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Power Laws in Nonlinear Granular Chain under Gravity
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The signal generated by a weak impulse propagates dispersively in a gravitationally compacted
granular chain. For a power-law-type contact force, we show analytically that the type of dispersion
follows power laws in depth. The power law for a grain displacement signal is giver 9 [1=(1/»)]
whereh and p denote depth and the exponent of the contact force, respectively, and the power law
for the grain velocity ish ~(1/910/3+0/p)] - Other depth-dependent power laws for oscillation frequency,
wavelength, and period are given by combining the above two expressions and the phase velocity power
law »1/201=0/p)] We verify these power laws by comparing with the data obtained by numerical
simulations. [S0031-9007(99)08953-X]

PACS numbers: 45.70.—n, 43.25.+y, 46.40.Cd

Physics of granular materials has attracted great interesf signal characteristics which depend on depth or time.
recently [1], since these materials are ubiquitous arountlVe treat here a rather weak impulse which makes
us and their properties are unique and also useful in mangrain motion oscillatory and can be treated analytically
applications [2,3]. The propagation of a sound or a wealeven though it contains nonlinearity. The other extreme
elastic wave in a granular medium is also one of thewhich is a highly nonlinear regime has been studied
interesting subjects related to the properties of granulaoy Nesterenko [6]. Initial impulse may be used as a
matter [4]. A rather simple system, the granular chainparameter which controls the solitariness of the signal.
with Hertzian contact [5], has been revived by finding The power-law behaviors for a wide range of impulse will
a soliton in transmitting elastic impulse. This soliton, be discussed in a separate work [12].
existing in a highly nonlinear regime of a horizontal We would like to obtain analytically the exponents
Hertzian chain was first predicted by Nesterenko [6] andbf various power laws, such as grain displacement,
its experimental verification was performed by Lazaridigrain velocity, and oscillation period, frequency, and
and Nesterenko [7] and recently by Cost¢ al.[8]. wavelength. We first solve the equation of motion of a
Even though three-dimensional granular systems magrain displacement under gravity in the small oscillation
not follow simple Hertzian contact force law due to or weak impulse regime in which the equation of motion
geometrical effect [9], the one-dimensional granular chairunder gravity can be mapped into the equation for the
with nonlinear contact force is still interesting [10]. It horizontal linear chain with varying force constant at each
may describe a fundamental feature of the dynamics ofontact. The normal mode solution of the equation of
nonlinear granular chain which appears in many areas ahotion can be obtained analytically in the continuum or
nature. In addition, the one-dimensional system is usualljong wavelength limit. The asymptotic behavior of the
the starting point of studying higher-dimensional systemsnormal mode gives rise to the correct power-law behavior

It is well known that the velocity of an elastic impulse in depth, since the equation of motion has been changed
scales as?'/® or h'/° for the Hertzian chain [9], where into a linear form. Once we get the information on the
P is the pressure, linearly proportional to the depth grain velocity, all sorts of power laws mentioned above
for vertical chain. Sinkovits and Sen [11] extended thiscan be obtained. Since the equation of motion for grain
to arbitrary nonlinear contact force of power-law typevelocity is not linear, the normal mode solution may
F =« 67, where 6 denotes overlapped distance betweemot work to obtain power law in depth. Therefore, we
adjacent grains. They showed that the signal velocityconstruct fully dispersive forms describing displacement
vpn scales agil! ~(/PI01/2) for p = 1 at largeh. This and velocity signal and obtain their depth-dependence
has been simply obtained by considering the well-knowrbehaviors. Our solution is quite general and gives rise to
relationv,, « ./, whereu is the elastic constant which generic power laws for arbitrary expongnbf the contact
is given by u ~ h!~7 for the above power-law-type force in the oscillating regime.
contact force. As far as we know, however, no power-law The equation of motion ofth grain atz, is given by
dep_end_ences on depth of_the signal characteristics, suchas ;> — Ao — (zn — za_1)}’
oscillation frequency, period, and wavelength have been
found in the gravitationally compacted chain. — {80 = (@nt1 — )]+ mg, (1)

In this work, we study the propagation of acoustic orwhere z,, is the distance from the top of the chain to
weak impulses in the gravitationally compacted granulathe center of thenth spherical grainyn is the mass
chain. We derive analytically the power-law behaviorsof grain, Ay is the distance between adjacent centers
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of the spherical grain, and) is the elastic constant of 2 /D) HBRT— (/2 4]
grain. Therefore, the overlap between adjacent grains ug(h) = ﬁh Vet e (8)

at nth contact is6, = Ay — (z,+1 — z.). It is usually ) ]
impossible to solve general nonlinear problems in arfind the displacement function becomes

analytical way. Therefore we may not solve the nonlinear Gr(h 1) = RE= /D L/ —era PO gy
differential equation of Eq. (1) exactly. But we may treat
it analytically in a small oscillation regime which can be
achieved by applying a weak impulse.

