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Oscillatory Neurocomputers with Dynamic Connectivity
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Our study of thalamo-cortical systems suggests a new architecture for a neurocomputer that c
of oscillators having different frequencies and that are connected weakly via a common medium
by an external input. Even though such oscillators are all interconnected homogeneously, the e
input imposes a dynamic connectivity. We use Kuramoto’s model to illustrate the idea and to
that such a neurocomputer has oscillatory associative properties. Then we discuss a general ca
advantage of such a neurocomputer is that it can be built using voltage controlled oscillators, o
oscillators, lasers, microelectromechanical systems, Josephson junctions, macromolecules, or os
of other kinds. (Provisional patent 60y108,353) [S0031-9007(99)08813-4]
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It is believed that a new generation of computers wi
employ principles of the human brain. Such a compute
often referred to as aneurocomputer,consists of many in-
terconnected units (referred to here as neurons) perfor
ing simple nonlinear transformations in parallel. Unlik
a von Neumann computer, the neurocomputer does
execute a list of commands (a program). Its major aim
not a general-purpose computation, but pattern recognit
via associative memory. There are many neural netwo
models that can be used as a theoretical basis for a neu
computer; see [1] for comprehensive review. The mo
promising are oscillatory neural networks because th
take into account rhythmic behavior of the brain [2–7].

Whether oscillatory or not, a neurocomputer consis
ing of n neurons needsn2 programmable connections (see
Fig. 2), so building such a computer is a major challeng
whenn is large. A possible way to cope with this problem
was suggested by our study of thalamo-cortical system
[8–10]. We treat the cortex as being a network of weak
connected autonomous oscillators forced by the thalam
input; see Fig. 1. We find that whether or not such osc
lators communicate depends on their frequencies: If tw
oscillators have nearly equal frequencies, then they
communicate in the sense that the phase (timing) of o
of them is sensitive to the phase of the other.

In contrast, when they have essentially different fre
quencies, their phases uncouple. Thus, an oscillator c
interact selectively with other oscillators having appropr
ate frequencies. In analogy with radio, we refer to suc
interactions as being frequency modulated (FM).

We also find that a weak thalamic input having appro
priate frequencies in its power spectrum can dynamica
connect any two oscillators, even those that have differe
frequencies and would be unlinked otherwise.

This suggests the following design of a neurocompute
It consists of oscillators having different frequencie
and connected homogeneously and weakly to a comm
medium (see Fig. 2). Selective communication betwe
such oscillators can be created by the weak forcing. W
illustrate some major points using Kuramoto’s model i
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the section below, and we discuss a general case in
discussion section and in [11].

Illustration: Kuramoto’s Model.—For the sake of illus-
tration, consider Kuramoto’s phase model [12]

Ùqi  Vi 1 ´astd
nX

j1

sinsqj 2 qid , (1)

whereqi [ S1 is the phase of theith oscillator,astd is the
external input, and́ ø 1 is the strength of connections
We can rewrite (1) in the form

Ùqi  Vi 1 ´astd Im e2iqi Mstd ,

where

Mstd 
nX

j1

eiqj (2)

is a complex number denoting the “mean field activity” o
the network. We see that each oscillator receives identi
input; that is, the oscillators are connected homogeneou

For the sake of simplicity we require that all difference
Vi 2 Vj be different wheni fi j. We drop this require-
ment in section (H).

FIG. 1. We treat the cortex as being a network of weak
connected autonomous oscillatorsq1, . . . , qn forced by the
thalamic inputastd. (Modified from [10].)
© 1999 The American Physical Society 2983
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Oscillatory NeurocomputerConventional Neurocomputer

FIG. 2. A conventional neurocomputer havingn neurons
(circles) would haven2 connections (squares). An oscillatory
neurocomputer with dynamic connectivity imposed by th
external input (large circle) needs onlyn connections: between
each neuron (circle) and a common medium (rectangle).

