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Projective Synchronization In Three-Dimensional Chaotic Systems
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In partially linear systems, such as the Lorenz model, chaotic synchronization is possible in only
some of the variables. We show that, for the nonsynchronizing variable, synchronization up to a scale
factor is possible. We explain the mechanism for this projective form of chaotic synchronization
in three-dimensional systems. Projective synchronization is illustrated for the Lorenz and disk
dynamo systems. We also introduce a vector field that can be used to predict the scaling factor.
[S0031-9007(99)08897-3]
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If two identical copies of a chaotic system are startedion the drive and response vectors synchronize up to a
with similar initial conditions, their motions will not re- scaling factor—the vectors become proportional.
main similar for long, for exponential divergence of orbits We have observed projective synchronization in par-
will amplify any initial small errors. It appears, at first, that tially linear systems, such as the Lorenz system. Partially
it would be very difficult to keep both copies of a chaotic linear systems are defined by a set of ordinary differential
system synchronized. But, in 1990, Pecora and Carrokkquations where the state vector can be broken into two
[1] showed that synchronization was indeed possible andharts(u,z). The equation for is nonlinearly related to
moreover, it could be achieved with a simple coupling.the other variable, while the equation for the rate of change
Since their work, the synchronization of chaotic dynami-of the vector is linearly related tar through a matrix\/
cal systems has been intensively studied (see Ref. [2] fahat can depend on the variahklgas in
a recent review). i

The basic idea in identical synchronization is to take u=M(@) - u,
two copies of a fixed chaotic system and let one control = f(u,z).
the other. The master (or drive) system provides a signal
that is fed to the slave (or response) system. The signal i&s with the Lorenz system, l&f be a2 X 2 matrix with
usually one of the coordinates of the master chaotic systeneomponentsn;;(z) that are smooth functions and have
Synchronization can be thought of as a form of controlno u dependence. For identical synchronization we will
of chaos and the simplicity of the coupling mechanismconsider two copies of the system (2). One of the copies is
prompts many applications. Synchronization has beethe master system and evolves independently of the slave
used as a method for transmitting a signal in a chaotisystem. The two systems are coupled throggfihez in
carrier [3—5], implementing with analog circuits a spread-the slave system will be the of the master system. The
spectrum transmitter. It has also been suggested asrasulting system is a set of five differential equations:
method for repeating results in experimental chaos [6].

)

Consider the often studied example of synchronization, u, = M@2) -,
the Lorenz system [7], 2= flum2), (3)
x=o(y —x), u, = M(z) - uy,
y=({R —2)x — y, (1) whereu,, = (x,,yn) is the two-dimensional drive vector,

andu; = (xg,y,) is the response vector. With this nota-
tion, two systems are in projective synchronization when
for an initial conditionu,(0) there is a constant such that
asymptotically in time

z=xy — bz.

The values of the parameters are setste= 10.0, b =
8/3, andr = 60.0. The Lorenz system exhibits absolute

synchronization in thex coordinate, synchronization in lau,, — u,]| — 0. 4)
they coordinate, while; is not a synchronizing coordinate ‘
at all [8]. The constantx could be negative and, as we will see later,

We will show, however, that even driving the responsedepends in a simple way on the initial conditiof(0).
system with thez coordinate leads to synchronization, Phase synchronization [9,10], often observed in the
provided the definition is slightly modified. For a syn- Rossler system [11], appears similar to projective synchro-
chronizing system, one expects that the drive and responseézation. But there is a difference. In phase synchroniza-
vectors tend to the same value. drojective synchroniza- tion, the amplitudes remain chaotic and, in general, are
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uncorrelated [12], while, in projective synchronization, the We will now explain the mechanism for projective
amplitudes tend to some fixed ratio [see (16) below]. Wesynchronization of partially linear systems. The three-
do not study the Rdssler system, as it is not partially lineardimensional phase space of our system can be viewed
Two physically important examples of partially linear as foliated by parallel planeB, = {z = constant with
systems are the Lorenz system (1), and the disk dynamoa linear vector field, on each of them. (Let us fix the
) convention that subscript meansz is held fixed.) It
X =2y — px, is important that this vector field is common to both the
s _ drive system,,) and the response system,J.
y=l=yx -y, ®) The evolution of the system can be described in cylin-
z=1—xy. drical coordinate$r, 6, z), with

The Lorenz system was originally derived as a three-mode L 1. XY — Yk .
truncation of the equations describing the convection in (r,0,2) = " (xx + yy), el B O
a fluid layer [13], and it was later found to be similar to Y

the model that describ_es the pulsations of a s_ingle-m_odgrom the equation of motion (2), the anglein the x-y
Igser [14]. 'I_'he dual-disk dynamo model [15] is a varia-p|ane evolves according to

tion of the disk dynamo model [16] proposed to explain

the essence of the mechanism governing the reversals of ho_ def _ :

the earth’s magnetic field. The Lorenz (1) and the dynamo 6 = 8:(6) = mz COS 6 — my i 6
(5) systems can each be coupled throughzthariable, as

