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We investigate a novel stochastic technique for the global optimization of complex potential energy
surfaces that avoids the freezing problem of simulated annealing by allowing the dynamical process
to tunnel energetically inaccessible regions of the potential energy surfaces by way of a dynamically
adjusted nonlinear transformation of the original potential energy surfaces. We demonstrate the success
of this approach, which is characterized by a single adjustable parameter, for three generic hard
minimization problems. [S0031-9007(99)08916-4]

PACS numbers: 02.70.Lq, 02.50.Ey

The development of methods that efficiently determine In this Letter we investigate the stochastic tunneling
the global minima of complex and rugged energy land-method, a generic physically motivated generalization of
scapes remains a challenging problem with application§A. This approach circumvents the freezing problem,
in many scientific and technological areas. In particu-while reducing the number of problem-dependent parame-
lar, for NP-hard [1,2] problems, stochastic methods offerters to one. We demonstrate the success of this approach
an acceptable compromise between the reliability of thdor three hard minimization problems: the Coulomb spin
method and its computational cost, which scales only aglass (CSG), the traveling salesman problem (TSP), and
a power law with the number of variables [3] (for a fixed the determination of low-autocorrelation binary sequences
probability to locate the true minimum). In such tech- (LABS) in comparison with other techniques.
nigues the global minimization is performed through the Method—The freezing problem in stochastic mini-
simulation of a dynamical process for a “particle” on themization methods arises when the energy difference be-
multidimensional potential energy surface. Widely usedween “adjacent” local minima on the PES is much smaller
is the simulated annealing (SA) technique [4], where thehan the energy of intervening transition states separating
potential energy surface (PES) is explored in a series ahem. As an example consider the dynamics on the model
Monte Carlo (MC) simulations at successively decreaspotential in Fig. 1(a). At high temperatures a particle can
ing temperatures. Its success often depends strongly atill cross the barriers, but not differentiate between the
the choice of the cooling schedule, yet even the simplestells. As the temperature drops, the particle will eventu-
geometric cooling schedule is characterized by three paally become trapped with almost equal probability in any of
rameters (starting temperature, cooling rate and numbehe wells, failing to resolve the energy difference between
of cooling steps) which must be optimized to obtain ad-them. The physical idea behind the stochastic tunneling
equate results. For many difficult problems with ruggedmethod (STUN) is to allow the particle to “tunnel” [8]
energy landscapes, SA suffers from the notorious “freezforbidden regions of the PES, once it has been determined
ing” problem, because the escape rate from local minim#hat they are irrelevant for the low-energy properties of the
diverges with decreasing temperature. To ameliorate thiproblem. This can be accomplished by applying a non-
problem many variants of the original algorithm [5—7] linear transformation to the PES:
have been proposed, often at the expense of introducing

additional parameters. fstun(x) = 1 — exd—y(f(x) = fo)l, 1)
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@ 40 energy-dependent temperature on the original PES. In
the latter process the temperature rises rapidly when the
local energy is larger thanfy and the particle diffuses
20r 1 (or tunnels) freely through potential barriers of arbitrary
10k | height. As better and better minima are found, ever larger
portions of the high-energy part of the PES are flattened
out. In analogy to the SA approach this behavior can
-0k 1 be interpreted as a self-adjusting cooling schedule that is
© 10 /\/v optimized as the simulation proceeds.

00 /-\ /\ Since the transformation in Eq. (1) is bounded, it is

I \ / / \ / possible to further simplify the method: On the fixed
-0 3 energy scale of the effective potential, one can distinguish
@ 10 between phases corresponding to a local search and
“tunneling” phases by comparing’stuy Wwith some
fixed problem-independent predefined threshgld[see
0 Y o0 o5 ~o  Fig. 1(c)]. For the success of the method it is essential
that the minimization process spends some time tunneling

FIG. 1. (a) Schematic one-dimensional PES and (b) STUN,q 5ome time searching at any stage of the minimization
effective potential, where the minimum indicated by the arrow

is the best minimum found so far. All wells that lie above the Pro?ess- Wg thergfore adjust the _paramﬁt@ccordingly
best minimum found are suppressed. If the dynamical procesduring the simulation: If a short-time moving average of
can escape the well around the current ground-state estimatgsryn exceeds the thresholly..s, = 0.03, B is reduced
it will not be trapped by local minima that are higher in by some fixed factor, otherwise it is increased. Following

energy. Wells with deeper minima are preserved and enhancegs; P ; ; ;
(c) After the next minimum has been located, wells that Wereﬂwls prescription the method is characterized by the single

still pronounced in (b) are also suppressed. Once the trugroblem-dgpendent parametey). .

ground state has been found (not shown), all other wells Applications—In order to test the performance of this
have been suppressed and will no longer trap the dynamicalgorithm we have investigated three families of compli-
process. The dotted line in (c) illustrates an energy threshol¢gatedNP-hard minimization problems. For each problem

0 <, < 11o classify the nature of the dynamics. Adjusting \ye paye determined either the exact ground-state energy or
the temperature to maintain a particular average effective

energy balances the tunneling and the local-search phases 8fd00d estimate thereof. We computed the average error
the algorithm. of the various optimization methods as a function of the

computational effort to determine the computational effort
required to reach a prescribed accuracy.

