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Power Laws in Nonlinear Granular Chain under Gravity

Jongbae Hong, Jeong-Young Ji, and Heekyong Kim
Department of Physics Education, Seoul National University, Seoul 151-742, Korea

(Received 14 August 1998; revised manuscript received 1 March 1999)

The signal generated by a weak impulse propagates dispersively in a gravitationally com
granular chain. For a power-law-type contact force, we show analytically that the type of disp
follows power laws in depth. The power law for a grain displacement signal is given byh2s1y4d f12s1ypdg

whereh and p denote depth and the exponent of the contact force, respectively, and the pow
for the grain velocity ish2s1y4d fs1y3d1s1ypdg. Other depth-dependent power laws for oscillation frequen
wavelength, and period are given by combining the above two expressions and the phase velocit
law hs1y2d f12s1ypdg. We verify these power laws by comparing with the data obtained by nume
simulations. [S0031-9007(99)08953-X]

PACS numbers: 45.70.–n, 43.25.+y, 46.40.Cd
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Physics of granular materials has attracted great inte
recently [1], since these materials are ubiquitous aro
us and their properties are unique and also useful in m
applications [2,3]. The propagation of a sound or a we
elastic wave in a granular medium is also one of
interesting subjects related to the properties of gran
matter [4]. A rather simple system, the granular ch
with Hertzian contact [5], has been revived by findi
a soliton in transmitting elastic impulse. This solito
existing in a highly nonlinear regime of a horizont
Hertzian chain was first predicted by Nesterenko [6] a
its experimental verification was performed by Lazar
and Nesterenko [7] and recently by Costeet al. [8].
Even though three-dimensional granular systems m
not follow simple Hertzian contact force law due
geometrical effect [9], the one-dimensional granular ch
with nonlinear contact force is still interesting [10].
may describe a fundamental feature of the dynamics
nonlinear granular chain which appears in many area
nature. In addition, the one-dimensional system is usu
the starting point of studying higher-dimensional system

It is well known that the velocity of an elastic impuls
scales asP1y6 or h1y6 for the Hertzian chain [9], where
P is the pressure, linearly proportional to the depthh
for vertical chain. Sinkovits and Sen [11] extended th
to arbitrary nonlinear contact force of power-law typ
F ~ dp, where d denotes overlapped distance betwe
adjacent grains. They showed that the signal velo
yph scales ashf12s1ypdg s1y2d for p $ 1 at largeh. This
has been simply obtained by considering the well-kno
relationyph ~

p
m, wherem is the elastic constant whic

is given by m , h12p for the above power-law-type
contact force. As far as we know, however, no power-l
dependences on depth of the signal characteristics, su
oscillation frequency, period, and wavelength have b
found in the gravitationally compacted chain.

In this work, we study the propagation of acoustic
weak impulses in the gravitationally compacted granu
chain. We derive analytically the power-law behavio
0031-9007y99y82(15)y3058(4)$15.00
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of signal characteristics which depend on depth or tim
We treat here a rather weak impulse which mak
grain motion oscillatory and can be treated analytica
even though it contains nonlinearity. The other extre
which is a highly nonlinear regime has been stud
by Nesterenko [6]. Initial impulse may be used as
parameter which controls the solitariness of the sign
The power-law behaviors for a wide range of impulse w
be discussed in a separate work [12].

We would like to obtain analytically the exponen
of various power laws, such as grain displaceme
grain velocity, and oscillation period, frequency, a
wavelength. We first solve the equation of motion of
grain displacement under gravity in the small oscillati
or weak impulse regime in which the equation of moti
under gravity can be mapped into the equation for
horizontal linear chain with varying force constant at ea
contact. The normal mode solution of the equation
motion can be obtained analytically in the continuum
long wavelength limit. The asymptotic behavior of th
normal mode gives rise to the correct power-law behav
in depth, since the equation of motion has been chan
into a linear form. Once we get the information on t
grain velocity, all sorts of power laws mentioned abo
can be obtained. Since the equation of motion for gr
velocity is not linear, the normal mode solution ma
not work to obtain power law in depth. Therefore, w
construct fully dispersive forms describing displacem
and velocity signal and obtain their depth-depende
behaviors. Our solution is quite general and gives rise
generic power laws for arbitrary exponentp of the contact
force in the oscillating regime.

The equation of motion ofnth grain atzn is given by

mz̈n ­ hfhD0 2 szn 2 zn21djp

2 hD0 2 szn11 2 zndjpg 1 mg , (1)

where zn is the distance from the top of the chain
the center of thenth spherical grain,m is the mass
of grain, D0 is the distance between adjacent cent
© 1999 The American Physical Society
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of the spherical grain, andh is the elastic constant o
grain. Therefore, the overlap between adjacent gr
at nth contact isdn ­ D0 2 szn11 2 znd. It is usually
impossible to solve general nonlinear problems in
analytical way. Therefore we may not solve the nonlin
differential equation of Eq. (1) exactly. But we may tre
it analytically in a small oscillation regime which can b
achieved by applying a weak impulse.

