢; as
WCR on the negative background. Assume first tNat 2/3
is so large that the radius of the bundly!/? is much Z& > (r/Zb7. ©)
larger than the lattice constant of the WGQR In this At Zb/r > 1 this inequality is much weaker than the
case ions form a densely packed 3D crystal. One can eastandard conditioZ ¢ > 1 of the Manning condensation
ily calculateR from the condition that the charge of the of ions with chargeZ at an isolated molecule, because
Wigner-Seitz cellR?/br?, equalsZ. This gives of the simultaneous interaction of each ion with many
R ~ (Zbr2)1/3. 1) rods. Even if one uses = 81 of pure water,¢é ~ 4 at

, . . i room temperature, and the condition of Eq. (5) is easily
ComparingR with the bundle radiusN'/2 one finds that fulfilled.

the 3D case takes placeMt>> N. = (Zb/r)*”*. (In the One can also argue that at finife even a large bun-

opposite caseV < N, ions form 1D crystal as shown ge fijled by the WCR becomes charged and therefore
below.) | assume that ions cannot penetrate rods. Thefonpairwise repulsion energy should be taken into ac-
ions can fit in the free space between rods without strongont. To estimate corresponding correctida; to the
deformation of the 3D crystal only & > r. According  pinding energy per ion recall that according to Onsager-
to Eq. (1) this inequality means thah/r > 1. NoW  \anning theory a long cylindrical bundle of rods has
we see how the important parame#&r/r appears in the  ncompensated chargéksT)/(Ze) per unit length. This
theory. Assuming, for the beginning, that rods are NarroWharge creates eneray. (kzT)2/(Z2¢2) per unit length of
and weakly charged so thath/r > 1 one finds that ihe pundle. Herd, = In(r,/rN"/2) ~ In(1/¢), r, is the
Ne > 1 so that both situation&y > N. and N < N.  gcreening radius of the bulk solution, ands relative con-
have to be considered. _ centration of ions in the solution. To calculate:; this

The binding energy of a crystal per ios,, can be gnergy should be divided by the number of ions per unit
estimated as the energy of interaction of an ion with itSength, N /(Zb). Using then Eq. (3) one obtains
Wigner-Seitz cell

Ag; (r/Zb)*?

2) & N(Z¢)?
The last inequality follows from Eg. (5) and inequality
X NZ£& > In(1/c), which in turn is easy to satisfy for
g; ~ Zi(Zb/r)m (Zb/r > 1N > N,). (3) large N at Z = 3 (Z¢ ~ 12) and for any reasonable.
kb Thus, net charge of the bundle does not create stronger
If N < N., the bundle is narrow and the ions form a limitations for this theory than Eq. (5).

Z%e?
T KR
SubstitutingR from Eq. (1) one obtains

In(1/c) < 1. (6)

€i

1D WCR, lattice constant of whiclR, is equal toZb /N . It is obvious that when Eq. (5) is valid, the maximum
Then, the energy of interaction of an ion with its Wigner- density bundle is more strongly bounded than one with
Seitz cell is the smaller density. Indeed, the decreasing density results

702N in the increase of the lattice constaRtand, according
~ In(N./N) (Zb/r > 1;N < N.). (4) toEq. (2), substantially diminishes. At the same time
kb the increase of the entropy term in free energy cannot
It is easy to verify that Eq. (2) matches Eq. (3)Mt~  compensate for this loss in the binding energy.
N.. Thus, atZb/r > 1, the energy per iong;, grows As stated above, this theory works if37T < g;.
linearly at smallN and reaches saturation &t > N.. Actually the WCR melts wherkgT is yet numerically
This is a clear demonstration of a nonpairwise additivenuch smaller tharz;, so in experimental conditions one
interaction. Of course, the surface correction to thedeals with strongly correlated liquid, not a crystal. This,
energy of the bundle provides some growth eveWat>  however, does not change the estimate for its correlation
N, and leads to formation of macroscopic bundles. energy and fore; and leaves unchanged the validity
In order to obtain the binding energy per molecule,criterion of the theory. The fact that it is the short range
Egs. (3) and (4) have to be multiplied by the numberorder of ions which is responsible for the attraction of
of ions per moleculeM = L/bZ. This transition does rods at a finite temperature was emphasized in Ref. [3].
not change the dependence®n Therefore below | will  Below, | continue to use the WCR language because it
continue to present results in the formaf creates a simpler image.
Before switching to the more complicated case Consider now more strongly charged and thicker rods
Zb/r < 1, | discuss the condition on the temperaturefor whichZb/r < 1. Inthis caseV. < 1 and, therefore,
T or, in other words, on the paramet&é at which one has to deal only with a 3D problem. However, the
the theory suggested above is valid. Consider a largeods are so thick that their radius is larger than the lattice
almost neutral bundle of 3D densely packed WCR. Ifconstant of the optimal densely packed crystal. If, as we
kgT < g; the thermal motion can be neglected and myassumed, ions cannot penetrate rods, the optimal densely