The amplitude of displacement signal is given by
the envelope function of the asymptotic solution, which

For this purpose, we introduce a new variable scales as
" mgl 1/p A(h) o« B0/ = =/ 0=0/p)], (10)
= nle 1:21 T | (2) The phase velocity,;, is obtained by setting the phase

ie Ly (1/2p)=(1/2) 4 =
where the last term is the sum of overlaps up to thf Eq. (9) constant, i.e.5n” = cia gt

nth grain and sety, = ¢y = 0. This change of variable constant. We obtain
makes Eq. (1) into an equation for the linearized horizon- - dh _ 1M/ =115 (/2 [1=(1/p)] (11)
tal chain with varying force constant at each contact, i.e., ph dt : '
92 The group velocity scales as that of phase velocity and
mo n = —pnWn = Yu-1) + a1 @nsr — ), the dispersion relation is linear but depth dependent in
3) this case.
Since Eq. (5) is a linear differential equation, the
wherepu, = unl'~0/P]is the force constant of theth  envelope function of a normal mode solution in Eq. (9)
contact angu; = mpg(mig)l/f’ is the force constant of the can describe the depth dependence of the displacement
first contact. Use of the condition of small oscillation signal which may be given by the linear combination of
mgn 1/p all normal modes of different frequency. Therefore, one
[ — a1 < <—) (4)  can expect that the depth-dependent behavior predicted by
1 Eqg. (10) may agree well with the data given by numerical
has been made to obtain Eq. (3) approximately. Theimulation which will be shown in what follows.
expression of Eq. (3) in the continuum limit, i.e., the The normal mode solution of Eq. (9) alone, however,
lattice constant: = 6k — 0, is given by cannot give appropriate predictions on the changes in
p 9 9 9 frequency, wavelength, and period of the signal as it
= = y(h,1) = o V/P1— [,u(h) — tﬂ(h,t)}, (5) propagates down. The information on the grain velocity
T1 0t dh doh . L . - .
may give the characteristics of signal dispersion by
whereu(h) = hl1=(1/P)] denotes the depth dependence ofcombining it with the displacement and velocity of signal.
force constant, ang = m/a andr; = wa are the linear 10 obtain the depth dependence of grain velocity we write

density and the tension of a chain at the first contactEd. (5) as

respectively. We set; = /71/p which is the well- d d d
known speed of wave in the string of tensiopand line ot v(h,1) = oh p(h) oh (h1) | (12)
densityp.

We now choosef (i, 1) = ug(h)e ica"™ it a5 g We set the constant factor of Eq. (5) unity for our conve-
normal mode solution. Then the depth-dependent functiofi€Nce, since it has nothing to do with depth dependence

us(h) satisfies beha\_/ior. To draw the depth-dependent behaviors of grain
P 1= (/p) d velocity, frequency, etc., we set the frequengir) o« h9,
£ + P2 + the displacement function
a2 "¢ no an "W P

2 Wi, 1) oo h~W/DT=0/p)] gikh=iw() (13)
=70 ug(h) =0, (6)  and the grain velocity

which is a type of Bessel's differential equation [13]. If we v(h,1) o hBMIh—ioWrTe, (14)

consider.a solution prqpagating to the posiﬂwdireqtion, where « and 8 will be determined andp is the phase

the solution of Eq. (6) is given by the Hankel function [13] gitference between displacement and velocity signal. The

