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Time Oscillations of Escape Rates in Periodically Driven Systems
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We provide an explicit solution of the problem of activation escape from a metastable state of
periodically driven Brownian particle, including both the exponent and the prefactor. We find th
instantaneous and time-average escape rates, and a crossover in their field dependence, from we
exponentially strong, with amplitude and period of the driving field. The results apply for an arbitrar
ratio between the field amplitude and the noise intensity, and between the field period and the relaxat
time of the system. [S0031-9007(99)08926-7]

PACS numbers: 05.40.Jc, 02.50.–r, 05.20.–y, 82.40.Bj
ape
he
en-

an

ee

f

al

-
nd
The problem of fluctuation-induced escape from
metastable state, and of activated processes in genera
central to many areas of physics, from diffusion in crysta
to nucleation at phase transitions. It was first consider
quantitatively in a seminal paper by Kramers [1] using
model of a Brownian particle that escapes from a potent
well. In many cases of current interest, escape is stud
for systems away from thermal equilibrium, such a
trapped electrons which display bistability in a stron
periodic field [2], or spatially periodic nonequilibrium
systems (ratchets) that display unidirectional current [3
Whereas for equilibrium systems the exponent in th
escape rate can be found, at least in principle, as the hei
of the free-energy barrier, for nonequilibrium system
there are no universal relations from which it can b
obtained [4], and the situation with the prefactor is eve
more complicated [5].

In the present paper, we develop a theory of escape ra
for periodically driven systems, one of the most importa
classes of nonequilibrium systems. The problem has
tracted a great deal of attention in several contexts, m
recently in the area of phenomena related to stochas
resonance [6]. For the most part, prior theory has e
plored the case of slowly varying driving fields, wher
the system remains in thermal equilibrium. The prese
analysis, however, does not rely on this approximatio
For arbitrary ratios of field period and system relaxation
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time, we are able to determine the time-dependent esc
rate, including both the exponent and prefactor, find t
time-average rate, and investigate its nonanalytic dep
dence on the field intensity.

Let us consider a simple model of a driven system:
overdamped Brownian particle in a potentialUsqd driven
by a periodic forceFstd ­ Fst 1 tFd (see Fig. 1),

Ùq ­ 2U 0sqd 1 Fstd 1 jstd , (1)

where jstd is white Gaussian noise,kjstdjst0dl ­
2Ddst 2 t0d (for thermal noise, the noise intensity
D ­ kBT ).

The motion of the system (1) is characterized by thr
times: the typical relaxation timetr in the absence of noise
and driving, the period of the forcetF , and the reciprocal
escape rate1yW averaged over the periodtF . We assume
that the noise intensityD is small (the small parameter o
the theory), so thatW ø 1ytr , 1ytF .

In the limit of very small trytF , the escape rate
Wstd adiabatically follows the instantaneous potenti
Usqd 2 Fstdq,

Wstd ø W0 expf2dUstdyDg ,

dUstd ­ Fstd sqa 2 qbd ,
(2)

whereqa and qb are the positions of the potential mini
mum and the barrier top, respectively (see Fig. 1), a
© 1999 The American Physical Society 3193
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FIG. 1. Optimal fluctuational path (solid line) that arrives a
the point q at the instantt in a periodically driven system.
The path starts att ! 2` at the periodic attractorqF

a std. The
attractor and the boundary of the attraction basinqF

b std are
shown dashed. The horizontal lines show the positions of t
minimum and local maximum of the potentialUsqd (shown in
the inset) in which the particle is fluctuating.

W0 ~ exps2DUyDd is the Kramers escape rate forF ­ 0
[DU ­ Usqbd 2 Usqad is the barrier height]. We assume
that the forceFstd is dynamically weak,so that the
modulation of the barrier heightjdUj ø DU. Yet jdUj
may largely exceed the noise intensityD, and thenWstd is
exponentially stronglymodulated in time: Escape is mos
likely to occur where the barrier is at its lowest, generical
once per period of the field.

The escape problem becomes much more complica
for higher field frequencies where Eq. (2) no longer applie
[7]. Nevertheless the field-induced change of the esca
rate may still be exponentially strong. Whereas for sma
FyD the change ofW is known, theoretically [8] and
experimentally [9], to be quadratic inFyD, for large
FyD (but still relatively smallF) it becomes nonanalytic
in Fstd, with ln W being linear in jFjyD [10]. One
expects that the time modulation ofWstd shoulddecrease
compared to (2) iftrytF is not small. Indeed, although
the probability for the system to approachqb still has one
sharp peak per field period (see below), the system do
not have time to leave the vicinity ofqb over the timetF ,
and there occurs averaging of the outgoing flow.

