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We investigate the degree to which the scaling functigg’) derived from inclusive electron-
nucleus quasielastic scattering define gfaenefunction for differentnuclei. In the region where the
scaling variabley’ < 0, we find that this superscaling is experimentally realized to a high degree.
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The use of scaling and the application of dimensionatarget. This provides an interesting insight into the dy-
analysis to inclusive scattering of a weakly interactingnamics of the bound system.
probe from the constituents of a composite system have For inclusive quasielastic electron-nucleus scattering,
been important tools in gaining new insights into physicsdata are available for several nuclei and have been found
Examples include the scattering of keV electrons fromto scale in a major part of the kinematical region studied.
electrons bound in atoms [1], scattering of eV neutrondVhen analyzed in terms of the scaling variablg4],
from atoms in solids or liquids [2], deep inelastic scatter-which is defined as the minimal value of the momentum
ing of GeV leptons from the quarks in the nucleon [3],a nucleon can have in impulse approximation before the
and, of particular interest here, quasielastic scattering afeaction, the data exhibit scaling for< 0, that is, the
electrons in the energy range of hundreds of MeV to sevregion wheraw is smaller than its value at the quasielastic
eral GeV from nucleons in nuclei [4]. Despite the ex-peak. Much of the past work has concentrated on the
traordinary kinematical range for which scaling has beerstudy of the scaling properties of the response in the
studied, the conceptual basis for describing this phenomédew-w tail of the quasielastic peak, wheyeis large and
non has many common features. negative. Detailed quantitative studies of the conditions

Scaling allows one to represent the data in a veryunder which scaling occurs and the impact of adverse
compact form. In many cases, the initiekperimental effects such as final-state interactions (FSI) [5], the spread
observation of scaling has been the driving factor inof the spectral functiors(k, E) in energyE for fixed k,
motivating more detailed studies and has led to betteand the contributions of other reaction mechanisms, have
understanding of the data. been made. For a review, see Ref. [6].

The inclusive cross sections for the scattering of a Past applications of scaling focused on individual
weakly interacting probe in general depend explicitlynuclei. In this Letter, we explore a novel aspect: We
on two independent variables—the energyand three- compare the scaling function dffferent nucleiwith mass
momentumg transferred by the probe to the constituent.number A = 4, and study the degree to which these
Scalingmeans that, in the asymptotic regime of lagge=  scaling functions may be mapped intauniversal result
|l and w, the cross sections depend osiaglevariable  and thus to superscale.

z = z(q, w). This property results essentially from the (I) Motivation.—Discussions of scaling at intermedi-
kinematics of the scattering process, where a constituerite energies assume that inclusive electron scattering in
is ejected nearly quasifreely from the composite system. the quasielastic regime is dominated by the impulsive

The interest in scaling phenomena originates from twamne-body knockout of nucleons. Two-body meson ex-
distinct sources. change currents (MEC), meson production, and FSI limit

(i) The observation of the occurrence (or nonoccur-the range of applicability once they give sizeable contri-
rence) of scaling yields information on the domination (orbutions to the cross section.
not) of the quasifree scattering process or the contribu- In addition to the electron scattering anglg, two
tion of other reaction mechanisms (which in general dovariables (typicallyg and w) characterize the inclusive
not scale). These providexperimentateflections of the cross section. Of course, any function(gf @) may be
reaction mechanism which are prerequisites for a quantiised together witly; it has been traditional to use the so-
tative understanding of the cross section. calledy-scaling variable (for a review, see Ref. [6]). Upon

(i) The function to which the data scale is closely re-dividing the inclusive electron scattering cross section by
lated to the momentum distribution (or, more generally, tathe single-nucleon electromagnetic cross section together
the spectral function) of the constituents in the compositevith the Jacobian required in changing variables, one

