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Sixth-Order Vacuum-Polarization Contribution to the Lamb Shift of Muonic Hydrogen
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The sixth-order electron-loop vacuum-polarization contribution to the2P1y2-2S1y2 Lamb shift of
the muonic hydrogen (m2p1 bound state) is evaluated numerically. Our result is 0.007 608(1) meV.
This eliminates the largest theoretical uncertainty. Combined with the proposed precision mea-
surement of the Lamb shift it will lead to a precise determination of the proton charge radius.
[S0031-9007(99)08919-X]
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The muonic hydrogen, them2p1 bound state, differs
from the ordinary hydrogen atom in two important re
spects. One is that the vacuum-polarization effect is mu
more important than other radiative corrections. The oth
is that it is more sensitive to the hadronic structure of th
proton. Thus it provides a means of testing aspects of QE
significantly different from those of the hydrogen atom.

The muonic hydrogen has a long-lived2S metastable
state. This makes it possible to measure the2P1y2-2S1y2
Lamb shift to about a 10 ppm level using the phase-spa
compressed muon beam technique [1]. At presen
however, theoretical precision is limited to about 50 ppm
This uncertainty comes mainly from the unknown
contribution DEs6d of the sixth-order electron vacuum-
polarization effect [2].

In this paper we report the result of our evaluation o
DEs6d. Our result is

DEs6d ­ 0.120 045s12d 3 mr sZad2

√
a

p

!3

­ 0.007 608s1d meV, (1)

where Z ­ 1 for the proton, a is the fine structure
constant, andmr is the reduced mass of them2p1 system
[3]:

mr ­
mmmp

mm 1 mp
­ 94.964 485s28d MeV ,

mm ­ 105.658 389s34d MeV , (2)

mp ­ 938.272 31s28d MeV .

We have also evaluated the main part ofDEs6d using
the Padé approximation of vacuum-polarization functio
[4]. The result (24) is in good agreement with the direc
calculation (23).

The contribution to the2P1y2-2S1y2 Lamb shift of the
muonic hydrogen due to the effect of the electron-loo
vacuum-polarization on a single Coulomb photon can b
expressed as an integral over the vacuum-polarizati
function Psq2d. Here q may be either spacelike or
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timelike. The first choice (q2 , 0) leads to the integral

DsIdE ­
Z d3q

s2pd3 r̃sa2d
24pZa

$q2 f2Ps2 $q2dg . (3)

Herer̃ is equal tor̃2P 2 r̃2S , r̃2P andr̃2S being Fourier
transforms of squares of nonrelativistic Coulomb wav
functions for the2P and2S states:

r̃2Ps2Sd ­
Z

d3rjf2Ps2Sds$rdj2e2i $q?$r . (4)

Carrying out the integration we obtain

r̃2P ­
1 2 a2

s1 1 a2d4 , r̃2S ­
1 2 3a2 1 2a4

s1 1 a2d4 , (5)

where a ­ j $qjysZamr d and r̃2P is averaged over three
degenerate states.

The second choice (q2 . 0) gives rise to the integral
[2]

DsIIdE ­ mr sZad2
Z `

4
dt ustd

b2

2s1 1 b
p

td4 , (6)

where

b ­
me

mra
­ 0.737 383 76s30d , (7)

me is the electron mass [3], and

ustd ­
1
p

Im Psq2 ­ tm2
ed . (8)

Although Eqs. (3) and (6) are analytically equivalen
they are totally different from the viewpoint of numerica
integration. Thus they provide a useful check whenev
both real and imaginary parts ofP are available. For
diagrams containing several vacuum-polarization loop
in one Coulomb photon line, Eqs. (3) and (6) must b
modified accordingly. Insertion of vacuum polarization
loops in several Coulomb photon lines can be handled
the nonrelativistic bound-state perturbation theory.

Let us first consider insertion of three second-orde
vacuum-polarizations in a Coulomb photon (see Fig. 1
The contributionPs p2:3dsq2d of this improper diagram
© 1999 The American Physical Society
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FIG. 1. Three second-order vacuum-polarization diagrams
serted in the Coulomb photon line exchanged by the muon a
the proton.

can be expressed in terms of the second-order vacu
polarization functionPs2dsq2d as

Ps p2:3dsq2d ­ fPs2dsq2dg3, (9)

where Ps2d is known analytically and has the spectra
function

us2dstd ­
1
3

a

p

s
1 2

4m2
e

q2

√
1 1

2m2
e

q2

!
, q2 $ 4m2

e .