In what follows, we provide a general theory of escap
rate for arbitrarytrytF and arbitraryFyD. Following
Kramers [1], we characterize escape by the currentjsq, td
from the attraction basin of the metastable state where
system is located att ­ 0. After a transient time,tr (but
for t ø 1yW where the population of the metastable sta
does not change), the currentjsq, td is periodic in time. For
smallD, once the system has reached the area far enou
behind the basin boundaryqF

b std (see Fig. 1), it will move
close to the noise-free trajectoryÙq ­ 2U 0sqd 1 Fstd.
3194
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Therefore in the rangejU 0sqdj ¿ F the current scales
with q as

jsq, td ­ Wft 2 tdsqdg, dtdydq ­ 21yU 0sqd . (3)

Equation (3) essentiallydefinesthe instantaneous periodic
escape rateWstd ­ Wst 1 tFd by relating it to a directly
measurable quantityjsq, td. The time lagtd is determined
by the duration of drift to the pointq, td , tr .

We will calculate the currentjsq, td from the distribu-
tion rsq, td inside the attraction basin close to the basi
boundary. This distribution is periodic in time fort ø
1yW . We now explicitly find it, and then match to the
exact distribution near the basin boundary found from th
linearized Eq. (1).

For smallD, the distributionrsq, td far from the attrac-
tor is given, to logarithmic accuracy, by the solution of the
variational problem [7,11],

rsq, td ­ C expf2Ssq, tdyDg, Ssq, td ­ minS fqstdg ,

S fqg ­
1
4

Z t

2`

dt0

"
dq
dt0

1 U 0sqd 2 Fst0d

#2

,

(4)

Here, the minimum is taken with respect to the pathsqstd
which arrive at a given pointq at a given instantt and
start for t ! 2` from the periodic attractorqF

a std. For
a dynamically weak field,qF

a std and the basin boundary
qF

b std are given by linear equations,

ÙqF
i ­ 2U 00sqid sqF

i 2 qid 1 Fstd ,

qF
i st 1 tFd ­ qF

i std ,
(5)

where i ­ a, b (see Fig. 1). Equation (4) can be easily
obtained [12] by noting that the distribution of the noise
trajectoriesjstd is given by expf2

R
dt j2stdy4Dg, and

that the trajectoriesqstd and jstd are interrelated via
Eq. (1) [13]. The probability of a large fluctuation is
determined by the appropriate optimal realization ofjstd,
and the correspondingqstd provides the minimum to
S fqg. An example of an optimal path is shown in
Fig. 1. For F ­ 0, the normalization constant in (4)
C ­ fU 00sqady2pDg1y2.

To find the distributionr in the limit of small noise
intensity and dynamically weak driving, but for arbitrary
FyD, it suffices to findS to the first order inF. This
can be done by calculatingS fqg (4) along the optimal path
qs0dstd in the absence of driving [Ùqs0d ­ U 0sqs0dd, according
to (4)], which gives

Ssq, td ­ Usqd 2 Usqad 2
Z t

2`

dt Ùqs0dstdFstd . (6)

Here, the optimal path is chosen so thatqs0dstd ­ q.
The quantityxstd ­ 2 Ùqs0dstd determines the field-induced
change of thelogarithmof the fluctuation probability and
may be called logarithmic susceptibility (LS) [10].
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Equations (4) and (6) can be simplified for small dis
tancesQ ­ q 2 qF

b std from the point q to the basin
boundaryqF

b std, whereUsqd is quadratic inQ,

Ssq, td ­ DU 2
1
2

lQ2 1 sffsQ, tdg , (7)

where

fsQ, td ­ vFft 1 l21 lnsQyQ0dg ,

ssfd ­
X

n
x̃snvFdFn expsinfd .

(8)

Here,Fn are Fourier components of the forceFstd, vF ­
2pytF is the force frequency,l ­ 2U 00sqbd is the curva-
ture of the potentialUsqd at the local maximumqb, DU is
the barrier height forF ­ 0, and

x̃svd ­ 2
Z `

2`

dt Ùqs0dstdeivt , qs0ds0d ­ qb 1 Q0 . (9)

In (7) we singled out the dependence of the field-induc
correction s on q ø Q 1 qb by calculating the LSx̃

along the trajectory that passes through the chosen po
qb 1 Q0 at the instantt ­ 0 (we assume thatQ, Q0 , 0,
cf. Fig. 1). The choice ofQ0 determines the phase o
x̃, but sffsQ, tdg as a whole is independent ofQ0. We
have also extended the range of integration overt in (6) to
` with account taken of smallness of the velocityÙqs0d ø
2lQ near the barrier top.

