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Collective Modes in Strongly Coupled Electronic Bilayer Liquids
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We present the first reliable calculation of the collective mode structure of a strongly coupled
electronic bilayer. The calculation is based on a classical model through the 3rd frequency-moment-sum
rule preserving quasi-localized-charge approximation, using the recently calculated hypernetted-chai
pair correlation functions. The out-of-phase spectrum shows an energy gap atk  0 and the absence
of a previously conjectured dynamical instability. [S0031-9007(99)08877-8]

PACS numbers: 73.20.Mf, 71.45.Gm, 73.61.–r
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Electronic bilayers exhibit a rich pattern of behavio
both on the static and on the dynamic level. While at h
rs values (rs . rcrystal

s ), the bilayer is expected to crysta
lize (according to [1,2],rcrystal

s $ 20), and at very lowrs

values the random-phase approximation (RPA) descrip
is largely sufficient, the most interesting behavior occur
the 1 , rs , rcrystal

s domain, where the system is in th
liquid state. This is the domain we focus on in this Lett

The most remarkable feature on the static level is
the system exhibits a series of abrupt structural chan
as the ratio of the interlayer distanced and the 2D
Wigner-Seitz radiusa is varied [3]. These structura
changes parallel the structural phase transitions in
solid phase [2,4], but at finite temperature they are a
combined with entropy increasing substitutional ord
disorder transitions [3] where particles in layer1s2d
occupy positions appropriate for particles in layer2s1d:
this is signaled by the two pair correlation functions (PC
h11srd andh12srd becoming identical asd ! 0.

The dynamical behavior, the collective mode struct
in particular, has been studied by Swierkowskiet al. [5],
by Gold [6], by Zhang and Tzoar [7], by Golden, Kalma
and collaborators [8–10], and by Moudgilet al. [11].
(Some of these studies pertain to a superlattice [infi
number of layers], rather than to a bilayer; in qualitat
terms the results can, however, be easily interpreted
the bilayer.) Classical bilayer and multilayer structu
that form in charged particle traps have also been s
ied theoretically by Dubin [12(a)] and have recently be
observed in ion traps [12(b)]. There are two proble
atic issues that make the predictions based on the cal
tions less than reliable [13]. The first issue relates to
approximation technique used: most of the works ci
[5–7,11] use methods which violate the 3rd frequen
moment-sum rule, whose satisfaction is well recogni
[14] to be an important criterion for providing an acce
able description of the collective mode behavior. The s
ond issue concerns the use of the intralayer and interl
correlation functions as inputs in all the calculations cit
No reliable PCF data—either for classical or quantum
layer systems—have been available until fairly recen
0031-9007y99y82(15)y3124(4)$15.00
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thus predictions of the collective mode structure (whi
turns out to be extremely sensitive to the behavior of
inputted PCF) have been compromised from the outse

In this Letter we present the first consistent and relia
calculation of the collective mode spectrum of a strong
coupled electronic bilayer liquid. Our results show fe
tures which are qualitatively different from the weak
coupled RPA results; they also show that earlier clai
concerning the possible emergence of a dynamical in
bility [5,6,9,11] cannot be supported by a more cons
tent treatment of the correlations. The calculation is ba
on a purely classical model: (i) two 2D electron liquid
separated by distanced; (ii) scattering on impurities, etc.
neglected; (iii) no interlayer tunneling; (iv) the system
described as a binary electron liquid with interaction pote
tials w11srd  w22srd  e2yr , w12srd  e2y

p
sr2 1 d2d,

where exchange and other quantum effects are neglec
This approximation is reasonable in the strong coupling
main where the particles are well localized. The intralay
coupling is characterized by the parameterG  e2yaT
wherea  1y

p
pn and T is the kinetic energy per par

ticle—the temperature in a classical system ands1y2d´F

in a zero temperature 2D electron gas. Hence the equ
lenceG ! 2rs. The calculation of the dielectric matrix
´

mn
ij skvd is carried out in the quasi-localized-charge a

proximation (QLCA), which has been applied successfu
for the description of other strongly coupled Coulomb sy
tems [15–17]; in the QLCÁ skvd becomes a functiona
of the intralayer and interlayer PCFsh11srd andh12srd or
of the corresponding structure functionsS11skd andS12skd,

´skvd  I 2 v2
0skad fv2I 2 Dskdg21. (1)

[v0  s 2pe2n
ma d1y2, the nominal plasma frequency of

single 2D layer] with [15]

D
mn
ij skd 

1
mA

X
q

qmqn

"
wijsqdSijsjk 2 qjd

2 dij

X
l

wilsqdSilsqd

#
. (2)
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I is the identity matrix. In Cartesian spacéskvd and
similarly Dskd are reducible to longitudinaĺLsDLd and
transversé T sDT d matrices. The dispersion relation f
the longitudinal modes is then obtained from

jj´Lskvdjj  0 (3)

which leads to

v2  v0kas1 6 e2kdd 1 DL
11skd 6 DL

12skd . (4)

