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Time Oscillations of Escape Rates in Periodically Driven Systems
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We provide an explicit solution of the problem of activation escape from a metastable state of a
periodically driven Brownian particle, including both the exponent and the prefactor. We find the
instantaneous and time-average escape rates, and a crossover in their field dependence, from weak to
exponentially strong, with amplitude and period of the driving field. The results apply for an arbitrary
ratio between the field amplitude and the noise intensity, and between the field period and the relaxation
time of the system. [S0031-9007(99)08926-7]
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The problem of fluctuation-induced escape from atime, we are able to determine the time-dependent escape
metastable state, and of activated processes in general,rae, including both the exponent and prefactor, find the
central to many areas of physics, from diffusion in crystalgime-average rate, and investigate its nonanalytic depen-
to nucleation at phase transitions. It was first consideredence on the field intensity.
quantitatively in a seminal paper by Kramers [1] using a Let us consider a simple model of a driven system: an
model of a Brownian particle that escapes from a potentiabverdamped Brownian particle in a potentialg) driven
well. In many cases of current interest, escape is studiedy a periodic forceF' (r) = F(r + 7r) (see Fig. 1),
for systems away from thermal equilibrium, such as
trapped electrons which display bistability in a strong g=-Ulq) + F() + &), 1)
periodic field [2], or spatially periodic nonequilibrium ) ] ) .
systems (ratchets) that display unidirectional current [3]Where £(1) is white Gaussian noise{£(1)¢(r')) =
Whereas for equilibrium systems the exponent in thePd(r — t') (for thermal noise, the noise intensity
escape rate can be found, at least in principle, as the height = kBT)-. ) )
of the free-energy barrier, for nonequilibrium systems The motion of the syS_tem_(l) is characterized by 'Fhree
there are no universal relations from which it can betimes: the typical relaxation time in the absence of noise
obtained [4], and the situation with the prefactor is evernd driving, the period of the force-, and the reciprocal
more complicated [5]. escape ratq:/W average(_j over the periag-.. We assume

In the present paper, we develop a theory of escape rat&3at the noise intensitp is small (the small parameter of
for periodically driven systems, one of the most importanthe theory), so thalV’ < 1/, 1/ 7.
classes of nonequilibrium systems. The problem has at- In the limit of very small 7./7r, the escape rate

tracted a great deal of attention in several contexts, mod¥ (t) adiabatically follows the instantaneous potential
recently in the area of phenomena related to stochastie (4) — F(1)q,

resonance [6]. For the most part, prior theory has ex- W(r) = Woexd—8U(r)/D],
plored the case of slowly varying driving fields, where B 2)
the system remains in thermal equilibrium. The present SU) = F(1)(ga = q»)

analysis, however, does not rely on this approximationwhereg, and g, are the positions of the potential mini-
For arbitrary ratios of field period and system relaxation mum and the barrier top, respectively (see Fig. 1), and
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Therefore in the rang¢U’(g)| > F the current scales
with ¢ as

jlg.t) = Wit = ta(@)),  dta/dqg = =1/U'(q). (3)

Equation (3) essentiallgefineshe instantaneous periodic
escape ratd (1) = W(t + 7r) by relating it to a directly
measurable quantity(q, r). The time lag, is determined
by the duration of drift to the poing, r; ~ ¢,.

We will calculate the curreni(q, ) from the distribu-
tion p(q,t) inside the attraction basin close to the basin
boundary. This distribution is periodic in time for<
1/W. We now explicitly find it, and then match to the
exact distribution near the basin boundary found from the
F linearized Eq. (1).

FIG. 1. Optimal fluctuational path (solid line) that arrives at F_or s_maIID, the d_lstrllt_)utlonp(q, t) far from the _attrac-
the pointg at the instant in a periodically driven system. OIS given, to logarithmic accuracy, by the solution of the
The path starts at— — at the periodic attractog” (r). The  variational problem [7,11],

attractor and the boundary of the attraction bagfr(r) are

shown dashed. The horizontal lines show the positions of they(¢,7) = Cexd—S(g,1)/D],  S(g,t) = minS[q(1)],

minimum and local maximum of the potenti&l(¢) (shown in
the inset) in which the particle is fluctuating. (4)