(10)

The real part ofPs2d in Eq. (3) can be obtained from
us2dstd through the dispersion relation. Substitutin
Ps p2:3d in Eq. (3) and evaluating the integral numerically
we find

DsIdEs p2:3d ­ 0.006 253 4s6d 3 mr sZad2

√
a

p

!3

. (11)

(This and subsequent integrals are evaluated numeric
either on DECa or on Fujitsu-VX of NWU, or on both, by
the adaptive-iterative Monte Carlo subroutineVEGAS [5].)
The result of the second method (6) agrees with (11):

DsIIdEs p2:3d ­ 0.006 253 9s10d 3 mr sZad2

√
a

p

!3

. (12)

Another evaluation ofDsIdEs p2:3d using the parametric-
integral form ofPs2d given in Ref. [6] leads to

DsIdEs p2:3d ­ 0.006 253 8s8d 3 mr sZad2

√
a

p

!3

. (13)

The next contribution comes from diagrams involv
ing one second-order and one fourth-order vacuu
polarization insertion (see Fig. 2). This contribution
given in terms of

Ps p4p2dsq2d ­ 22Ps2dsq2dPs4dsq2d , (14)

wherePs4d is the fourth-order vacuum-polarization func
tion [7]. SubstitutingPs4d into Eqs. (3) and (6) we obtain

DsIdEs p4p2d ­ 0.046 248s5d 3 mr sZad2

√
a

p

!3

, (15)
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FIG. 2. Insertion of one second-order and one fourth-ord
vacuum-polarization diagram in the Coulomb photon lin
exchanged by the muon and the proton.

DsIIdEs p4p2d ­ 0.046 243s16d 3 mr sZad2

√
a

p

!3

. (16)

We also evaluatedDsIdEs p4p2d using the parametric-
integral form ofPs4d [6]:

DsIdEs p4p2d ­ 0.046 250s2d 3 mr sZad2

√
a

p

!3

. (17)

The third contribution comes from the sixth-orde
vacuum-polarization termPf p4s p2dg obtained by inserting
a second-order vacuum-polarization loop in the four
order vacuum-polarization diagram (see Fig. 3). T
form of Pf p4s p2dg convenient for numerical integration is
an integral over Feynman parameters [6]. This can
done easily by adapting to the Lamb shift the progra
written previously for the electrong 2 2 [8]. This leads
to

DsIdEf p4s p2dg ­ 0.013 628s6d 3 mrsZad2

√
a

p

!3

. (18)

The MS renormalized imaginary part ofPf p4s p2dg is
known in a two dimensional integral form [9]. Convertin
it to the on-shell renormalized one and using Eq. (6),
obtained

DsIIdEf p4s p2dg ­ 0.013 626s1d 3 mr sZad2

√
a

p

!3

. (19)

The fourth contribution comes from the sixth-orde
vacuum-polarization diagrams with a single electron loo
The exact form of this contribution is known only in
parametric-integral form [6]. Its imaginary part is no
available in a form convenient for numerical work. W
have therefore evaluated it using Eq. (3) only. There
eight topologically distinct diagrams (see Fig. 4). Ea
diagram can be written as a sum of various diverge
terms and a finite partDPs6id, where i ­ a, b, . . . , h.
After renormalization the sum of these diagrams is fr
from any divergence and can be written as [6]
s

Ps p6d ­ 2sDPs6ad 1 DPs6cd 1 DPs6dd 1 DPs6f dd 1 DPs6bd 1 4DPs6ed 1 DPs6gd 1 DPs6hd 2 4DB2Ps4d

2 2

"
DB4a 1 DL4x 1 2DL4c 1 DB4b 1 DL4l 1 2DL4s 1

3
2

sDB2d2

#
Ps2d 2 2sDdm4a 1 Ddm4bdPs2pd,

(20)

whereDB2, . . . , are finite parts of renormalization constants andPs2d and Ps4d are renormalized vacuum-polarization
functions of second and fourth order, respectively.Ps2pd is the second-order vacuum-polarization function with a mas
3241
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FIG. 3. Sixth-order vacuum-polarization diagrams with
second-order vacuum-polarization inserted in the fourth-ord
vacuum-polarization diagrams.

insertion vertex. Precise definitions of these function
are given in Ref. [10]. The numerical values of the
coefficients ofPs4d, Ps2d, andPs2pd are

DB2 ­
3
4

a

p
,

DB4a 1 · · · 1
3
2

sDB2d2 ­ 0.871 680s27d 3

√
a

p

!2

,

Ddm4a 1 Ddm4b ­ 1.906 340s21d 3

√
a

p

!2

,

(21)

where the last two are new evaluations. The Lamb sh
contributions fromPs4d, Ps2d, and Ps2pd can be easily
obtained by numerical integration:

DEs p4d ­ 0.045 922 7s4d 3 mr sZad2

√
a

p

!2

,

DEs p2d ­ 0.017 452 8s3d 3 mr sZad2 a

p
, (22)

DEs p2pd ­ 20.009 001 8s2d 3 mr sZad2 a

p
.

The Lamb shift contributionsDEs p6ad, . . . , coming
from the ultraviolet- and infrared-finite parts of diagram
DPs6ad, . . . , are numerically evaluated. The results ar
summarized in Table I. The second and third columns li
the results of integration carried out in double precisio
and quadruple precision, respectively. The purpose of t
latter calculation is to see whether the former indicate
sign of losing significant digits due to rounding off, which
we call digit-deficiencyproblem and is the major source

FIG. 4. Sixth-order vacuum-polarization diagrams with
single electron loop.
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TABLE I. Contributions to the2P1y2-2S1y2 muonic hydrogen
Lamb shift from the sixth-order vacuum polarization diagram
with a single electron loop. The overall factormr sZad2saypd3

is omitted. The second and third columns give resu
of integration in double precision and quadruple precisio
respectively. Their difference is listed in column 4.