Clearly, the perturbation theory (7) diverges fo
2Q ! 0. This is related to nonintegrability of the
variational problem (4) [7] forF fi 0. Equation (7)
applies if ≠sy≠Q is small compared to≠Ssq, tdy≠q, i.e.,
for 2Q ¿ jvFx̃Fj1y2yl, which imposes a limitation on
2Q from below. An additional limitation follows from
the neglect of the current away from the metastable sta
This current becomes substantial at the distance fro
the basin boundary of the order of the diffusion lengt
2Q , sDyld1y2. However, in the whole vicinity of the
basin boundary the distributionrsq, td can be obtained
from the linearized inQ Fokker-Planck equation:

≠ry≠t ­ 2l≠sQrdy≠Q 1 D≠2ry≠Q2.

This equation can be solved by reducing it to the firs
order equation for a generating functioñrsp, td, which
can be found then by the method of characteristics,

rsQ, td ­
Z `

0
dp exps2pQyDdr̃sp, td ,

r̃sp, td ­ exps2p2y2lDdfsssp expsltdddd .
(10)

Here,fsxd is an arbitrary function. It can be obtained b
matching Eq. (10) to Eqs. (4) and (7) in the range of com
paratively large negativeQ. The matching can be done
by evaluating the integral overp in (10) by the steepest
descent method, with the assumption thatf is a smooth
-
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function of p near the maximum of the integrand. Thi
gives

fsssp expsltdddd ­ sW0ylDd exph2sffs2pyl, tdgyDj ,
(11)

whereW0 is the Kramers escape rate forF ­ 0 [1]. It
is clear from Eq. (8) thatfs2pyl, td indeed has the right
form of a function ofp expsltd.

Equations (7)–(11) describe the probability distributio
and provide a solution of the escape problem for a perio
cally driven system. As discussed above, the escape pro
bility Wft 2 tdsqdg (3) is determined byrsq, td (10) for
the “observation point”q ­ Q 1 qF

b std lying far behind
the diffusion region near the basin boundary. Yet it can
chosen within the region where the potentialUsqd is para-
bolic, and then the outgoing current isjsq, td ø lQrsq, td.
The major contribution torsq, td (10) comes from the
rangep & DyQ ø slDd1y2. By changing in (10) to in-
tegration overx ~ ln p, we obtain

jsq, td ­ Wft 2 tdsqdg ­ W0

Z `

2`

dx eGhx2lft2tDsqdgj

3 expf2ssvFxyldyDg, Gsxd ­ x 2 ex .

(12)

Here,tDsqd ­ l21 lnslQjQ0jyDd [overall, Eq. (12) is in-
dependent ofQ0]. The time lagtdsqd differs from tDsqd
by aq-independent constant which depends on the cho
of the initial condition fortd in Eq. (3).

Equation (12) provides an explicit general expressio
for the escape rate of a driven system. This is the ma
result of the paper. It applies for an arbitrary ratio of th
field-induced change of the activation energy of esca
,jsj to the noise intensityD, but for smalljsjyDU.

The outgoing current (12) is determined by two pro
cesses: large fluctuations which form a time periodic d
tribution close to the barrier top on the intrawell side, an
diffusion over the barrier top. The first process depends
the global motion inside the well. The effect of the fiel
on this process is described by the logarithmic suscep
bility x̃svd which determines the functions. The second
process is spatially localized to the vicinity of the barrie
top, but, since it involves diffusion, the resulting transmi
sion is described by an integral over the scaled timex [14].
We note that the overbarrier diffusion is unaffected by th
field.

It follows from Eq. (12) that the period averaged esca
rateW is given by a simple expression:

WyW0 ­ s2pd21
Z 2p

0
df expf2ssfdyDg . (13)

Sincessfd (7) is a zero-mean periodic function,W always
exceeds the Kramers escape rateW0. For small FyD,
the correction toW0 is quadratic inFyD (cf. [8]). In the
3195
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opposite limit of largeFyD, the escape rate is change
exponentially strongly,

WyW0 ­ fDy2ps00sfmdg1y2 expfjssfmdjyDg , (14)

where fm is the position of the maximum of2ssfd,
s0sfmd ­ 0. The exponent in (14) for the general cas
of nonadiabatic driving was obtained earlier [10]. W
emphasize that it islinear in the field amplitude. In
particular, for sinusoidal driving,Fstd ­ 2F1 sinvFt, we
haves00sfmd ­ jssfmdj ­ 2jxsvFdF1j. We note that the
prefactor in (14) is a smooth function of the noise intensi
D, in contrast to what was obtained in [5] for escape ov
a limit cycle.