in Eq. (3). However, this does not lead to identical syn- ] o )
chronization as neither thenor y coordinates of the drive 1here are two equations similar to this one: one for the
or response system tend to each other. Examining the pl@five system and one for the response system. By sub-
in Fig. 1 suggests that the ratio of corresponding coorditracting them we get the evolution of the difference be-
nates approaches a constant, even though the initial cofveen the polar angles of the drive and response systems,

ditions for the drive and response systems were different

— (my; — my)cosl sing . (7

and not collinear. _ On =0 mp t mu — ma
The dynamo system has two fixed points that can  Sin(@, — 65)  sedd, + 6,)  csdf, + 6,)
be computed analytically. The linearization of the flow (8)

around these two fixed points has one negative eigenvalue
and two eigenvalues with zero real part. We consider onlyNotice there is no radial dependence and the differ-
the parameter valugs = 1.7, vy = 0.5 for which the pair ~ence between the two angles occurs in factorized form.
of fixed points is atxo, yo, z0) = (1.968, £0.929, +1.076). Those are consequences of the partial linearity of the
The projection of the attractor onto they plane is system (2).
depicted in Fig. 2. Like the Lorenz model, two identical Because of ergodicity, the angle difference will at one
copies will be in projective synchronization when coupledpoint become small, at which time we can approximate
through thez variable. the expression (8) by using the small angle variation
w = 0, — 0,, which satisfies
XmXsl

50} 0 = g.(0n) — g.(0;) = g;(am)w + O(w). (9)
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FIG. 1. Behavior of the drivex{,) and responsex() sub- -2 0 2 X
systems in the Lorenz model. The difference does not settle

down, while the ratio does. Similar behavior is seen for theFIG. 2. Projection of the attractor of the disk dynamo onto the
y coordinate. x-y plane.
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For the Lorenz system, Eq. (9) reads synchronization, that is, the asymptotic vanishing of the

angle differencew.
—w[(R — z + o)sin(20) + (¢ — 1)cog20)], Let us also note that the functioms;;(z) need not be

w =

(10) affine as is the case for both (1) and (5). For example,
we can still observe projective synchronization for a modi-
while for the dynamo system it is even simpler, fication of the Lorenz system, where the second equation
reads
o = —w2z — vy)sin(20). (11)

_ _ _ _ y=(R—-)x —y. (14)
An ordinary differential equation, such as Eq. (9), has the
general solution, Knowing how the angles synchronize, we investigate

what happens to the radii. The time variation of the ratio

of the radii
dory _rsrs _Im
dt ry Fm \Ts 'm
is a function ofr/r. From partial linearity,r/r is a

function only of the polar angle, and the quantity in the

. , parentheses tends to zero as the polar angles become
for sufficiently large values of the time, then the jyentical. Therefore. the limit

differencew between the drive and response systems will
go to zero and the system will projectively synchronize.
The sign of the integral (13) is given by the sign of
g.[6(1)]. In turn, the sign ofg. is determined by the
trigonometric functions in (10) or (11). For the Lorenz exists for any initial conditiortx,,, y., z,,) of the drive sys-
system, the first and third quadrants of they plane  tem. That means that the evolution of the response system
contain most of the attractor. In those quadrants2gin s asymptotically a scalar multiple of the evolution of
is positive and the first term in (10) dominates the seconghe drive system, as seen in Fig. 4. We remark that the

w(t) = w(0) eXD(fO gé[ﬁ(f)]df) (12)

If, for any constanC > 0, the integral (15)

fo G[6(&)]dé < —C (13)

|a| = |C¥(Xs,)’s)| =

lim = (16)

term, making g negative most of the time. For the constanta can be negative, since the polar angle (6)
dynamo system (5), we see from Fig. 2 that the right-hangk getermined up to a multiple of.

side of (11) will seldom change sign.
In Fig. 3, we plot lodw| and the values og.[6(1)].
The value of lojw| decreases whep! is negative and

Partial linearity fixes the value ak. Fix a planeP,
and in it an initial conditionm,, = (x,,,y,,) of the drive
system. The system (3) has the following property: Let

increases when it is positive. One can also see ghat y, = (u,,,z,u!) andU, = (u,,,z,u) be two solutions
» &y Uy » &y Y .

is negative more often than it is positive. This makes itThen for any scalars and b the vector functionU =
clear that it is the left side of (9) that causes projective;y, + pU, is also a solution of (3).

g(e)

time

FIG. 3. Whenever the functiorg! is negative, the angle

This implies the limita is a linear function ofu; =
(x5,vs) and has the fornre = b - u,(0). The vectob €
R? depends on the initial conditiofx,,, y,,,z,) of the
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difference w between the drive and response subsystem&IG. 4. Projection onto thex-y plane of the drive and

decreases as a function of time Plotted are the results for response systems (Lorenz model).

the Lorenz model.
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Ibl 20 while the trajectory of the response system is pushed away
by the unstable part of the linearized dynamMs. In
1 the original system, this is not possible, because zhe
dynamics depends directly onandy. In the response
0 system, however, this self-control mechanism fails and
50 - " ' " - the response variables may become arbitrarily large. In
y particular, fora,, lying on the stable manifold of the origin,
the vector fieldb,(u,,) diverges. This can be seen in
Fig. 5, where the norm db is plotted.
5 We acknowledge the financial support from the De-
partment of Energy and the helpful comments of Brosl
Hasslacher.
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