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Using methods of statistical physics, we investigate the generalization performance of support vector
machines (SVMs), which have been recently introduced as a general alternative to neural networks.
For nonlinear classification rules, the generalization error saturates on a plateau when the number of
examples is too small to properly estimate the coefficients of the nonlinear part. When trained on
simple rules, we find that SVMs overfit only weakly. The performance of SVMs is strongly enhanced
when the distribution of the inputs has a gap in feature space. [S0031-9007(99)08788-8]

PACS numbers: 84.35.+i, 05.20.—y, 87.10.+e, 89.80.+h

Statistical mechanics provides an important approach teet of example data by any learning algorithm for percep-
analyzing and understanding the ability of neural networkdrons. This simple approach has major problems which
to learn and generalize from examples (see, e.g., [1-3]fesult from the typical high dimensionality of the feature
The majority of this work has been devoted to the simplesgpace. Assuming, e.g., that the vectorcontains all bi-
network architecture, the perceptron. This network, how{inear expressions of components of the input vegt@n
ever, has limited power because it classifies examples withddition to linear ones), the dimensiof is of ordernN?.

a simple linear separating hyperplane and is able to learRirst, there is a big computational problem in storing and
only linear separable rules. More complicated multilayernearning the weights, and second, one can expect that there
neural nets can realize general nonlinear rules (when thig also a large tendency of these machines to overfit be-
size of their hidden layer is large enough) but also havgause there is much less training data than adjustable pa-
practical and theoretical disadvantages. Learning in thes@meters in this model. The main idea to overcome these
networks results in a usually nonconvex optimization probproblems is to use the optimal stability learning algorithm,
lem, and there is no guarantee that an algorithm will findyhich has also been studied extensively in the statistical
the minimum of the training cost function. The complex- mechanics approach to neural networks (see, e.g., [3]).
ity of the training error surface reflects itself in the theo-The goal of this algorithm is to find a vector of weights
retical analysis by statistical mechanics. The occurrence af, which allows for a separation of positive and negative
phases of broken ergodicity [4] makes their analysis a comexample points with the maximal margin defined by
plicated task. Finally, network parameters must be chosen

carefully in order to adapt the network’s complexity on the k = maxmin{i, /Nw - w}. @

task and to avoid overfitting. woo K

Recently, a new type of learning machine has been inThe |ocal fieldsi,, are given by
troduced by Vapnik and his collaborators [5,6] which may R
become areasonable alternative to neural networks. These hy = o, V") - w. (2)
support vector maching$VMs) seem to have several ad-
vantages over neural networks. Being generalizations dflere, o, € {—1, 1} is the classification of the point*,
perceptrons, their training involves only simple convex opfor u = 1,...,m, andm is the total number of labeled
timization. Further, for several applications, it has beerexamples in the training set. This maximization problem is
shown that SVMs do not have a strong tendency to overfiound to be equivalent to a quadratic minimization problem