The amplitude and frequency dependence of the av
age escape rate are illustrated in Fig. 2 for a simple mo
potentialUsqd ­ 1

2 q2 2
1
3 q3. From (9), the LS for this

potential x̃svd ­ pvysinhspvd. It falls off exponen-
tially at largev, which is a generic consequence of th
smoothness of the instantonlike optimal pathqs0dstd in (9)
(the phase of the LS corresponds to the pathqs0dstd that
passes throughq ­ 1y2 at t ­ 0).

The general expression for the time-dependent curr
(12) takes a simple form in the case of sinusoidal drivin
Fstd ­ 2 ReF1 expsivFtd,

jsq, td ­ W0

X̀
k­2`

Ik

√
2jx̃svFdF1j

D

!
G

√
1 1 ik

vF

l

!
3 exphikvFft 2 tDsqdg 1 ikfFj , (15)

whereIksxd andGsxd are the Bessel and gamma function
respectively, andfF ­ argfx̃svFdF1g. It follows from
(15) that, for arbitrary x̃FyD, the average escape rat
is simply W ­ W0I0s2jx̃svFdF1jyDd. In particular, for
relatively strong fields lnW ~ F1, in agreement with (14).

FIG. 2. The logarithm of the average escape rate as a fu
tion of the scaled field amplitude2jF1jyD for the potential
Usqd ­ q2y2 2 q3y3. The curvesa to d refer to the di-
mensionless frequencyvF ­ 0.1, 0.4, 0.7, and 1.2. Inset:
Time dependence of thelogarithm of the instantaneous es-
cape rate for the same frequencies and2jF1jyD ­ 10 sf ­
vFtd, illustrating loss of synchronization of escape events wi
increasingvF .
3196
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An interesting feature of the time dependence of the o
going current isnonadiabatic rectificationwith increasing
field frequency. SincejGs1 1 ixdj ­ fpxy sinhspxdg1y2,
the amplitudes of the harmonics ofj (15) decay exponen-
tially fast for largekvFyl.

The evolution of the temporal shape of the current
illustrated in the inset of Fig. 2. Thelogarithm of the
escape rate is nearly sinusoidal for smallvF , the transition
rate is highly nonsinusoidal, and most transitions occ
when the barrier is lowest. Modulation of lnWstd, and
thus synchronization of escape events by the field, sha
decrease with increasingvF .

To explain this effect and the overall time dependence
the current, we note first that, irrespective of the field fr
quency, forjx̃FjyD ¿ 1 the system is most likely to ap-
proach the vicinity of the basin boundaryonce per period,
at the instantsntF 1 fmyvF sn ­ 0, 61, . . .d, wherefm

is introduced in (14). The incoming probability pulses a
nearly Gaussian in time far from the boundary. Howev
diffusion near the boundary effectively integrates the
[cf. Eq. (12)], and as a result the outcoming current puls
become strongly asymmetric, and the current compone
with frequencies much higher than the relaxation ratel are
filtered out.

Equation (15) relates the escape rate to the logarith
susceptibility. This makes it possible tofind the logarith-
mic susceptibility experimentally, for an unknown pote
tial. We note that time oscillations of the escape rate c
be found from the mean first passage time-type meas
ments. For a system prepared in the metastable state
t ­ 0, the probability density per unit time of reachin
a given pointq is given byWssst 2 tdsqdddd exps2Wtd (the
last factor allows for the decay of the state populatio
Therefore the mean number density (per unit time) of t
field periods before the system escapes and passes thr
q for a given phaseof the fieldf is knl ­ WstfdyW

2
t

2
F ,

wheretf ­ sfyvFd 2 tdsqd.
In this paper, we have analyzed the time-dependent

period-average rate of activated escape in driven syste
in a broad range of field frequencies and amplitud
The field dependence of the escape rate changes f
quadratic to exponential in theamplitude(not intensity)
with increasing field. The effect of the field is determine
by the logarithmic susceptibility, which may display stron
frequency dependence and is accessible by experime
measurements. The amplitude of the time oscillations
the escape rate decreases with field frequency.
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