With the neglect of retardation effects, the dispers
relation for the transverse modes is derived from

jj´T skvd21jj  0 (5)

which yields

v2  DT
11skd 6 DT

12skd . (6)

The D functions are to be expressed in terms of
structure functions, according to Eq. (2). The latter h
recently been calculated [3] through the hypernetted-c
integral equation for a wide range ofG and d values.
Inputting them into the correspondingD functions and
using the latter in Eqs. (4) and (6) one can generate a
description of the collective mode spectrum. The res
are portrayed in Figs. 1–3 and the qualitative featu
of the collective mode dispersion are summarized be
(The figures are given forG  40, corresponding to
rs  20: this rs value, while high enough for correlation
to be dominant is within the domain of experimen
realizability.)

(1) The spectrum of collective modes comprises f
modes: two (longitudinal and transverse) in-phase mo
[corresponding to the1 sign in Eqs. (4) and (6)] an
two (longitudinal and transverse) out-of-phase mo
[corresponding to the2 sign in Eqs. (4) and (6)].

(2) The in-phase modes (where the two layers oscil
in unison) are not qualitatively different from the simil
modes of an isolated 2D layer [16]. In particular, f
k ! 0 the longitudinal (plasmon) mode has the typic
quasiacousticv ,

p
k dispersion, while the transvers

(shear) mode is acoustic,v , k; both modes are softene
by intralayer and interlayer correlations.

(3) The out-of-phase modes (where the oscillati
of the two layers exhibit a180± phase difference) ar
characterized by anvsk  0d . 0 energy gap. The
physical reason for the existence of an energy gap
layered systems has already been discussed elsew
[8]. The out-of-phase longitudinal mode in the RP
has been identified as theacoustic plasmon[18,19] since
for k ! 0, v ! 0 as k. The present calculation clear
shows the marked difference brought about by the str
correlations. Since atk  0 the isotropy of the system
is unbroken, the plasmon and the shear modes sha
common gap value.

(4) From Eqs. (4) and (6) the gap value can
expressed as

v2s0, dd  2
v

2
0

2

Z `

0
dsqad sqad2e2qdS12sqd . (7)
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With increasing d and consequently decreasing i
terlayer correlations,vs0d shows a decreasing tenden
and it virtually vanishes ford . 1.5 when the separate
layers become practically uncorrelated [3]. This dow
ward trend is, however, preceded by a slight upturn
0 , d , 0.16 (for G $ 30). Although the details of this
behavior are not well understood, it is most likely due
the substitutional disorderthat prevails in this region [3]:
the eigenfrequencies of the localized modes in the s
stitutionally disordered phase are expected to be hig
than in the substitutionally ordered phase [20]. Within t
domain investigated, theG dependence ofvs0d is quite
mild, but with the QLCA being a strong coupling appro
imation, no inference concerning the behavior ofvs0d in
the moderately coupled (G , 10) domain can be drawn
from this observation. In fact, it is expected that for lo
enoughG values,vs0d tends to zero to match atG  0
the predicted RPA behavior [18].

(5) For finite k values all four dispersion curves de
velop an oscillatory behavior, generated by the sim
behavior of the inputted structure functions. This b
havior has also been identified for the isolated 2D la
[16,17(b)]. The structure of the out-of-phase plasm

FIG. 1. The four principal modes forG  40 (rs  20):
(a) dya  0.3; (b) dya  1.0. The shaded region is the pa
excitation continuum. Fordya  1.0 (vmin , 0.45v0) the
diffusional domain in which the shear mode is nonpropagat
and the out-of-phase plasmon exhibits an RPA-like behavio
indicated.
3125
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FIG. 2. The gapped out-of-phase (“acoustic”) plasmon
different layer separations. The shaded region is the
excitation continuum. In thev , vmin domain thedya  1.0,
1.5, and 2.0 gap values are spurious and the dispersion s
resemble the RPA acoustic-type behavior.

mode is of special interest here: the first sharp roton
minimum has attracted attention in earlier studies [5,9
which were based on the neglect or on a highly appr
mate treatment of the interlayer correlations. It was s
gested that the minimum ofv2 may dip belowv2  0
[5(a),9,11] or may, at least, reach the close vicinity
v2  0 [5(b),5(c)]. The former behavior would indica
a dynamical instability (heralding the onset of char
density-wave-type ground state), [5(a),11]; the latter
been interpreted as the onset of a new high-k, low fre-
quency mode [5(b),5(c)]. Our results show that the ro
minimum never drops below the value already reache
the dispersion curve of the 2D layer. The consistent tr
ment of the interlayer and intralayer correlations thus
cludes the existence of the effects conjectured in [5,9
virtually independently of any other approximation use

(6) At high k values, for a givend all the dispersion
curves approach the same asymptotic frequency value
frequency of a localized mode, a particle oscillating in

FIG. 3. Gap [vs0d] value for G  40 and G  30 as func-
tions of the layer separation. Below the estimatedvminsGd
value the gap is spurious. The inset comparesvs0d andvs`d
for G  40.
3126
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v2s`, dd 
21
mA

X
q

hw11sqd fS11sqd 2 1g

1 w12sqdS12sqdjq2

 2
v

2
0

4

Z `

0
d sqad sqad2

3 fS11sqd 2 1 1 S12sqde2qdg .

