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Oscillatory Neurocomputers with Dynamic Connectivity
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Our study of thalamo-cortical systems suggests a new architecture for a neurocomputer that consists
of oscillators having different frequencies and that are connected weakly via a common medium forced
by an external input. Even though such oscillators are all interconnected homogeneously, the external
input imposes a dynamic connectivity. We use Kuramoto’s model to illustrate the idea and to prove
that such a neurocomputer has oscillatory associative properties. Then we discuss a general case. The
advantage of such a neurocomputer is that it can be built using voltage controlled oscillators, optical
oscillators, lasers, microelectromechanical systems, Josephson junctions, macromolecules, or oscillators
of other kinds. (Provisional patent £008,353) [S0031-9007(99)08813-4]

PACS numbers: 87.10.+e, 05.45.—-a, 07.05.Mh, 42.79.Ta

It is believed that a new generation of computers willthe section below, and we discuss a general case in the
employ principles of the human brain. Such a computerdiscussion section and in [11].
often referred to as aeurocomputergonsists of many in- Illustration: Kuramoto’s Modek—For the sake of illus-
terconnected units (referred to here as neurons) perforntration, consider Kuramoto’s phase model [12]

ing simple nonlinear transformations in parallel. Unlike . no
a von Neumann computer, the neurocomputer does not % = QO + ealt) Z sin(d; — ), ()
execute a list of commands (a program). Its major aim is j=1

not a general-purpose computation, but pattern recognitiowhered; € S' is the phase of théh oscillator,a(z) is the
via associative memory. There are many neural networkxternal input, and < 1 is the strength of connections.
models that can be used as a theoretical basis for a neurgse can rewrite (1) in the form

computer; see [1] for comprehensive review. The most . ,

promising are oscillatory neural networks because they % = Q; + ea(t)ime M),

take into account rhythmic behavior of the brain [2—7].

Whether oscillatory or not, a neurocomputer consistWhere
ing of n neurons needs® programmable connections (see
Fig. 2), so building such a computer is a major challenge
whenn is large. A possible way to cope with this problem
was suggested by our study of thalamo-cortical systemi§ @ complex number denoting the “mean field activity” of
[8—10]. We treat the cortex as being a network of weaklythe network. We see that each oscillator receives identical
connected autonomous oscillators forced by the thalamitput; thatis, the oscillators are connected homogeneously.
input; see Fig. 1. We find that whether or not such oscil- For the sake of simplicity we require that all differences
lators communicate depends on their frequencies: If twd)i — (; be different when # j. We drop this require-
oscillators have nearly equal frequencies, then they dgientin section (H).
communicate in the sense that the phase (timing) of one
of them is sensitive to the phase of the other.

In contrast, when they have essentially different fre-
quencies, their phases uncouple. Thus, an oscillator can
interact selectively with other oscillators having appropri- 6 85, -
ate frequencies. In analogy with radio, we refer to such
interactions as being frequency modulated (FM).

We also find that a weak thalamic input having appro-
priate frequencies in its power spectrum can dynamically
connect any two oscillators, even those that have different
frequencies and would be unlinked otherwise.

This suggests the following design of a neurocomputer:

It consists of oscillators having different frequencies

and connected homogeneously and weakly to a common

medium (See Fig. 2). Selective communication betweerfﬁlG. 1. We treat the cortex as being a network of weakly
such oscillators can be created by the weak forcing. Weonnected autonomous oscillato, ..., 9, forced by the
illustrate some major points using Kuramoto’s model inthalamic inputa(z). (Modified from [10].)
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different for alli andj, we find that

= cij tcji .
H; = Zl % sin(e; — ¢i).
i=
@ If we denotes;; = (¢;; + ¢ji)/2, use the slow time =

et, and disregard the small-order tewte), then we can
rewrite system (3) in the form

@] = Zsij sin(e; — @i, (6)
j=1

066

Conventional Neurocomputer Oscillatory Neurocomputer

FIG. 2. A conventional neurocomputer having neurons where’ = d/dr. We see that the external input of the

(circles) would have:® connections (squares). An oscillatory oy (5) can dynamically connect any two oscillators
neurocomputer with dynamic connectivity imposed by the . S

external input (large circle) needs ontyconnections: between Provided that the correspondireg is not zero.

each neuron (circle) and a common medium (rectangle). (D) Chaotic external input: In general, the external

inputa(z) can be chaotic or noisy. It can dynamically con-
nect theith and thejth oscillators if its Fourier decompo-
sition has a nonzero entry corresponding to the frequency
w = Q; — ();, since the averagd/;, would depend on
the phase difference; — ¢; in this case.