_ 1 ' /| dgq ! ! ’
Stgl = 5 [ a [dt, +U(g) F(r)} ,
Wy « exp(—AU/D) is the Kramers escape rate #r= 0
[AU = U(q,) — Ul(q,) is the barrier height]. We assume
that the forceF(t) is dynamically weak,so that the
modulation of the barrier heighbU| < AU. Yet|sU|
may largely exceed the noise intensfty and ther (¢) is
exponentially stronglynodulated in time: Escape is most
likely to occur where the barrier is at its lowest, generically qf = -U"(q) (qf — q) + F(1),
once per period of the field. F _ F (5)

: qi (t +7p) = q; (1),

The escape problem becomes much more complicated _ _ .
for higher field frequencies where Eq. (2) no longer appliegvherei = a,b (see Fig. 1). Equation (4) can be easily
[7]. Nevertheless the field-induced change of the escap@btained [12] by noting that the distribution of the noise
rate may still be exponentially strong. Whereas for smalfrajectoriesé (1) is given by exp— [dr £°(1)/4D], and
F/D the change ofW is known, theoretically [8] and that the trajectoriesy(r) and £(¢) are interrelated via
experimentally [9], to be quadratic if/D, for large EQ. (1) [13]. The probability of a large fluctuation is
F/D (but still relatively smallF) it becomes nonanalytic determined by the appropriate optimal realizatiore &),
in F(r), with INW being linear in|F|/D [10]. One and the corresponding(z) provides the minimum to
expects that the time modulation Bf(¢) shoulddecrease S[g]. An example of an optimal path is shown in
compared to (2) ift,/7r is not small. Indeed, although Fig.- 1. For F =0, the normalization constant in (4)
the probability for the system to approagh still has one € = [U"(g4)/27D]"/>.

Sharp peak per field period (see be|ow)’ the system does To find the diStribUtionp in the limit of small noise
not have time to leave the vicinity of, over the timerr,  intensity and dynamically weak driving, but for arbitrary
and there occurs averaging of the outgoing flow. F/D, it suffices to findS to the first order inF. This

In what follows, we provide a general theory of escapecan be done by calculating[¢] (4) along the optimal path
rate for arbitraryz, /v and arbitraryF/D. Following ¢ (1) inthe absence of driving/[” = U’(¢""), according
Kramers [1], we characterize escape by the curjéptr)  t0 (4)], which gives
from the attraction basin of the metastable state where the '
system is located at= 0. After a transient time-z, (but S(g.1) = Ulq) — Ulqa) — f dr gO(7)F(r). (6)
for t < 1/W where the population of the metastable state o
does not change), the currgifiy, r) is periodic intime. For Here, the optimal path is chosen so thgf)(r) = g.
small D, once the system has reached the area far enougthe quantityy (r) = —¢?(¢) determines the field-induced
behind the basin boundazty (¢) (see Fig. 1), it will move change of thdogarithm of the fluctuation probability and
close to the noise-free trajectoly = —U'(g) + F(r).  may be called logarithmic susceptibility (LS) [10].

Here, the minimum is taken with respect to the patts
which arrive at a given poing at a given instant and
start forr — —o from the periodic attractog’ (¢). For
a dynamically weak fieldgZ (¢) and the basin boundary
g1 (1) are given by linear equations,
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Equations (4) and (6) can be simplified for small dis-function of p near the maximum of the integrand. This
tancesQ = g — ¢4 () from the pointg to the basin gives
boundaryg} (1), whereU(q) is quadratic inQ,
f(pexpat)) = (Wo/AD) exp{—s[¢(—p/A.1)]/D},

Sg.0) = 8U = 2207 + s[4Q.0], (1) (1)
where W, is the Kramers escape rate for= 0 [1]. It
where is clear from Eq. (8) thaib(—p/A, ) indeed has the right
$(0,1) = wp[t + A7 IN(Q/0Q0)], form of a function ofp exp(Af).
(8) Equations (7)—(11) describe the probability distribution
s(¢) = Z)?(nwF)Fn explind). and provide a solution of the escape problem for a periodi-
P cally driven system. As discussed above, the escape proba-

bility W[r — t4(q)] (3) is determined by (q, ) (10) for

the “observation pointy = Q + g} (¢) lying far behind
the diffusion region near the basin boundary. Yetitcan be
chosen within the region where the potentidly) is para-
bolic, and then the outgoing currentjig;, t) = AQp(q, ).