(8)
This result is, probably, only of academic interest, sinc
is unlikely that high-k modes would survive the dampin
mechanisms operating in the system.

The QLCA is not geared to describe damping proces
and therefore our calculation fails to provide inform
tion on the damping of the collective modes. Howev
some qualitative statements can be made. (We con
trate on the out-of-phase modes only.) There are th
major damping mechanisms to be considered. These
(i) single pair excitations (Landau damping), (ii) mult
ple pair excitations, and (iii) diffusive-migrational damp
ing [17]. The effect of the single pair excitations ca
be easily assessed from Figs. 1 and 2. Both of th
show the pair excitation domain: it is clear that as lo
as the layer separation is not too large (dya , 1.5) for
small k values both the out-of-phase plasmon and sh
modes are well outside the continuum and are thus
mune to Landau damping. In a highly correlated plas
multiparticle excitations are, however, also operative, w
increasing importance at higherk values. The high-
k portion of the dispersion curve emerging from t
continuum would probably be heavily damped by th
process. The diffusive-migrational shifting of the qua
sites [17] can originate from quasithermal diffusion
from tunneling between neighboring minima of the flu
tuating potential. ForG sufficiently high (G $ 40, i.e.,
rs $ 20, probably close to crystallization [1]), the latte
effect should be significantly diminished. The forme
however, is sizable when its characteristic time becom
comparable with the period of the mode under consid
ation. Based on our earlier estimate [10] of the low
surviving oscillation frequency,vmin and on the molecula
dynamics results of Ref. [21] (see also [17]) concern
the lowest propagating wave-number value for the sh
mode, one can conclude that forG  40 (rs  20) the
dya , 0.8 domain and forG  20 (rs  10) the dya ,

0.6 domain can be safely assumed not to be seriously
fected by this damping mechanism for either of the mo
(cf. Fig. 1a). For higherd values the gap frequencyvs0d
is below vmin and thus the shear mode would be prop
gating for v . vmin only; in the domainv , vmin the
longitudinal mode would be stripped of its correlation
features and would revert to an RPA-type acoustic p
mon withvsk ! 0d ! 0 (cf. Fig. 1b).

The collective mode structure of the strongly coupled
layer liquid presented in this Letter bears a close relati
ship to the phonon spectrum of the bilayer solid, recen
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calculated by Goldoni and Peeters [4]. The four mode
the solid phase can be identified as the transverse ac
tic and the longitudinal quasiacoustic (,

p
k ) phonons

and the transverse and longitudinal optical phonons.
“gaps” exhibited by the latter are, in general, different b
cause of the anisotropy of the lattice. In contrast, in
liquid state, there is only one single isotropic gap, as
termined in this Letter. This liquid gap value is typical
slightly above the arithmetic average of the optical f
quencies of the transverse and longitudinal phonons in
solid phase.

Concerning the possible observation of the features
dicted in this Letter, one can suggest three main areas
should lend themselves to direct experimental verificati
(1) the existence and the nonmonotonicd-dependence o
the k  0 energy gap; (2) the existence of a transve
shear excitation with a high frequency and expected
damping (this is in sharp contrast to the usual scen
for the shear mode in the liquid phase, which vanishes
k ! 0 [17,21,22]); (3) the nonexistence of the predict
[5,6,9,11] instability or low frequency mode in the vicin
ity of the first roton minimum. We note that the reporte
Raman scattering experiments [23] are inconclusive
cause of the lowrs and relatively highk values involved.
Recent advances in fabricating highrs samples [24] and
small layer separation should render the suggested ex
ments feasible.

In summary, we have obtained a comprehensive
ture of the collective mode structure of an electron
bilayer in the strongly coupled liquid phase. This stru
ture is qualitatively different both from that of the weak
coupled bilayer electron gas (describable in the RPA)
from the phonon spectrum of the bilayer solid and exhib
a number of remarkable features which should be exp
mentally verifiable. The calculation avoids the pitfalls
earlier approaches which stem from the inconsistencie
the approximations used for the interlayer and for the
tralayer PCFs, and from the violation of the 3rd frequen
moment-sum rule.
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