For this purpose, we introduce a new variable

cn ­ zn 2 nD0 1

nX
l­1

√
mgl
h

!1yp

, (2)

where the last term is the sum of overlaps up to
nth grain and setz0 ­ c0 ­ 0. This change of variable
makes Eq. (1) into an equation for the linearized horiz
tal chain with varying force constant at each contact, i.

m
≠2

≠t2 cn ­ 2mnscn 2 cn21d 1 mn11scn11 2 cnd ,

(3)

wheremn ­ m1nf12s1ypdg is the force constant of thenth
contact andm1 ­ mpgs h

mg d1yp is the force constant of th
first contact. Use of the condition of small oscillation

jcn 2 cn21j ø

√
mgn

h

!1yp

(4)

has been made to obtain Eq. (3) approximately. T
expression of Eq. (3) in the continuum limit, i.e., th
lattice constanta ­ dh ! 0, is given by

r

t1

≠2

≠t2 csh, td ­ afs1ypd21g ≠

≠h

"
mshd

≠

≠h
csh, td

#
, (5)

wheremshd ­ hf12s1ypdg denotes the depth dependence
force constant, andr ­ mya andt1 ­ m1a are the linear
density and the tension of a chain at the first cont
respectively. We setc1 ­

p
t1yr which is the well-

known speed of wave in the string of tensiont1 and line
densityr.

We now choosecz sh, td ­ uz shde2ic1as1y2pd2s1y2dz t as a
normal mode solution. Then the depth-dependent func
uz shd satisfies

d2

dh2 uz shd 1
1 2 s1ypd

h
d

dh
uz shd 1

z 2

h12s1ypd uz shd ­ 0 , (6)

which is a type of Bessel’s differential equation [13]. If w
consider a solution propagating to the positiveh direction,
the solution of Eq. (6) is given by the Hankel function [1

uz shd ­ hjHs1d
n suhgd , (7)

where j ­ 1
2p , g ­ 1

2 1 j ­ 1
2 s1 1

1
p d, u ­

z

g , n ­
j

g ­ 1
11p .

The asymptotic form of Eq. (7) at largeh for a fixed
n is
s

r

-

,

n

uz shd ø

s
2

pu
hj2sgy2deifuhg2spy2dn2spy4dg (8)

and the displacement function becomes

cz sh, td ø hj2sgy2deifsz ygdhg2c1as1y2pd2s1y2dz tg. (9)

The amplitude of displacement signal is given b
the envelope function of the asymptotic solution, whic
scales as

Ashd ~ hj2sgy2d ­ h2s1y4d f12s1ypdg. (10)

The phase velocityyph is obtained by setting the phase
of Eq. (9) constant, i.e., z

g hg 2 c1as1y2pd2s1y2dz t ­
constant. We obtain

yph ­
dh
dt

­ c1as1y2d fs1ypd21ghs1y2d f12s1ypdg. (11)

The group velocity scales as that of phase velocity an
the dispersion relation is linear but depth dependent
this case.

Since Eq. (5) is a linear differential equation, the
envelope function of a normal mode solution in Eq. (9
can describe the depth dependence of the displacem
signal which may be given by the linear combination o
all normal modes of different frequency. Therefore, on
can expect that the depth-dependent behavior predicted
Eq. (10) may agree well with the data given by numerica
simulation which will be shown in what follows.

The normal mode solution of Eq. (9) alone, howeve
cannot give appropriate predictions on the changes
frequency, wavelength, and period of the signal as
propagates down. The information on the grain velocit
may give the characteristics of signal dispersion b
combining it with the displacement and velocity of signa
To obtain the depth dependence of grain velocity we wri
Eq. (5) as

≠

≠t
ysh, td ­

≠

≠h

"
mshd

≠

≠h
csh, td

#
. (12)

We set the constant factor of Eq. (5) unity for our conve
nience, since it has nothing to do with depth dependen
behavior. To draw the depth-dependent behaviors of gra
velocity, frequency, etc., we set the frequencyvshd ~ ha,
the displacement function

csh, td ~ h2s1y4d f12s1ypdgeikshdh2ivshdt , (13)

and the grain velocity

ysh, td ~ hbeikshdh2ivshdt1f, (14)

where a and b will be determined andf is the phase
difference between displacement and velocity signal. Th
depth-dependent wave numberkshd is given by kshd ­
yphshdyvshd.

Since we have two unknownsa and b to be deter-
mined, we need two independent equations for thes
One is given by Eq. (12) and the other the relatio
vshd ~ yshdycshd. Substituting Eqs. (13) and (14) into
3059
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Eq. (12) gives rise tob ­ 1
4 2

5
4p 2 2a and the relation

vshd ~ yshdycshd yieldsa ­ b 1
1
4 2

1
4p . We obtain

the power-law behaviors of grain velocity and frequen
from these two equations as follows:

yshd ~ h2s1y4d fs1y3d1s1ypdg, (15)

vshd ~ hfs1y6d2s1y2pdg. (16)

The characteristic time of oscillation which is express
by the period is given by the inverse of frequency or
ratio of displacement to grain velocity, i.e.,

T shd ­
Ashd
yshd

~ vshd21 ~ h2fs1y6d1s1y2pdg. (17)

The characteristic length of oscillation, on the other ha
which is expressed by wavelength is given by multiply
T shd by phase velocity, i.e.,

lshd ­ T shdyphshd ~ h1y3. (18)

Interestingly enough, characteristic length of oscillat
does not depend on contact force within the lin
approximation of Eq. (3).