(E) Oscillatory associative memorySince the connec-
If  is sufficiently small [see (8) in section (H)], then one tion matrixS = (s;;) is symmetric, the phase model (6) is

(A) Averaging: Let %;(r) = Q;r + ¢;, then

¢i = ea() > sin{Q; — Q}r + ¢; — ¢;).  (3)
=

can average this system to obtain a gradient system. Indeed, it can be written in the form
. 1
@i = eHi(@1,...,0,) + 0(e), (4) ¢ T
Pi
where where
1 n n
.1 (T = —— s P @
Hi = lim = f a(t) U(QDI’ aQDn) 7 Z Zsl] COQQDJ QDI)
T—o T 0 i=1j=1
n is a potential function [8]. The vector of phase deviations
X > sinfQ; — Qi + ¢; — @) dr © = (¢1,...,0,) € T" always converges to an equilib-
j=1 ‘ ' rium on then-torusT”. System (6) has multiple attractors

. . . and Hopfield-Grossberg-like associative properties [4,14];
is the average of the right-hand side of (3). see Fig. 3. Therefore, Kuramoto’s model (1) with exter-

(B) Constant external inputFirst, consider Kuramoto's ) forcing has oscillatory associative memory. We stress
model without oscillatory external input; that is, when s this property is not built into the Kuramoto’s network,
a(t) = ap is a constant. Then each; =0 because it is dynamically induced by the external input of the
the oscillators have distinct frequenci@s, i = 1,....n.  form (5). Numerical simulations show that the storage ca-
This implies that the phase variables in (4) do not mteractpacity of such an oscillatory network is approximately the
at least on the long time scale of ordefe. Therefore, g5me as that of the Hopfield model [4].

neither do the Kuramoto oscillators (1). _ (F) Hebbian learning rule: Suppose we are given a set
There are many examples of biological and engineerys ,,, key vectors to be memorized

ing systems that use distinct frequencies in order to avoid , o ok ‘ ‘

cross-interference between oscillators. For example, eleé = (&1, €2, &) & ==L k=1...m,
tric fish, such a€igenmannig13], have jamming avoid- where & = g}‘ means that theth and jth oscillators
ance response (JAR) that allows them to choose differenfre in-phase ¢; = ¢;), and gk = _fj.‘ means they are
frequencies to conavigate through water. Radio stationgntiphase ¢; = @; + ). First, notice that the problem
use different frequencies to transmit through the sam@f mirror images does not exist in oscillatory neural
airspace. networks, since botl* and—&* result in the same phase

_(C) Quasiperiodic external inputNow suppose we are rejations. A Hebbian learning rule of the form
given a matrix of connection§ = (c;;). Let |
s = - D €l Y
=

a(t) =ap + . D cjco{Q; — Qi) (5)
i=1j=1 is the simplest one among many possible learning algo-
be a time dependent external input, which is a quasiperisithms. To get (6) it suffices to apply the external input
odic function ofz. Since all differenced); — Q; are  of the form (5) withc;; = s;; for all i andj.
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from the network. While the latter task poses no difficulty
Pﬁ/ltteen'::gsntzoege I:I;attem t_O bde and can be accomplished using Fourier analysis of the
ecognize “mean field” M(r) given by (2), the former task requires

some ingenuity since we do not have a direct access to the
oscillators.

Suppose we are given a vects? € R" to be recog-
nized. Letus apply the external inputr) with ¢;; = €&}

for a certain period of time. This results in the phase de-
viation system of the form

Initialization of the Network z .
ol => &sing; — ¢i).
j=1

Itis easy to check that ¢} = 1, theng;(r) — ¢;(1) —

0, and if £&¢) = —1, then ¢;(r) — ¢;(t) — = for all

i and j. Thus, the network activity converges to the
equilibrium having phase relations defined by the vector
£0; see the middle part of Fig. 3. When we restore the
original external inputa(z), which induces the desired
dynamic connectivity, the recognition starts from the input
image&®. (We added noise to the imagé at the bottom

of Fig. 3 to enhance the effect of convergence to an
attractor during recognition.)