y O il ) The major contribution tgo (g, ) (10) comes from the
X() = — f _dig 0)e', q¢70)=qp + Q0. (9) rangep <= D/Q < (AD)'/2. By changing in (10) to in-

o ] ) tegration overc « In p, we obtain
In (7) we singled out the dependence of the field-induced

corrections on g = Q + g, by calculating the LSy . = Ali—1p

along the trajectory that passes through the chosen poin{(q’t) = Wir — ta(g)] = Wo /_w dx O (@)

q» + Qp at the instant = 0 (we assume thap, O, < 0, .
cf. Fig. 1). The choice ofQ, determines the phase of X exf —s(wrx/A)/D], Glx) =x — e
%, buts[#(0,1)] as a whole is independent ¢f,. We (12)
have also extended the range of integration ever(6) to

% with account taken of smallness of the velocity) ~
—AQ near the barrier top.

Clearly, the perturbation theory (7) diverges for
—Q — 0. This is related to nonintegrability of the
variational problem (4) [7] forF # 0. Equation (7)
applies if 9s/9Q is small compared téS(q,1)/dq, i.e.,
for —Q > |wr i F|'/2/A, which imposes a limitation on
—Q from below. An additional limitation follows from i i
the neglect of the current away from the metastable staté 5| to the noise intensity, but for smallls|/AU.

This current becomes substantial at the distance from 1h€ outgoing current (12) is determined by two pro-
the basin boundary of the order of the diffusion length,CESSeS: large fluctuations which form a time periodic dis-
—0 ~ (D/N)'2. However, in the whole vicinity of the tr_lbutl_on close to the parrler top on.the intrawell side, and
basin boundary the distribution(q,7) can be obtained diffusion over the barrier top. The first process depends on

from the linearized irp Fokker-Planck equation: the global motion inside the well. The effect of the field
' on this process is described by the logarithmic suscepti-

ap/at = —ra(Qp)/dQ + Dd*p/oQ?. bility ¥ (w) which determines the function The second
process is spatially localized to the vicinity of the barrier
This equation can be solved by reducing it to the firsttop, but, since it involves diffusion, the resulting transmis-
order equation for a generating functigr(p, ), which  sion is described by an integral over the scaled tirf4].

Here,F, are Fourier components of the foréér), wr =

27 /7F is the force frequency) = —U"(g,) is the curva-
ture of the potential/(¢) at the local maximung,, AU is

the barrier height foF' = 0, and

o]

Here,tp(g) = A~ 1 In(AQ|Qol|/D) [overall, Eq. (12) is in-
dependent oDy]. The time lagz,(g) differs fromzp(g)

by a g-independent constant which depends on the choice
of the initial condition forz, in Eq. (3).

Equation (12) provides an explicit general expression
for the escape rate of a driven system. This is the major
result of the paper. It applies for an arbitrary ratio of the
field-induced change of the activation energy of escape

can be found then by the method of characteristics, We note that the overbarrier diffusion is unaffected by the
o0 field.
p(Q,1) = fo dp exp(—pQ/D)p(p,1), It follows from Eq. (12) that the period averaged escape

(10)  rateW is given by a simple expression:
p(p.1) = exp(—p*/2AD)f (p exp(Ar)). \

W - -1
Here, f(x) is an arbitrary function. It can be obtained by W/Wo = (2m) /; d¢ exi—s(¢)/D].  (13)
matching Eq. (10) to Egs. (4) and (7) in the range of com-
paratively large negative. The matching can be done Sinces(¢) (7) is a zero-mean periodic functiow, always
by evaluating the integral over in (10) by the steepest exceeds the Kramers escape réitg. For small F/D,
descent method, with the assumption tlfiais a smooth the correction td¥, is quadratic inF/D (cf. [8]). In the
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opposite limit of largeF /D, the escape rate is changed An interesting feature of the time dependence of the out-
exponentially strongly, going current isqonadiabatic rectificationvith increas/ing
— " 12 field frequency. Sincf’(1 + ix)| = [7x/sinn(7x)]"/?,
W/Wo = [D/2ms" ()] exills(@nl/D],  (14) o amplitudes of the harmonics p{15) decay exponen-