In this Letter, we present a detailed analysis of thefor the function3y - v under the constraints thag, = 1
typical performance of SVMs by methods of statisticalfor all examples in the training set. According to convex
mechanics. To understand the basic idea behind the SVMptimization theory the solution vector can be expanded as
approach, assume a nonlinear mappifigr) from vec-  a linear combination of example feature vectors via
tors x € RV onto vectors¥ which belong to anM- R
dimensional feature space. A nonlinear classification of W= aro,V(xh), 3
inputs x can be defined by a linear separation of fea- s
ture vectors¥ (x) using a perceptron with a weight vector where a# = 0 are Lagrange parameters which account
w € RM perpendicular to the separating hyperplane vigor the m inequality constraints. Hence, the number of
sgn¥(x) - w]. The dot denotes the standard inner prod-adjustable parametees* for this algorithm never exceeds
uct of vectors inR”. The vectorw can be adapted to a the number of examples. The* are nonzero only for
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those examples, for which, = 1, defining thesupport lar eigenvector expansion. We will first consider here
vectors(SVs) of the data set. If the remaining examplesa rule of the formo, = sgri>’, /A, B, ¢,(x*)] where
(a* = 0) would be discarded from the training set, thethe teacher weight vector is given By = =1. We will
SVM would predict their correct labet,. Hence, if further average the performance over all teachers of this
the relative number of SVs is small, we can expect thaform with equal probability for all nonzero components.
the SVM generalizes well. In fact, a simple argument [5]We will specialize on a family of kernels of the form
shows that the expected ratio of the number of suppork (x,y) = k(*), where the only constraint on the func-
vectors overn yields an upper bound on the generalizationtion k(-) is the non-negativity of the eigenvalues. These
error. We will see later within the average case scenario dfernels are permutation symmetric in the components of
statistical mechanics that this mechanism prevents a contike input vectors and contain the simple perceptron as a
plex SVM from overfitting when learning a simple rule.  special case, whehis a linear function. This choice has
The expansion (3) also reduces the computational coshe nice feature that for binary input vectarss {—1, 1}"
of the algorithm drastically because any inner product othe eigenvalue decomposition &f(x, y) can be explicitly
w with vectorsW(x) in the feature space (including - calculated [7]. The eigenfunctions are labeled by sub-
w) is entirely expressed in terms of the so called kernepetsp C {1,...,N}. We have¢,(x) = 2~N/2 [lic, xi.
K(x,y) = V(x) - W(y) =3, V,x)¥,(y). Inparticu- The eigenvalues arg, = N2y K(e,x)¢,(x), where

lar, for anyx, we have e =(1,...,1)T, which depend on the cardinalitg| only
and show for largeV an exponential decay witlp| like
W - W(x) = > ato,K(x,xk). (4) %k“ﬂh(o). The corresponding degeneracy grows expo-
D nentially:n,| = () = N'!/|p|!.

Hence, both learning and prediction on novel inputs dez We expect that a decay of the generalization erer,

to zero should occur only on the scale mf= O (M),
pend only on the feature vectols through the kemek.  gince s is the number of learnable parameters. However,

In fact, there is no need to specify the high dimensionafls we will show,e, may drop to small values already
mapping¥(-) explicitly. Instead, one can directlytake any on g scale ofm = aN examples. Hence, we make
reasonable positive semidefinite operator kefegWhich  the general ansatz = N, I € N and calculatef, =

by Mercer's theorem has a decompositiéflx,y) = jim_.. limy_.. N'F. B
>, Apd,p(x)d,(y) in terms of eigenvalues, and or- If we assume that the inputs* are drawn at ran-
thonormal eigenfunctions,(x) and identifies¥, with  gom with respect to a uniform probability distribution
VAp ¢,. This approach even allows one to take kernelsp(x) on {—1,1}", we can perform the average over the
with feature space dimensidd = % without problems.  jnpyt distribution by the replica method [1—3]. This

We will now study the generalization performance ofpecomes tractable by the fact that the eigenfunctions
SVMs within the framework of statistical mechanics. Wegre orthonormal with respect t®(x) and we have

define the partition function 2, (X)p (X)) = i ,(x),(x) = 8,,. Further-
more, all but the constant eigenfunctions have zero mean
u —Bi under the uniform distribution. By restricting the ker-
z= f l_[ dwpe > nels to havingk(0) = 0, the average over the inputs is

= expressed in the thermodynamic lint — o by expec-

m M tations over Gaussian random variables. These averages
x[T10|ou VA wodp(x¥) = 11, (5)  can be further expressed by the order parameters
=1 =1

which for 8 — = is dominated by the solution vectar go = > Apl(wp)?),
of the SVM algorithm. The properties of the SVM can be p

computed from the average free eneigy= —%((In Z)),

in the zero temperature limi8 — o, where the double q= ZAp<Wp>2a
brackets denote the average over the distributionnof P

training examples. The main difference from the statis-

tical mechanics of learning in a simple perceptron with R = A,w,)B,,
weights is that, in the SVM, each couplimg, is weighted P