3212 0031-900799/82(16)/3212(4)$15.00 © 1999 The American Physical Society



VOLUME 82, NUMBER 16 PHYSICAL REVIEW LETTERS 19 ARIL 1999

obtains a derived functioi'(g,y). Scaling of thefirst  the second kindindependence of the nuclear species) are
kind means that at high enough valuesyahis becomes a expected. That is, the model predicsperscaling[7].
function only ofy, independent of. Indeed, it has been The purpose of this Letter is to see whether or not Nature
found that, in they < 0 region for momentum transfers obeys this extended type of scaling behavior.
of roughly 0.5 GeV/c¢ or larger,y scaling is quite well Before putting the world’s data to the test, let us first
obeyed. define the scaling variables and scaling functions. The
In[7] (and elaborated in [8]) the idea of superscaling wadraditional approach to scaling as summarized in [6]
introduced, motivated by the relativistic Fermi gas (RFG)involves dividing the inclusive cross section by some
model. While this model clearly does not incorporateform of off-shell single-nucleon cross section, usually the
many of the effects of initial- and final-state dynamics, itCC1 prescription of De Forest. In fact, the actual form
nevertheless makes an interesting prediction that warranthosen is not critical, as long as it contains the necessary
testing using experimental data. It suggests that, wherelativistic content (see [8] for more discussion) and it is
using a dimensionless scaling variableand a slightly a very minor approximation for inclusive scattering to use
modified version of the scaling functioR, both scaling the on-shell single-nucleon cross section. Accordingly,
of the first kind (independence @f) and also scaling of| the scaling function may be written in a very simple form:

dza/dﬂe dw
oulvi(myg/102)GE + vr(10%/2myq)Gay]”

where G2(0?) = ZGg, + NG, with G2(0?) defined | it is not used in this paper. Given the limitations of the
similarly; hereQ? = w? — ¢2, o) is the Mott cross sec- RFG, one could ignore all reference to it and simply
tion, andv; 7 are the familiar Rosenbluth kinematical fac- equate the variable)’ used here withy /kr for some
tors. Scaling of the first kind occurs for this function characteristic momentum scalge.
using experimentally determined cross sections and plot- If the function in Eq. (1) isalso made dimensionless
ting the results versus the familigrscaling variable. by multiplying by k7 to definef(q, ¢') = kr X F(q, )
Additionally, the RFG model suggests making dimen-and is plotted versug’, the RFG model suggests that it
sionless scaling variables and scaling functions using thwill also exhibit scaling of the second kind and therefore
Fermi momentunky as the scale. In [7] the former was will superscale (i.e., scale in both ways). Below, we treat

F(g,») =

(1)

denotedy and given approximately by the world’s data in this way to test whether or not Nature
1 superscales.
Y= P Womy + w) — q), 2 (I) Results—For these studies we concentrate on nu-
F

clei with A = 4, as the lightest nuclei are known to have

where my is the nucleon mass. The result here isspectral functions that are very far from the “universal”
expanded only to leading order ki /my, which is small; one which is at the basis of the superscaling idea. Data
the exact RFG expression may be found in [7]. Clearlyon inclusive electron-nucleus scattering for a series of nu-
this has a similar behavior to the usualariable in that clei A = 4 are available in the region of low momentum
it reaches zero at the quasielastic peak. Additionally, tdransfers; ~ 0.5 GeV/c [11-24] data extending to much
allow for the fact that nucleons are knocked out of allhigher g are available from other experiments [25—28].
shells in the nucleus (and therefore that some aspects dlot all of these data can be used, however, as some have
the missing energy dependence in the spectral functionot been corrected for radiative and Coulomb distortion
may be incorporated) we follow the spirit of [9], shifting effects, are known to have problems such as “snout scat-
from w to o' = o — Egire [S€€ section (Il) for values tering” or the inclusion of false signals from~'s in the
of the shift] and hence defining a derived variapleby  electron spectrometer, or are only available in the form of
making this substitution in Eq. (2). figures. Some are at very low momentum transfer and ex-