(i) (CSG) The determination of low-energy configu-
where f is the lowest minimum encountered by the dy-rations of glassy PES is a notoriously difficult problem.
namical process thus far [see Figs. 1(b) and 1(c)] [9]. Theve have verified by direct comparison that the method
effective potential preserves the locations of all minima,converges quickly to the exact ground states [10] for
but maps the entire energy space frggrto the maximum  two-dimensional short-range Ising spin glasses of linear
of the potential onto the intervgd, 1]. At a given finite  dimension10 to 30 with either discrete or Gaussian dis-
temperature of O(1), the dynamical process can thereforgibutions of the coupling parameters. Next we turned to
pass through energy barriers of arbitrary height, while thehe more demanding problem of the Coulomb spin glass,
low-energy region is still well resolved. The degree ofwhere classical chargds;} with s; = +1 are placed on
steepness of the cutoff of the high-energy regions is confixed randomly chosen locations within the unit cube. The
trolled by the tunneling parameter > 0. Continuously energy of the system,
adjusting the reference energy to the best energy found N
so far successively eliminates irrelevant features of the PES E({s;}) = Z —t 2
which would trap the dynamical process. 7 1r = 7l

To illustrate the physical content of the transforma-is minimized as a function of the distribution of the}.

tion we consider a MC process at some fixed inverse The results of grand-canonical simulations for ten repli-
temperatureg on the STUN-PES. An MC step from cas of N = 100 and N = 500 charges are shown in

x1 10 xa With A = f(xa) — f(x1) is accepted with prob- Fig. 2. We first conducted twenty very long STUN runs
ability w1, = exd—B(fstun(x2) — fstun(x1))]. _ In" for each replica to determine upper bounds for the true
the limit yA < 1 this reduces tow,—, ~ exp(—FA)  ground-state energy. For the same charge distributions we
with an effective energy-dependent temperatge=  then averaged the error of STUN, SA, simulated temper-
,Byey(fo—f(xl)) = By. The dynamical process on the ing (ST) [6], and parallel tempering (PT) [7] for twenty
STUN potential energy surface with fixed tempera-runs per replica as a function of the numerical effort.
ture can thus be interpreted as an MC process with aWwe found that the average STUN energy converged in
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at a variety of temperatures are occasionally exchanged.
In ST only a single simulation is undertaken, but its
temperature is considered to be a dynamical variable. In
both methods, a configuration can escape a local mini-
mum when the instantaneous temperature is increased.
The choice of the temperature set is system dependent and
must be optimized much like the annealing schedule in
SA. In accordance with other studies our results indicate
that ST performs significantly better than SA for long
simulation times, while PT was successful only for the
larger system(N = 500). STUN converged faster than
any of the competing methods, but showed a tendency
to level off at high accuracy. In the limit of large
1 L - 5 computation, its accuracy was matched by ST for=
10 10 10 100 and PT forN = 500.
VNSTEP (i) (TSP) The “traveling salesman” problem is an-
FIG. 2. Average estimated error for the ground-state estimatesther ubiquitousVP-hard minimization problem [11,12].
of the Coulomb glass using SA (circles), STUN (squares), STwe have investigated the problem in its simplest incar-
(triangles), and PT (diamonds) fof = 100 (full lines in lower  ion “j e as a minimization of the Euclidian distance
part) andN = 500 (dashed lines in upper part). ’ ' " .
along a closed path oWV cities. Using long-range up-
dates, i.e., the reversal and exchange of paths of arbitrary
length, we found that both SA and STUN perform about
10% MC steps to within 1% of the estimated true ground-equally well and reach the global optimum fiyr = 20,
state energy. Fitting the curves in the figure with a power50, and100 very quickly (see right side of Table 1).
law dependence we estimate that STUN is about 2 orders Nevertheless, it is instructive to analyze this model
of magnitude more efficient than SA. somewhat further as it provides insight into the interplay
We found no consistent ranking of ST and PT relativeof move construction and the complexity of the minimiza-
to SA for the two system sizes considered. Both methodton problem. The unconstrained TSP is a rare instance
offer alternative routes to overcome the freezing problenamong/NP-hard minimization problems, where it is pos-
in SA. In PT the configurations of concurrent simulationssible to construct efficient “long-range” hops on the PES.

10

Error (Est.)