where ¢,, is the position of the maximum of-s(¢), tially fast for largekwp/A.
s'(¢m) = 0. The exponent in (14) for the general case The evolution of the temporal shape of the current is
of nonadiabatic driving was obtained earlier [10]. Weillustrated in the inset of Fig. 2. Thiwgarithm of the
emphasize that it idinear in the field amplitude. In escape rate is nearly sinusoidal for sma#, the transition
particular, for sinusoidal drivingF () = 2F; sinwrt, we  rate is highly nonsinusoidal, and most transitions occur
haves”(¢m) = |s(dm)|l = 2lx(wr)F1]. We note thatthe when the barrier is lowest. Modulation of Wi(z), and
prefactor in (14) is a smooth function of the noise intensitythus synchronization of escape events by the field, sharply
D, in contrast to what was obtained in [5] for escape overdecrease with increasingy.
a limit cycle. To explain this effect and the overall time dependence of

The amplitude and frequency dependence of the avethe current, we note first that, irrespective of the field fre-
age escape rate are illustrated in Fig. 2 for a simple modeéluency, forly F|/D > 1 the system is most likely to ap-
potential U(q) = 3¢*> — $¢°. From (9), the LS for this proach the vicinity of the basin boundaoyce per period,
potential ¥(w) = mw/sinh7w). It falls off exponen- attheinstantary + ¢, /wr (n = 0,*1,...), whereg,,
tially at large @, which is a generic consequence of theis introduced in (14). The incoming probability pulses are
smoothness of the instantonlike optimal patti(r) in (9)  nearly Gaussian in time far from the boundary. However,
(the phase of the LS corresponds to the pgfh(r) that  diffusion near the boundary effectively integrates them
passes through = 1/2 att = 0). [cf. Eq. (12)], and as a result the outcoming current pulses

The general expression for the time-dependent currediecome strongly asymmetric, and the current components
(12) takes a simple form in the case of sinusoidal drivingWith frequencies much higher than the relaxation ratee

F(t) = 2ReF| expiwrt), filtered out.
" ~ Equation (15) relates the escape rate to the logarithmic
(g, 1) = Wo Z I 2|x(wp)Fi| rl1 + ik 28 susceptibility. This makes it possible fiad the logarith-
’ Pt D A mic susceptibility experimentally, for an unknown poten-
x explikorlt — to(q)] + ikdrl, (15) tial. We note that time oscillations of the escape rate can

be found from the mean first passage time-type measure-
wherel;(x) andI'(x) are the Bessel and gamma functions,ments. For a system prepared in the metastable state for
respectively, andpr = ard y(wr)F1]. It follows from ¢ = 0, the probability density per unit time of reaching
(15) that, forarbitrary YF/D, the average escape rate a given pointg is given byW(r — t4(q)) exp(—Wt) (the
is simply W = Woly(2| ¥ (wr)F1|/D). In particular, for last factor allows for the decay of the state population).
relatively strong fields IRV « F, in agreement with (14). Therefore the mean number density (per unit time) of the
field periods before the system escapes and passes through
q for agiven phasef the field ¢ is (n) = W(t4)/W 77,
8 . . : : wherety, = (¢p/wr) — ta(q).

In this paper, we have analyzed the time-dependent and
period-average rate of activated escape in driven systems,
in a broad range of field frequencies and amplitudes.
The field dependence of the escape rate changes from
gquadratic to exponential in thamplitude (not intensity)
with increasing field. The effect of the field is determined
by the logarithmic susceptibility, which may display strong
frequency dependence and is accessible by experimental
measurements. The amplitude of the time oscillations of
the escape rate decreases with field frequency.
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FIG. 2. The logarithm of the average escape rate as a fund=enter for Fundamental Materials Research.

tion of the scaled field amplitude|F,|/D for the potential

U(g) = ¢*/2 — ¢°/3. The curvesa to d refer to the di-

mensionless frequencwyr = 0.1, 0.4, 0.7, and 1.2. Inset:
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