(A) Averaging: Let qistd  Vit 1 wi , then

Ùwi  ´astd
nX

j1

sinshVj 2 Vijt 1 wj 2 wid . (3)

If ´ is sufficiently small [see (8) in section (H)], then on
can average this system to obtain

Ùwi  ´Hisw1, . . . , wnd 1 os´d , (4)

where

Hi  lim
T!`

1
T

Z T

0
astd

3

nX
j1

sinshVj 2 Vijt 1 wj 2 wid dt

is the average of the right-hand side of (3).
(B) Constant external input:First, consider Kuramoto’s

model without oscillatory external input; that is, whe
astd  a0 is a constant. Then eachHi  0 because
the oscillators have distinct frequenciesVi, i  1, . . . , n.
This implies that the phase variables in (4) do not intera
at least on the long time scale of order1y´. Therefore,
neither do the Kuramoto oscillators (1).

There are many examples of biological and enginee
ing systems that use distinct frequencies in order to avo
cross-interference between oscillators. For example, el
tric fish, such asEigenmannia[13], have jamming avoid-
ance response (JAR) that allows them to choose differ
frequencies to conavigate through water. Radio statio
use different frequencies to transmit through the sam
airspace.

(C) Quasiperiodic external input:Now suppose we are
given a matrix of connectionsC  scijd. Let

astd  a0 1

nX
i1

nX
j1

cij cosshVj 2 Vijtd (5)

be a time dependent external input, which is a quasipe
odic function of t. Since all differencesVj 2 Vi are
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different for all i andj, we find that

Hi 
nX

j1

cij 1 cji

2
sinswj 2 wid .

If we denotesij  scij 1 cjidy2, use the slow timet 
´t, and disregard the small-order termos´d, then we can
rewrite system (3) in the form

w0
i 

nX
j1

sij sinswj 2 wid , (6)

where 0  dydt. We see that the external input of th
form (5) can dynamically connect any two oscillato
provided that the correspondingcij is not zero.

(D) Chaotic external input: In general, the externa
inputastd can be chaotic or noisy. It can dynamically con
nect theith and thejth oscillators if its Fourier decompo-
sition has a nonzero entry corresponding to the freque
v  Vj 2 Vi, since the average,Hi, would depend on
the phase differencewj 2 wi in this case.

(E) Oscillatory associative memory:Since the connec-
tion matrixS  ssijd is symmetric, the phase model (6) i
a gradient system. Indeed, it can be written in the form

w0
i  2

≠U
≠wi

,

where

Usw1, . . . , wnd  2
1
2

nX
i1

nX
j1

sij cosswj 2 wid

is a potential function [8]. The vector of phase deviatio
w  sw1, . . . , wnd [ Tn always converges to an equilib
rium on then-torusTn. System (6) has multiple attractor
and Hopfield-Grossberg-like associative properties [4,1
see Fig. 3. Therefore, Kuramoto’s model (1) with exte
nal forcing has oscillatory associative memory. We stre
that this property is not built into the Kuramoto’s networ
but it is dynamically induced by the external input of th
form (5). Numerical simulations show that the storage c
pacity of such an oscillatory network is approximately th
same as that of the Hopfield model [4].

(F) Hebbian learning rule:Suppose we are given a se
of m key vectors to be memorized

jk  sjk
1 , jk

2 , . . . , jk
nd, jk

i  61, k  1, . . . , m ,

where j
k
i  j

k
j means that theith and jth oscillators

are in-phase (wi  wj), and j
k
i  2j

k
j means they are

antiphase (wi  wj 1 p). First, notice that the problem
of mirror images does not exist in oscillatory neur
networks, since bothjk and2jk result in the same phase
relations. A Hebbian learning rule of the form

sij 
1
n

mX
k1

jk
i jk

j (7)

is the simplest one among many possible learning al
rithms. To get (6) it suffices to apply the external inp
of the form (5) withcij  sij for all i andj.
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FIG. 3. Simulation of the phase deviation model (6) with
Hebbian learning rule (7). Parameters:n  60, t [ f0, 10g.
The network is initialized according to the algorithm describe
in section G.