ug(h) = e H(0hY), (7)  depth-dependent wave numbiefh) is given by k(h) =
L L ; vpn(h)/ @ (h).
where ¢ =,y =5;+&=3(1+).0=7,v= Since we have two unknowns and 8 to be deter-
% = ﬁ mined, we need two independent equations for these.
The asymptotic form of Eq. (7) at large for a fixed One is given by Eq. (12) and the other the relation
vis w(h) = v(h)/y(h). Substituting Egs. (13) and (14) into
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Eq. (12) gives rise t = ; — 3 — 2a and the relation 0 —
w(h) < v(h)/¢(h) yieldsa = B + % — #. We obtain -0.0005 I .
the power-law behav!ors of grain velocity and frequency 0.001 i
from these two equations as follows: 5 ooois |
(k) o B~ 1/AT/3+0/p)] (15) .
’ E’; -0.002 [ e
w(h) oc h[(1/6)*(1/2[7)]. (16) g -0.0025 .
The characteristic time of oscillation which is expressed -0.003 P ! gl 1
by the period is given by the inverse of frequency or the -0.0035 |- P .
ratio of displacement to grain velocity, i.e., o004 @
A (h) 0 100 200 300 400 500 600 700 800 900 1000
T(h) = " o w(h) !« jLa/6)+(1/2p)] (17) depth
v
The characteristic length of oscillation, on the other hand, 002
which is expressed by wavelength is given by multiplying 0015 1 i
T(h) by phase velocity, i.e., 000'2:
A(h) = T(h)vpn(h) = h'/>, 18 ety
Interestingly enough, characteristic length of oscillation $ 0005 f , i T
does not depend on contact force within the linear =~  -0o0ir (A B A T
approximation of Eq. (3). -0.015 | A -
We now compare the above results with molecular dy- 0.02 |- P 1
namics simulations performed for Eq. (1) for arbitrary -0.025 | ®)
To perform numerical simulation for Eq. (1), we choose 003 s oo 600 700 305 oo 1000
a vertical chain ofv = 2 X 10° grains and neglect plas- depth

tic deformation. As a calculational tool, we use the third- ) )

order Gear predictor-corrector algorithm [14]. We choose 'G: 1. (d) Snapshots ”°f d'Sp'acemde”t of tlhe pr:opaganrr\]g
_5 236 % 105 ka. and 10102 X 103 s as the vave in a gravitationally compacted granular chain wit

10_ m, 3 g, - ; Hertzian contact force law. Initial impulse ig; = 0.1.

units of distance, mass, and time, respectively. Thesg) Snapshots of grain velocity corresponding to (a).

units gives the gravitational acceleratign= 1 [10]. We

set the grain diameter 100, mass 1, and the elastic con- i . ,

stantn of Eq. (1) is given byn = (1 + p)b, wherep  i0rs of leading amplitudes of displacement and veloc-

depending on modulus is chosen as 5657 for this moIechXOazrsgog(i)\{)%a byAmax() o= h~*035=0903 and vpa (k) o
lar dynamics simulation. The equilibrium condition R We also obtain other depth-dependent
power laws showing dispersiveness of the signal. They

mgn = 1o (19)  are the elasped time to reach to maximum amplitude,

has been used for tHa + 1)th grain of a vertical chain. Tmax(h), which describes the period and the number of
Even though there is a criterion [8,15] for initial impulse
to neglect plastic deformation and viscoelastic dissipation
in experimental situations, we do not care about that 0.005 Prvsm————
criterion for the numerical simulation. For the purpose velocity  x
of this work, however, we choose a rather weak initial
impulsev; = 0.1 in our program units. There is a regime
of initial impulse in which the signal follows the same
power laws. This will be shown in a separate paper [12].

Figure 1 shows the snap shots of amplitudes (a) and
corresponding grain velocity signals (b) propagating down »
the vertical chain with Hertzian contatp = 3/2) [10]. st
The leading amplitude of displacement of each signal in
Fig. 1(a) corresponds to the leading part of each velocity
signal in Fig. 1(b). 0002 200 e

We focus on the leading amplitudes of displace- depth

ment and velocity signal and plot them in lgglog,, FIG. 2. Logo-log,, plots of leading peaks of displacement

scale in Fig. 2 which Shows_ that both diSpIacememand grain velocity shown in Fig. 1. Slopes of the straight
and velocity peak decrease in power laws of depthjines are —0.0835 (displacement) and—0.250 (velocity),
The explicit expressions for the depth-dependent behavespectively.
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0.1 : : vy 0% The general features of soliton damping due to gravity

displacement  © may be given by studying similar work for a wide range
of impulse, which will be given in a separate paper [12].
The properties of signal propagation studied in this work
are fundamentals of the dynamics of granular chain under
gravity. This work may be extended to higher dimensions
and to more practical models for applications.
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FIG. 3. Comparison of power-law exponents between theory
and simulations for various values gi. Solid lines are
theoretical results. Squares and triangles denote simulation
data for displacement and grain velocity, respectively. Data ien2s5 .
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