Term Doub. precis. Quad. precis. Difference

DEs6ad 0.044 769(4) 0.044 739(51) 0.000 030(52
DEs6bd 0.028 654(4) 0.028 640(35) 0.000 014(36
DEs6cd 20.025 393s3d 20.025 368s23d 20.000 025s24d
DEs6dd 20.026 376s2d 20.026 371s21d 20.000 005s22d
DEs6ed 0.151 356(4) 0.151 334(46) 0.000 022(47
DEs6fd 20.067 139s3d 20.067 144s30d 0.000 005s31d
DEs6gd 0.019 536(3) 0.019 540(23) 20.000 004s24d
DEs6hd 0.025 877(2) 0.025 858(22) 0.000 019(23

of uncertainty ofon-the-computerrenormalization [11].
The excellent agreement between two calculations sho
that the estimated error of the former is not signifi
cantly affected by thedigit-deficiencyproblem and can
be safely assumed to be mostly statistical. We theref
choose the double precision value, which has high
statistics, as our best estimate:

DsIdEs p6d ­ 0.017 410s9d 3 mrsZad2

√
a

p

!3

. (23)

As a cross-check, we also evaluatedDEs p6d using the
Padé approximation of the vacuum-polarization functio
from Ref. [4]. We did this using both methods I an
II. The [2y3] and [3y2] Padé approximations give nearl
identical results. Taking their average we obtain

DsIdE
s p6d
Padé ­ 0.017 414 9s25d 3 mr sZad2

√
a

p

!3

,

DsIIdE
s p6d
Padé ­ 0.017 414 9s26d 3 mr sZad2

√
a

p

!3

.

(24)

These results are consistent with each other and ag
with (23) to three significant digits, or within one standar
deviation of (23). Obviously either (23) or (24) ha
sufficient precision as far as comparison with experime
is concerned. Note, however, that the uncertainties giv
in (24) are those resulting from numerical treatment of t
Padé approximation and do not include those caused
the Padé method itself. It is argued in a separate pa
[11] that the uncertainty of the Padé model itself is abo
0.001 percent and hence the true value will be found w
within the uncertainties given in (24).

Thus far we considered only diagrams in which on
Coulomb photon line is modified by the electron-loo
vacuum polarization. Additional contributions of orde
a3 arise from the diagrams of Fig. 5 in which two
and three Coulomb photons are modified by vacuu
polarization. Their contributions to the Lamb shift ca
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FIG. 5. Representative sixth-order diagrams in whic
vacuum-polarization insertion occurs in two and three Coulom
photon lines. Vertical lines represent the muon moving in th
Coulomb potential generated by the proton, which is indicat
by a “3.”

be found by the bound-state perturbation theory:

DEsFig. 5ad ­ 0.009 166s2d 3 mr sZad2

√
a

p

!3

,

DEsFig. 5bd ­ 0.024 805s3d 3 mrsZad2

√
a

p

!3

, (25)

DEsFig. 5cd ­ 0.002 535s1d 3 mrsZad2

√
a

p

!3

.

In this calculation we used the reduced nonrelativist
Coulomb Green function for2S and 2P states given by
Eqs. (23) and (24) of Ref. [2].

Collecting (11), (15), (18), (23), and (25), we obtain th
total contribution to the Lamb shift (1) due to the sixth
order vacuum-polarization effect.

Evaluation of various lower-order contributions to th
2P1y2-2S1y2 Lamb shift L of the muonic hydrogen
are summarized in Ref. [2]. (K. Pachucki informe
us that F. Kottman pointed out that the sum of a
contributions listed in Ref. [2] was 206.049 meV, no
205.932 meV.) In addition we have obtained the hadron
vacuum-polarization correction of 0.0113(3) meV follow
ing Ref. [12]. These results and our result (1) lead to t
most precise theoretical prediction

L ­ f206.068s2d 2 5.1975r2
pg meV, (26)

whererp is the proton charge radius in units of fm. Th
uncertainty in the first term of (26) is our estimate o
theoretical error.

To improve the theoretical prediction further, it is
necessary to have a better estimate of the effect
the Lamb shift and hyperfine structure of the muon
hydrogen due to the proton’s internal structure beyo
elastic form factors. Recently the proton polarizabilit
correction to the hyperfine structure of the hydrogen a
muonic hydrogen was obtained [13]. There are al
references for ordinary hydrogen and deuterium [14,1
Unfortunately they are not directly applicable to th
muonic hydrogen because of a very different energy sca

Measurement ofL to 10 ppm, or 0.002 meV, will
lead to improvement in the value ofr2

p by an order
of magnitude over those determined from the elas
scattering form factor measurements, making it possib
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to resolve the long-standing discrepancy between [16] a
[17]. The new value ofr2

p will also play an important role
in testing the validity of QED in terms of high precision
measurements of the hydrogen atom [18]. Another impa
of accurate determination ofr2

p will be to stimulate
evaluation ofr2

p from the lattice QCD more precise and
reliable than those available at present [19].
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