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Small-World Networks: Evidence for a Crossover Picture
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Watts and Strogatz [Nature (London)393, 440 (1998)] have recently introduced a model f
disordered networks and reported that, even for very small values of the disorderp in the links, the
network behaves as a “small world.” Here, we test the hypothesis that the appearance of smal
behavior is not a phase transition but a crossover phenomenon which depends both on the netw
n and on the degree of disorderp. We propose that the average distance, between any two vertices
of the network is a scaling function ofnynp. The crossover sizenp above which the network behave
as a small world is shown to scale asnpsp ø 1d , p2t with t ø 2y3. [S0031-9007(99)08892-4]

PACS numbers: 84.35.+ i, 05.40.–a, 05.50.+q, 87.18.Sn
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Two limiting-case topologies have been extensiv
considered in the literature. The first is the regular latti
or regular network, which has been the chosen topol
of innumerable physical models such as the Ising mo
or percolation [1–3]. The second is the random graph
random network, which has been studied in mathema
and used in both natural and social sciences [4–16].

Erdös and co-workers studied extensively the proper
of random networks—see [17] for a review. Most
this work concentrated on the case in which the num
of vertices is kept constant but the total number of lin
between vertices increases [17]: The Erdös-Rényi re
[18] states that for many important quantities there is
percolationlike transition at a specific value of the avera
number of links per vertex. In physics, random netwo
are used, for example, in studies of dynamical proble
[19,20], spin models and thermodynamics [20,21], rand
walks [22], and quantum chaos [23]. Random netwo
are also widely used in economics and other social scien
[8,24,25] to model, for example, interacting agents.

In contrast to these two limiting topologies, empir
cal evidence [26,27] suggests that many biological, te
nological, or social networks appear to be somewh
in between these extremes. Specifically, many real
works seem to share with regular networks the conc
of neighborhood, which means that if verticesi andj are
neighbors then they will have many common neighbors
which is obviously not true for a random network. O
the other hand, studies on epidemics [14,15,26] show
it can take only a few “steps” on the network to rea
a given vertex from any other vertex. This is the for
most property of random networks, which is not fulfille
by regular networks.

To bridge the two limiting cases, and to provide
model for real-world systems [28,29], Watts and Strog
[26,27] have recently introduced a new type of netwo
which is obtained by randomizing a fractionp of the links
of the regular network. As in Ref. [26], we consider
an initial structure (p  0) the one-dimensional regula
network where each vertex is connected to itsz nearest
0031-9007y99y82(15)y3180(4)$15.00
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neighbors. For0 , p , 1, we denote these network
disordered, and keep the name random network for
case p  1. Reference [26] reports that for a sma
value of the parameterp —which interpolates between th
regular (p  0) and random (p  1) networks—there
is an onset of “small-world” behavior. The small-wor
behavior is characterized by the fact that the dista
between any two vertices is of the order of that for
random network and, at the same time, the concep
neighborhood is preserved, as for regular lattices (Fig.
The effect of a change inp is extremely nonlinear as i
visually demonstrated by the difference between Figs
and 1d and Figs. 1b and 1e where a very small cha
in the adjacency matrix leads to a dramatic change in
distance between different pairs of vertices.

Here, we study the origins of the small-world behav
[28,29]. In particular, we investigate if the onset
small-world networks is a phase transition or a crosso
phenomena. To answer this question, we consider not
changes in the value ofp but also in the system sizen.

The motivation for this study is the following. In
regular one-dimensional network withn vertices andz
links per vertex, the average distance, between two
vertices increases asnys2zd—the distance is defined a
the minimum number of steps between the two vertic
The regular network is similar to the streets of Manhatt
Walking along 5th Avenue from Washington Square P
on 4th Street to Central Park on 59th Street, we h
to go past 55 blocks. On the other hand, for a rand
network, each “block” brings us to a point withz new
neighbors. Hence, the number of vertices increases
the number of stepsk as n , zk , which implies that,
increase as lnny ln z. The random network is then simila
to a strange subway system that would directly conn
different parts of Manhattan and enable us to go fr
Washington Square Park to Central Park in just one s
In view of these facts, it is natural to enquire if the chan
from large world (, , n) to small world (, , ln n) in
disordered networks occurs through a phase transition
some given value ofp [30] or if, for any value ofp, there
© 1999 The American Physical Society
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FIG. 1. Effect of disorder on the distance between vertices of the network (go to http: //polymer.bu.edu/ a˜ maral /Networks.html
for color pictures). We consider here matrices withz  10, n  128, and with periodic boundary conditions, that is, vertex
follows vertexn. Adjacency matrices for (a) a regular one-dimensional network where each vertex is connected to itsz nearest
neighbors, (b) a disordered network withp  0.01, and (c) a random network. Black indicates that a link is present betwee
two vertices while gray indicates the absence of a link. Note that (a) and (b) are nearly identical. Distance matrices fo
regular network, (e) the disordered network withp  0.01, and (f ) the random network. We use the relief of the surface an
gray scale to represent the distance between two vertices. Greater height indicates larger distance. The gray scale is th
the relief and for the contour lines: Distance increases from very dark gray to gray to light gray to dark gray. For the
network, the contour lines are parallel to the diagonal. On the other hand, for the disordered network the contour lines
around specific links that act as “throughways” of the network. This effect prevents the distance between any two vertic
ever becoming large, that is, of the order of the system size.
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is a crossover sizenpspd below which our network is a
large world and above which it is a small world.