TABLE |. Estimates for the optimal path length for the traveling salesman problem with
N = 20, 50, and 100 sites using either only local (left side) or global (right side) moves as
described in the text. For global moves, both SA and STUN are equally efficient to obtain
low-energy paths. Using only local moves, the existence of barriers hampers the progress of
SA. As a result, SA becomes less efficient than STUN. By virtue of its temperature exchange
mechanism, PT also allows the random walk to cross the barriers, but is less efficient than
STUN. The effort is given in thousands of steps; note that the evaluation of a local move is
much less costly than that of a global move. The path length indicates the average optimal
energy for 20 runs and the best energy found.

Local Moves Global Moves
N Effort SA PT STUN SA STUN
20 50 4.85/3.55 4.35/3.55 3.60/3.55 3.94/3.61 3.55/3.55
20 100 4.52/3.58 4.02/3.55 3.62/3.55 3.93/3.55
20 500 4.08/3.55 3.57/3.55 3.55/3.55 3.82/3.56

20 1000 4.08/3.55 3.55/3.55
20 5000  3.75/3.55

50 100 12.5/10.61 13.72/12.58 11.06/9.39 5.74/5.65 5.72/5.65
50 500 11.0/8.68 11.55/10.65 8.32/5.83 5.70/5.65 5.67/5.65
50 1000 11.0/8.84 10.70/9.82 7.75/5.78 5.68/5.65 5.67/5.65
50 5000 9.84/8.10 8.99/7.89 7.16/5.78 5.66/5.65 5.65/5.65

50 10000  9.87/8.31 6.70/5.72  5.66/5.65
100 200 8.42/8.11  8.40/8.01
100 500 8.18/8.01  8.18/7.97
100 1000 8.08/7.94  8.03/7.95
100 5000 8.01/7.94  8.01/7.96
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In most practical applications of minimization problems TABLE Il. Average and best ground-state estimates for
related to the TSP, the construction of global moves is se-ABS for the N = 49 and N = 101 using SA and STUN on
verely complicated by the existence of “hard constraints'the locally minimized PES described in the text. The effort is

th tes tak = h bl I th%lven in thousands of steps, each step consists of a multispin
on the routes taken. For such problems, as well as ip followed by a local minimization,

other examples reported here, the alteration of just a few

variables of the configurations leads to unacceptably higHEffort SA SC

energies in almost all cases. As a result, the construction N =149

of global moves is not an efficient way to facilitate the 10 212.48/176 185.12/136

escape from local minima. When only local moves, i.e., 50 196.64/164 168.72/136

transpositions of two adjacent cities, are considered, high 100 191.68/144 161.60/136
500 177.68/136 151.76/136

barriers, circumvented in the presence of global moves,

hamper the progress of SA. The results on the left side!9%° 175.52/136 139.44/136
of Table | demonstrate that in this scenario SA performs N =101

significantly worse than STUN. 10 987.44/914 918.08/810

(i) (LABS) Finally, we turn to the construction 1‘38 ggg'gjgig 222'22%22

of low-autocorrelation binary sequences [12,13]. The gy, 894'32/822 '

model can be cast as a ground-state problem for aggg 891.68/818

one-dimensional classical spin chain with long-range

four-point interactions,
| N[Nk 2 : : " -

E=— Z sisjr | » 3) be a(_JJusted to adapt it to a specn‘lp problem. Fixing the

N SL=E functional form of the transformation and the “cooling

schedule” demonstrates the adequacy of these choices but
and is one of the hardest discrete minimization problemsioes not guarantee that they are optimal even for the prob-
known [14]. Even highly sophisticated and specializedems considered here. One of the drawbacks of STUN is
optimization algorithms [12] have failed to find configura- that, in contrast to, e.g., PT, no thermodynamic expecta-
tions anywhere near (within 20%) the ground-state energyion values for the system can be obtained from the simu-
that can be extrapolated from exact enumeration studigation. Also, because the nonlinear transformation will
for small systemgN < 50) [15,16]. The reason for this map any unbounded PES onto an interval bounded from
difficulty has been attributed to the “golf-course” charac-above, the dynamical process in STUN will experience
ter of the energy landscape, and there is convincing evitunneling phases at any finite temperature. For PES that
dence that SA will fail to converge to the ground-statedo not contain high barriers, or in the presence of efficient
energy even in the limit of adiabatic cooling [13]. The global moves, STUN may therefore be less efficient than
situation is significantly improved if the original potential competing methods. In many realistic optimization prob-
energy surface is replaced by a piecewise constant efems, where the construction of global moves is exceed-
ergy surface that is obtained by a local minimization ofingly difficult or very expensive, the tunneling approach
the original PES at each point [17]. The latter surfacecan ameliorate the difficulties associated with the exis-
preserves all ground-state configurations and energies @nce of high-energy barriers that separate local minima
the original PES, but eliminates many “plateaus” of theof the PES.
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