€i
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packed crystal cannot be formed. Under this restrictionpf Egs. (3) and (8). This means that for DNA in this

ions condense at the surface of each rod forming the 2bnodel, attraction is due to the short range pairwise interac-

WCR [9] with the lattice constant tion of molecules induced by correlation between their sur-
R ~ (zbr)'/2. (7) face WCRs. This conclusionis in agreement with Ref. [9].

An insulated rod has a similar crystal at its surface. The Recall now that in DNA, negative charges are located

binding energy of the bundle originates in narrow contaci.along two spirals which are separated by wide and narrow

stripes where rods pairwise contact each other so th&rooves. For simpli_city, assume that the Width of the nar-
their WCRs overlap. The widttw of this stripe will row one is zero, which leaves only one spiral of the nega-

be calculated below. Inside the stripe, densities of botljiive charge with the double density. (This approximation,

negative background and positive ions are doubled and th fcourse_, oyere_stimates the inhomqgeniet_y of th‘? neg_ative
local lattice constank, becomes smallerR, = R/+/2) charge distribution and can be easily avoided with minor
As a result, accordingv to Egs. (2), the cohqesive ener.gy K hange in the result.) Ions tend to concentrate on the same
the crystal per ion of the stripe becomes larger than for tht§IOIraI and form the 1D Wigner crystal along it. Whe_n two
case of the two separated rods. Combining Egs. (2) an arallel DNA rods touch each other by thesg crystaline Spi-
(7), one finds that the binding energy of the bundle pe "’.lls (f_or this purpose one rod_should_ be shifted along their
oné ion of the stripe equais’/2e?/(br)/2. To gete; one direction by the half of the helical period) they create a spot

must multiply this energy by the fractiop, ~ W /r, of with larger binding energy per ion. Thus, attraction is pro-

all ions of the bundle which reside in the contact stripes.duced In a way very similar to the case of contacting 2D

The width W can be found from the condition that at the crystals_ discussed above. Extending this analogy for two
distanceW from the line of contact. the surfaces of two coMacting DNA molecules, one can introduce the contact
contacting rods diverge from each éther at the distance otriPe where attraction is generated. The only difference is

the order ofR. Indeed, the interaction between 2D Wigner hat\;[c&\;vmtir: Olf th]'f‘tr?mtsvw IS zina::ﬁr fgrl\&Nrﬁ’ Ibec?uszi_
crystals is exponentially weak if the distance betweer]"® spirals ol the two contacting olecules

parallel planes in which they are situated is larger than theif 8'9e not only n the_ plain perpendlculi_ar o the rods bu_t
lattice constanR. A simple geometrical estimate gives also along the direction of the rods (spirals cross at a fi-

— 12 Einich . 4 ' nite angle). One can find th& ~ Rr/nb ~ R, where
W ~ (rR)'/=. Finishing the calculation of; one obtains R — mr/n is a period of the 1D crystal and—= 10 is the

g ~ Z_e2 (Zb/r)¥* (Zb/r < 1;N > 1). (8) number of base pairs in the helix period. Thus, roughly
kb speaking, only one ion per helix period adjusts its position