In the present Letter, we report that the appearance
the small-world behavior is not a phase transition bu
crossover phenomena. We propose the scaling ansat

,sn, pd , npF

µ
n
np

∂
, (1)

whereFsu ø 1d , u, Fsu ¿ 1d , ln u, andnp is a func-
tion of p [31]. Naively, we would expect that, when th
average number of rewired links,pnzy2, is much less than
one, the network should be in the large-world regime.
the other hand, whenpnzy2 ¿ 1, the network should be a
small world [32]. Hence, the crossover size should oc
for npp  Os1d, which implies np , p2t with t  1.
This result relies on the fact that the crossover from large
of
a

n

r

o

small worlds is obtained with only a small but finite frac
tion of rewired links. We find that the scaling ansatz (
is indeed verified by the average distance, between any
two vertices of the network. We also identify the crossov
sizenp above which the network behaves as a small wo
and find that it scales asnp , p2t with t ø 2y3, distinct
from the trivial expectationt  1.

Next, we define the model and present our resu
We start from a regular one-dimensional network withn
vertices, each connected toz neighbors. We then apply
the “rewiring” algorithm of [26] to this network. The
algorithm prescribes that every link has a probabilityp
of being broken and replaced by a new random lin
We replace the broken link by a new one connecti
one of the original vertices to a new randomly select
vertex. Each of the othern 2 2 vertices—we exclude
3181
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the other vertex of the broken link—has ana priori
equal probability of being selected, but we then make s
that there are no duplicate links. Hence, the algorit
preserves the total number of links which is equal tonzy2.
A quantity that is affected by the rewiring algorithm
the probability distribution of local connectivities. Fo
p . 0, this probability is narrowly peaked aroundz, but
it gets broader with increasingp. For p  1, the average
and the standard deviation of the local connectivity are
the same order of magnitude and equal toz.

Once the disordered network is created, we calculate
distance between any two vertices of the network and
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FIG. 2. Determination of the crossover sizenp. (a) Semilog
plot of , versus network size for two representative values
p and for z  20. Following Eqs. (1)–(3), we can determin
np —apart from a multiplicative constant—from the asympto
slope of, against lnn. (b) Scaling ofnp with p for the three
values ofz discussed in the text. The curves forz  20 and30
have been shifted up so as to coincide in the region where
scale as a power law. Following Eq. (3), we make a power-
fit to npspd for p ø 1 and obtaint ø 2y3.
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average value,. To calculate the distance for each pair
vertices, we use the Moore-Dijkstra algorithm [33] who
execution time scales with network size asn3 ln n. We
perform between 100 and 300 averages over realizati
of the disorder for each pair of values ofn andp.

Here, we present results for three values of connectiv
z  10, 20, and 30 and system sizes up to 1000. T
scaling ansatz (1) enables us to determinenpspd from ,snd
at fixed p. Indeed,,sn ¿ npd , np ln n which implies
that np is the asymptotic value ofd,ydsln nd [Fig. 2(a)].
Figure 2(b) shows the dependence ofnp on p for different
valuesz. We hypothesize that

np 2
1

ln z
, p2tgspd , (2)

where the term inz arises from the fact that,  ln ny ln z
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FIG. 3. Data collapse of,sn, pd for z  10 and different
values of p and n. (a) Plot of the scaled average distanc
between vertices,ynp versus scaled system sizenynp. (b)
Same data as in (a) but in a semilog plot. Note the line
behavior of the data forn , np and the logarithmic increase o
, for large system sizes.
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for a random network (p  1), and gsp ! 1d ! 0.
Moreover, gspd approaches a constant asp ! 0,
leading to

np , p2t , (3)
for small p. Because of the effect ofg and the fact
that n , 1000 in our numerical simulations, we ar
constrained to estimatet from the region2.5 3 1024 ,

p , 2 3 1022. For all values ofz, we obtain t 
0.67 6 0.10 (Fig. 2).

Using this value oft and the scaling form (1), we ar
able to collapse all the values of,sn, pd onto a single
curve (Fig. 3). This data collapse confirms our scal
ansatz and estimate oft.

In summary, we have shown that the onset of sm
world behavior is a crossover phenomena and not a ph
transition from a large world to a small one. The crosso
size scales asp2t with t . 2y3. The surprising fact
that t , 1 shows that the rewiring process is high
nonlinear and can have dramatic consequences on
global behavior of the network. This implies that in ord
to decreasethe radius of a network it is necessary to rew
only a few links. We also note that the value of th
exponentt will likely depend on the dimensionality of th
initial regular network. This point will be addressed
future work.

We believe that the disordered networks introduced
[26] may constitute a promising topology for more realis
studies of many important problems such as flow in el
tric power or information networks, spread of epidemi
or financial systems. The results reported here support
hypothesis because they suggest that, foranygiven degree
of disorder of the network, if the system is larger than t
crossover size, the network will be in the sma
world regime.
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