(H) Network size: One of the major disadvantages of
(1) with the forcing of the form (5) is the requirement
that all 2; — ; be distinct when # j. Since we use
averaging, the parametemust be much smaller than the
difference between any paif); — Q;| and[Q; — Q;|
for j # j' ori # i’. This imposes a severe restriction on
Pattern Recognition the size of the network

8”2 << Qmax - Qmin p (8)
where Qnax (Qmin) is the maximal (minimal) frequency
in the network.

t=0 t=2.5 t=5 t=7.5

t=10 To avoid restriction (8) we may use separate external
inputs for each oscillator; that is, we consider the canoni-
cal model of the form

19,' = Qi + sai(t) ZSin(ﬁj - 19,'),
j=1
where (); are some distinct frequencies, for example,
Q; = Qp + i. Condition (8) has a simple forme, < 1,
in this case. If in addition

ai(t) = ap + i cijcod{Q; — Q;}r),
j=1

FIG. 3. Simulation of the phase deviation model (6) with then the oscillator phases are governed by (6).
Hebbian learning rule (7). Parameters:= 60, ¢ € [0,10]. Discussion—The major goal of this paper is to present
The network is initialized according to the algorithm descrlbeda theoretical framework for a new architecture for oscil-
in section G. . .
latory neurocomputers. We do not intend to devise new
neurocomputational paradigms, but to devise hardware that
(G) Initializing the network: To use Kuramoto’s model can implement existing paradigms. Since we used the
to implement the standard Hopfield-Grossberg paradigntanonical model approach [8], our analysis is applica-
as we do in Fig. 3, we need a way to present an inpuble to a broad family of oscillatory networks regardless
image as an initial conditio®(0), and to read the output of the nature of each oscillator. For example, dynamic
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connectivity and oscillatory associative memory have been  *Email address: Eugene.lzhikevich@asu.edu

proven [8,10] to exist in a general dynamical system [1] M.A. Arbib, Brain Theory and Neural NetworkéVIT
. Press, Cambridge, MA, 1995).
xi = filxi) + egilx1,...,xp, a(?), €], [2] B. Baird, Physica (Amsterdan®2D, 150—175 (1986).
. . 3] Z. Li and J.J. Hopfield, Biol. Cybernet61, 379-392
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sired dynamic connectivity is more sophisticated than (5). (4] L. F. Abbot, J. Phys. 423, 3835-3859 (1990).

Here each vectox; € R describes activity of theth [5] D. Terman and D. Wang Physica (AmsterdaBi)D, 148—
oscillator, andf; and g; are unknown functions that de- 176 (1995).

scribe dynamics of théth oscillator and interconnections [6] F.C. Hoppensteadt and E. M. Izhikevich, Biol. Cybernet.
in the network. Thus, the oscillatory nheurocomputer can 75, 129-135 (1996).

be built using such diverse mechanisms as VCOs (volt-[7] S.V. Chakravarthy and J. Ghosh, Biol. Cyberrv, 229
age controlled oscillators [15]), Josephson junctions, opti- 238 (1996). o

cal oscillators, lasers, or MEMS (microelectromechanical [8] F-C. Hoppensteadt and E.M. Izhikevickeakly Con-
systems [16]). nected Neural Networki&Springer-Verlag, NY, 1997).

The proposed design overcomes two chaIIenging[g] gﬁgﬁ?ggggfteam and E. M. zhikevich, BioSystedts

problems: o [10] E. M. Izhikevich, SIAM J. Appl. Math. (to be published).
(i) An oscillatory neurocomputer consisting@heurons  [11] .M. Izhikevich, “Oscillatory and Chaotic Neurocomput-
does not need?> programmable connections to emulate ers” (to be published).
an associative neural network having a fully connecteq12] Y. Kuramoto, Chemical Oscillations, Waves, and Turbu-
synaptic matrix (such as required by Hopfield’s network). lence(Springer-Verlag, New York, 1984).
(i) The oscillators can be put together in an arbitrary,[13] W. Heiligenberg, inTemporal Coding in the Brairgdited
random fashion, yet the network can establish a desired by G. Buzséki, R. Llinas, W. Singer, A. Berthoz, and
configuration via dynamic connectivity. Y. Christen (Springer-Verlag, NY, 1994).

We stress that our design does not eliminate all probﬁé‘% E'grazspbpeerg*st';':gg Il:lw'tartowgu{:;;r?%o(tlr?jﬁ/)léthematics of
lems, but it replaces them by another, hopefully simpler; Neurons: Modeling in the Frequency Domatambridge

problem of generating an appropriate external inpa}. Studies in Mathematical Biology Vol. 6 (Cambridge
We also omitted such important issues as how dynamic University Press, Cambridge, MA, 1997).

connectivity degrades through unwanted interactions [terfyg] . T.-C. Nguyen, inProceedings of the IEEE Aerospace
o(e) in (4)], delays, and noise. In [11] we present more ~ Conference, Snowmass, ColoraBEE, Piscataway, NJ,
detailed analysis and discuss further this approach to os- 1998), Vol. 1, pp. 445—460.

cillatory neurocomputers.
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