Together Egs. (3) and (8) give binding energy per iondue to the contact and contributes to the binding energy of
of a 3D crystal at all valuegb/r. At Zb/r = 1 they the two contacting rods. Multiplying Eq. (2) by the frac-
obviously match each other. A /r < 1 energy given tion of such ionsk /27 r one obtains
by Eg. (8) is smaller than the one from Eq. (3). This 762 7b
is a natural result of the restriction that ions do not g ~ — —. (9
penetrate rods. Kb 2mr

Consider now the validity of the main assumption, At Zb/r < 1, Eq. (9) gives smaller energy than Eq. (8).
that an array of negative discrete charges on the rod@his is an effect of concentration of negative charges on
surface can be effectively replaced by an uniform negativéhe spiral. Note that this effect is exactly opposite to the
background. This idea works exactly only in the limit prediction of Ref. [13]. The reason for this difference
Z > 1. On the other hand, it fails & = 1 because in is that the authors of Ref. [13] assumed that charge of
the low temperature limit all ions and discrete negativeions is uniformly distributed over DNA surface, so that
charges form neutral Bjerum pairs and nothing dependeegative and positive charges are strongly separated. Such
on the mutual positions of the rods. Thus,= 0 at aseparation of charge costs a large electrostatic energy and
Z = 1. What happens af = 2 depends on the spatial can happen only if nonelectrostatic forces dominate. These
distribution of the discreet negative charges. If they ardorces are beyond the scope of this work.
distributed randomly, then af = 2 Egs. (3), (4), and One might wonder whether each contacting pair of
(8) overestimates; roughly by a factor of 2, while at DNA molecules in a bundle can gain the energy given
Z = 3 they work well. On the other hand, when negativeby Eq. (9). This can be easily done in a square lattice
charges are clusteres},can be much lowereven4at= 3.  of rods, with one square sublattice shifted along the rod
Imagine, for example, that negative charges form compadlirection by the half of the helical period. In a densely
triplets. Each one would be neutralized by an ion and packed hexagonal lattice one can shift in the same way
would vanish. A more interesting effect of concentrationevery second layer, so that each rod is attracted to four

of negative charges in DNA is discussed below. of its neighbors. Thus in the approximation of one spiral
But first assume that the surface of DNA is uniformly both lattices have the same energy.
negatively charged. For DNA = 0.17 nm and r = Note that, literally speaking, this theory is applicable

1 nm, sothaZ = 6is the border between range of validity only to molecules of DNA which are shorter than its
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persistent length. Itis known that in a weak DNA solutionsmall enough sheet thickness, the circular cross sections
of longer molecules, each molecule self-assembles intof rods should form the 2D WCR similar to vortex lattice
a toroidal particle, where locally strands of all turns arein superconductors, while at larger thicknesses they form
parallel to each other. Theory of this paper is applicablgarallel 1D crystals in the gaps between sheets.
to toroidal particles as well. In conclusion, this paper studies the attraction and
Although three-dimensional densely packed WCR ofself-assembly of rigid polyelectrolytes due to strong
ions is not realized in DNA bundles (fdf < 6), many correlations in positions of polyvalent counterions. To
other rodlike polyelectrolytes are known. Some of themdescribe these correlations, | adopt the notion of the
are narrower or more weakly charged so tAaf/r > 1  WCR. For rods | find that, depending on the value
and 3D crystal of ions should appear. PPP3 witlh ~ 2  of a single dimensionless combinatio@p/r, optimal
is a good example [14]. cofiguration of ions on the background of a bundle is
The idea of WCR can be applied also to the attractiorthe 3D densely packed WCR or the 2D crystal on the
of rigid spheres. Thinking about colloids, assume that thesurface of rods. When applying this theory to DNA
surface of sphere is charged negatively and positive ionsondensation | introduce the notion of 1D spiral WCR and
cannot penetrate it. If spheres are large enough, ions formstimate the binding energy of two DNA helixes due to
the 2D WCR at the surface of a sphere. This leads téhe contact of these crystals. | also calculate the binding
contact attraction of spheres similar to the one calculatednergy of two colloidal particles created by the contact
above for two contacting cylinders. The binding energyof WCRs of ions on their surfaces. Future developments
of two spheres with the radius and the charge-Qe,  of this work should include such factors as behavior of
originates in the contact disc of the radiu®)!/2, where the dielectric constant of water at small distances, the
r is the sphere radius® is the lattice constant of the finite size of counterions, and more realistic distributions
WCR. (This disc is an analog of the contact stripe forof polyelectrolyte charges.
two cylinders. See computer simulation of such a disc |am grateful to V. A. Bloomfield, A. M. Dykhne, M. D.
in Ref. [15]). The additional energy per ion of the disc Frank-Kamenetskii, A. Yu. Grosberg, R. Holyst, A.R.
is gained, because the disc has a denser background aktokhlov, R. Podgornik, and |. Rouzina for valuable
a larger ion density than the rest of the surfaces of theliscussions. This work was started in the Aspen Center
spheres. Once mote is given by Eq. (2). Multiplying for Physics and was supported by NSF DMR-9616880.
this energy by the number of ions in such a dis¢R,
and substituting? ~ r(Z/Q)'/? one gets a surprisingly
simple expression for the binding energy of two spheres