It may be shown [10] that the variable’ so-defined is cluded as scaling is known to break down there due to large
close toy/kr—that is, for the conditions of the present FSI and Pauli blocking effects.
analysis it is not important which is employed, and upon In a first step, we have taken the data which meet our
plotting the function in Eq. (1) versug’, one continues to criteria for the nucleiA = 12-208 and have analyzed
observe scaling of the first kind. It is not our purpose herghem in terms of scaling in the variable’. For kr we
to elaborate on the origins of the commonly used scalingise220, 230, 235, and240 MeV/c for C, Al, Fe, and Au,
variables (see, for example, Refs. [7—-10]), but simply towith intermediate values for the intermediate nuclei; for
draw from the RFG model the idea of using dimensionless i, Which has a minor effect, we udé, 15, 20, and
quantities and a momentum scalg that has physical 25 MeV for the same nuclei.
meaning. Itis not our intent to justify the RFG as a model Figure 1 shows the scaling functiofi(¢') for all
of quasielastic scattering. A decade ago [7] it providedkinematics suitable for the present study and All
the first motivation to investigate superscaling (and thusvailable. We clearly observe a scaling behavior for
the motivation for the following analysis), but otherwise values ofiy’ < 0: While the cross sections at a given
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10T deviations from scaling observed in Fig. 1 aret from
anA dependence.

A part of theA-dependent increase ¢fi') at positive
' results from the increase dfr with A, yielding an

increase of the width of the quasielastic aAdpeaks,

0.8}

0.6 and a correspondingly increased overlap with non-quasi-
5 I free scattering processes €xcitation,7 production,...).
ool At the same time, the increasing average density of the

heavier nuclei also leads to an increase in contributions
of two-body MEC processes which are strongly density
dependent (i.e., do not scale with in the same way the
one-body knockout processes do [29]).
Figure 3 shows the data far = 4, 12, 27, 56, and197
on a logarithmic scale for the kinematics of Fig. 2 and
demonstrates that the scaling property extends to large
negative values of}’/, corresponding to large momenta
FIG. 1(color). Scaling functionf(’) as function ofy’ for  of the initial nucleon. This feature clearly cannot be
all nuclei A =12 and all kinematics. The values o  predicted within the RFG model, since there the response
corresponding to different symbols is also shown. is restricted tolyy’| < 1. However, there are indications
of this behavior from theoretical studies of the nuclear
atter spectral function as a function of density. For
ifferent nuclear matter densities and lakgehe spectral
Junctions are similar in shape [30] and the tail of the
rhomentum distributiorm(k) at kK > kr (corresponding

vary over more than 3 orders of magnitude, the values o
f (') are essentially universal. Fgr' > 0, on the other

hand, the scaling property is badly violated, as expecte
since here processes other than quasielastic scattering

meson exchange currents,excitation, and deep inelastic fo ¢/ < 1) is a near-universal function of/kr [31].
. g€ ; S P - _For finite nuclei and large momenta we can employ the
scattering—contribute to the cross section. The scalin

. S . heal density approximation (LDA), as at large we
as discussed in this paper applies only to processes hawgge dealing with short-range properties of the nuclear

the behavior of electron-nucleon quasifree scattering. wave function [30]. Within LDA, the nuclear momentum
In order to separate some of the effects leading to less;

than-perfect scaling at negative, in Fig. 2 we show distribution (spectral function) is then a weighted average
the function f (') for the series of nucleit — 12—197, over the corresponding nuclear matter distributions. This

. . . o means that the large momentum tail of the nuclear
Eg;;?;:ée)d kT";ngS;ﬁt)(/ag ?hee\&gcéﬁlgg ihner:ﬁz ?ggir(% spectral function also scales wilfy, a dependence that
: ) - )
' < 0is quite amazing. This shows that the removal of'> removed when using’. Previous work [5] has shown

theA dependence, i.e., scaling of the second kind, actuallthat in the extreme tail of the quasielastic peak, FSI

. : ; ; . lay an increasingly important role, and lead to a slow
is better realized in Nature than ordinary scaling. The convergence of(y.q) with ¢. Figure 3 indicates that

the effects of FSI on scaling of the second kind are
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FIG. 2(color). Scaling function for C, Al, Fe, and Au and
fixed kinematics [25]. The correspondence of symbol and masEIG. 3(color). Scaling function for nucled = 4-197 and
number of the nucleus is also shown. fixed kinematics on a logarithmic scale.
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| S e . T the issue now is to understand which theories do or do not
1.000 ﬂ produce this behavior.
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