We now compare the above results with molecular
namics simulations performed for Eq. (1) for arbitraryp.
To perform numerical simulation for Eq. (1), we choo
a vertical chain ofN ­ 2 3 103 grains and neglect plas
tic deformation. As a calculational tool, we use the thi
order Gear predictor-corrector algorithm [14]. We cho
1025 m, 2.36 3 1025 kg, and 1.0102 3 1023 s as the
units of distance, mass, and time, respectively. Th
units gives the gravitational accelerationg ­ 1 [10]. We
set the grain diameter 100, mass 1, and the elastic
stant h of Eq. (1) is given byh ­ s1 1 pdb, whereb
depending on modulus is chosen as 5657 for this mol
lar dynamics simulation. The equilibrium condition

mgn ­ hdp
n (19)

has been used for thesn 1 1dth grain of a vertical chain
Even though there is a criterion [8,15] for initial impul
to neglect plastic deformation and viscoelastic dissipa
in experimental situations, we do not care about
criterion for the numerical simulation. For the purpo
of this work, however, we choose a rather weak ini
impulseyi ­ 0.1 in our program units. There is a regim
of initial impulse in which the signal follows the sam
power laws. This will be shown in a separate paper [1

Figure 1 shows the snap shots of amplitudes (a)
corresponding grain velocity signals (b) propagating do
the vertical chain with Hertzian contactsp ­ 3y2d [10].
The leading amplitude of displacement of each signa
Fig. 1(a) corresponds to the leading part of each velo
signal in Fig. 1(b).

We focus on the leading amplitudes of displa
ment and velocity signal and plot them in log10 - log10
scale in Fig. 2 which shows that both displacem
and velocity peak decrease in power laws of de
The explicit expressions for the depth-dependent be
3060
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FIG. 1. (a) Snapshots of displacement of the propaga
wave in a gravitationally compacted granular chain w
Hertzian contact force law. Initial impulse isyi ­ 0.1.
(b) Snapshots of grain velocity corresponding to (a).

iors of leading amplitudes of displacement and ve
ity are given byAmaxshd ~ h20.083560.0003 and ymaxshd ~

h20.250060.0001. We also obtain other depth-depend
power laws showing dispersiveness of the signal. T
are the elasped time to reach to maximum amplit
Tmaxshd, which describes the period and the numbe
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FIG. 2. Log10- log10 plots of leading peaks of displaceme
and grain velocity shown in Fig. 1. Slopes of the stra
lines are 20.0835 (displacement) and20.250 (velocity),
respectively.
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FIG. 3. Comparison of power-law exponents between the
and simulations for various values ofp. Solid lines are
theoretical results. Squares and triangles denote simula
data for displacement and grain velocity, respectively. D
are obtained for the leading peaks of each signal.

particles participating at the leading part of velocity s
nal, Nshd, which describes the wavelength. The pow
law exponents of these quantities with error boun
areTmax ~ h0.17060.002, N ~ h0.33860.004. These values ar
in good agreement with theoretical predictions for
Hertzianp ­ 3y2.

We obtain peak values of displacement and grain ve
ity signal for other values ofp and plot them in Fig. 3. One
can see a very nice fit to the theoretical curves up top ­ 2.
For large values ofp, the deviation from theory occurs e
pecially in grain velocity. This is understandable beca
nonlinearity becomes stronger asp increases and grain ve
locity contains more nonlinearity than displacement.

In conclusion, the propagating feature in vertical ch
is dispersive due to gravity even though total energy
momentum are conserved. The effect of gravity indu
the change in force constant at every contact. Theref
the signal is no longer a soliton which is the propag
ing mode in horizontal chain [6,8]. We treat the proble
analytically for the arbitrary power-law type of nonline
contact forces and obtain general features of disper
phenomena for a weak impulse in a gravitationally co
pacted chain. The normal mode solution for displacem
has been obtained in the small oscillation and continu
limit. This normal mode solution describes the dep
dependent power law of displacement signal. We fi
various power laws describing signal characteristics
pending on depth. This dispersive property is obtained
constructing both displacement and grain velocity fu
tion appropriately. We also perform numerical simu
tions for various power-law type contact force for a rath
weak impulseyi ­ 0.1 and show that the results agr
well with our theoretical predictions.
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The general features of soliton damping due to gra
may be given by studying similar work for a wide ran
of impulse, which will be given in a separate paper [1
The properties of signal propagation studied in this w
are fundamentals of the dynamics of granular chain un
gravity. This work may be extended to higher dimensio
and to more practical models for applications.
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