ZQe? [1] V.A. Bloomfield, Biopolymers31, 1471 (1991); Curr.
&~ = > (10) Opin. Struct. Biol.6, 334 (1996).
[2] J.X. Tang, S. Wang, P. Tran, and P. Janmey, Ber.

which looks like a Coulomb attraction energy of the Bunsen-Ges. Phys. Chert00, 1 (1996).
spherical colloid particle and a single ion at its surface. [3] N. Gronbech-Jensen, R.J. Mashl, R.F. Bruinsma, and
Equation (10) fails with the decrease of the ion concen-  W.M. Gelbart, Phys. Rev. Let¥8 2477 (1997).
tration in the solutiong, when each sphere acquires the [4] J. Ray and G.S. Manning, Langmuif, 2450 (1994).
net negative charge sufficient to overcome calculated at®! J:L. Barrat and J.F. Joanny, Adv. Chem. Phd, 1
traction. This happens atz7 In(1/c) ~ Z%¢*/kR. At (1996).

. s [6] B.- J. Ha and A.J. Liu, Phys. Rev. Left9, 1289 (1997).
lower temperature Eq. (10) gives energy which is larger [7] G.S. Manning, J. Phys. Cheril, 954 (19609).

than proportional t@" depletion energy of Ref. [15]. [8] F. Oosawa, Biopolymers, 134 (1968).

There are other applications of the WCR concept. g] | Rouzina and V.A. Bloomfield, J. Phys. Chert0Q
Counterions should not necessarily be small. One can ~ 9977 (1996).
consider condensation of larger and stronger chargefdo] R. Podgornik and V.A. Parsegian, Phys. Rev. L&8,
counterions, for example, micelles, on a charged rigid 1560 (1998).
surface. Because of strong Coulomb repulsion theyll] B.- J. Ha and A.J. Liu, Phys. Rev. Le&1, 1011 (1998).
should form a 2D WCR. Rodlike counterions also[12] M. Ruderman, Phys. Rev. Le@7, 1306 (1971).
condense on a charged surface. Parallel rods form @3] A.A. Kornyshev and S. Leikin, J. Chem. Phyi9)7, 3656
periodic array so that their crossections form 1D WCR. (1997).
In the case of DNA condensed on a supported cationi€t#! O:E- Philippova, R. Rulkens, B.1. Kovtunenko, S.S.

e . Abramchuk, A.R. Khokhlov, and G. Wegner, Macro-

membrane beautiful images of such a crystal are available molecules31, 1168 (1998).
[16]. The uniform 3D background for rodlike counterions [15] E. AIIahyaro,v, . D'’Amico, and H. Lowen, Phys. Rev.
can be provided by the stack of positive parallel sheets. * | gt 81, 1334 (1998).
Complexes of DNA with cationic lipid membranes are[16] Ye Fang and Jie. Yang, J. Phys. Cheml®, 441 (1997).
good examples of such a system [17]. All the rods orien{17] T. Saditt, I. Kotlover, J.O. Radler, and C.R. Safinya,
themselves parallel to each other and to the sheets. Ata Phys. Rev. E58, 889 (1998).

3271