(G) Initializing the network: To use Kuramoto’s model
to implement the standard Hopfield-Grossberg paradig
as we do in Fig. 3, we need a way to present an inp
image as an initial conditionq s0d, and to read the output
d

m,
ut

from the network. While the latter task poses no difficult
and can be accomplished using Fourier analysis of t
“mean field” Mstd given by (2), the former task requires
some ingenuity since we do not have a direct access to
oscillators.

Suppose we are given a vectorj0 [ Rn to be recog-
nized. Let us apply the external inputastd with cij  j

0
i j

0
j

for a certain period of time. This results in the phase d
viation system of the form

w0
i 

nX
j1

j0
i j0

j sinswj 2 wid .

It is easy to check that ifj0
i j

0
j  1, thenwistd 2 wjstd !

0, and if j
0
i j

0
j  21, then wistd 2 wjstd ! p for all

i and j. Thus, the network activity converges to the
equilibrium having phase relations defined by the vect
j0; see the middle part of Fig. 3. When we restore th
original external inputastd, which induces the desired
dynamic connectivity, the recognition starts from the inpu
imagej0. (We added noise to the imagej0 at the bottom
of Fig. 3 to enhance the effect of convergence to a
attractor during recognition.)

(H) Network size: One of the major disadvantages o
(1) with the forcing of the form (5) is the requiremen
that all Vj 2 Vi be distinct wheni fi j. Since we use
averaging, the parameter´ must be much smaller than the
difference between any pairjVj 2 Vij and jVj0 2 Vi0 j
for j fi j0 or i fi i0. This imposes a severe restriction on
the size of the network

´n2 ø Vmax 2 Vmin , (8)

whereVmax (Vmin) is the maximal (minimal) frequency
in the network.

To avoid restriction (8) we may use separate extern
inputs for each oscillator; that is, we consider the canon
cal model of the form

Ùqi  Vi 1 ´aistd
nX

j1

sinsqj 2 qid ,

where Vi are some distinct frequencies, for example
Vi  V0 1 i. Condition (8) has a simple form,́ ø 1,
in this case. If in addition

aistd  a0 1

nX
j1

cij cosshVj 2 Vijtd ,

then the oscillator phases are governed by (6).
Discussion.—The major goal of this paper is to presen

a theoretical framework for a new architecture for osci
latory neurocomputers. We do not intend to devise ne
neurocomputational paradigms, but to devise hardware th
can implement existing paradigms. Since we used t
canonical model approach [8], our analysis is applica
ble to a broad family of oscillatory networks regardles
of the nature of each oscillator. For example, dynam
2985
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connectivity and oscillatory associative memory have be
proven [8,10] to exist in a general dynamical system

Ùxi  fisxid 1 ´gifx1, . . . , xn, astd, ´g ,

but the form of the external inputastd that imposes de-
sired dynamic connectivity is more sophisticated than (5
Here each vectorxi [ Rm describes activity of theith
oscillator, andfi and gi are unknown functions that de-
scribe dynamics of theith oscillator and interconnections
in the network. Thus, the oscillatory neurocomputer ca
be built using such diverse mechanisms as VCOs (vo
age controlled oscillators [15]), Josephson junctions, op
cal oscillators, lasers, or MEMS (microelectromechanic
systems [16]).

The proposed design overcomes two challengi
problems:

(i) An oscillatory neurocomputer consisting ofn neurons
does not needn2 programmable connections to emulat
an associative neural network having a fully connect
synaptic matrix (such as required by Hopfield’s network

(ii) The oscillators can be put together in an arbitrar
random fashion, yet the network can establish a desi
configuration via dynamic connectivity.

We stress that our design does not eliminate all pro
lems, but it replaces them by another, hopefully simple
problem of generating an appropriate external inputastd.
We also omitted such important issues as how dynam
connectivity degrades through unwanted interactions [te
os´d in (4)], delays, and noise. In [11] we present mor
detailed analysis and discuss further this approach to
cillatory neurocomputers.
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