by ./A,, which typically diminishes the influence of .
the \{n;e complexf) higr)ller order degrees of freedom if/here A, = 4,/2", and(.--) denotes a statistical me-
the eigenvector expansion. As we will see, this makeghanical averaging specified by Eq. (5). The generaliza-
the generalization behavior of the SVM rather differenttOn €rror Is e, = w AICCos o where B =3, A, =
from that of a simple perceptron in the thermodynamick(1) is the squared norm of the teacher vector. In replica
limit N — o, when the rule to be learned has a simi-symmetry (which is expected to be exactly fulfilled by the
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convexity of the phase space) we obtgirby extremizing 05 55
the function
— y=0
1V Rt (1 - Jg1)? B
R, x) = Dt ®
f1(g, R, x) afix (m> N

S S NV
2N! A(+) ¢ Al
R2
X p—
T BO ¥ A + A — y )

(6)
with respect to the order parametersk, andy. Further,
Dt = \/%e*ﬂ/z, ®(x) = [L,Dt, and y = limg_ X
Blgo — q). A =3 ,=; A, denotes the sum over the
higher order components aBi™) = ¥, -, A,.

€ 025

m/N o miN° 15

FIG. 1. Decrease of the generalization error on different

As a general result of solving the order parame-scales of examples, for quadratic SVM kernel learning a
ter equations we find that all high order componentgluadratic teacher ruled(= 0.5, B = 1) and various gapy.

|p| > 1 of the teacher vector are completelydeter-

mined by learning only® (N') examples, in the sense
that R =3 -, Apw,B, =0 and also thatg$”
ol Ap(wp)* = 0, in the largeN limit. However, as
we will see, the values of the corresponding weights

are not zero but are determined by the expansion (3). O

the other hand, all lower order components esepletely
determined, in the sense tha}, = ¢B, for all [p| < I,
wherec depends o only. The only components which
are actually learned at a scaleare those forlp| = 1.

We will illustrate these results for quadratic kernels of

the form k(x) = (1 — d)x* + dx, where the parameter

d, 0 <d <1, tunes the degree of nonlinearity in the

SVM’s decision boundary. On a scale @f = aN ex-

amples (left side of Fig. 1), the SVM is able to learn theFinally,
However, since thereerror converges to zero as ~ >,

linear part of the teacher’s rule.
is not enough information to infer the remainig(N?)

The inset compares the SVM to a linear perceptron (upper
curve) trying to learn the same task. Simulations were
performed with¥ = 201 and averaged over 50 runs (left and
next figure), andv = 20, 40 runs (right).

Righer order perceptrons [9]. In general, for kernels which
are polynomials of ordet, more plateaus will appear. On
the scale ofn = aN'~! examples, the generalization error
decays to a plateau at — o« given by

Zl—l k1(0)
j=1 "1

k(1)

B

€ = — arccos/—— = — arcco
w w

(7)

at the highest scale = aN?, the generalization
9500489 =1. This form is
in accordance with general results [5] which show that (in

weights of the teacher's quadratic part, the generalizathe worst case) the number of examples must be larger than
tion error of the SVM reaches a nonzero plateau withthe capacity of the classifier in order to achieve a small
€s(a) — €,() ~ @™, where €,() = 7w !arccos/d. generalization error. The capacity. = a.N* is found
This scaling may be understood from the fact that the unfrom (6) by solving the order parameter equations with the
determined components, andB,, with |p| = 2, act as restrictionR = O,zas the value otx where g, diverges.

a noise term during classification similar to learning of We obtaina. = = which agrees with the results in [10]
perceptrons with weight noise [3]. For comparison, wefor polynomial separation surfaces in the largdimit.

also show the performance of a simfileear SVM (i.e., As the next problem, we study the ability of the SVM
a perceptron) for whiclw, = 0 when|p| > 1. The bet- to cope with the problem of overfitting when learning a
ter performance of the nonlinear SVM does not contradicsimple rule. We keep the SVM quadratic but choose a sim-
the fact that, on the linear scale, its higher order weightpler, linear teacher rule according|®,| = 1 for |p| = 1

w), for |p| = 2 are uncorrelated with the correspondingand|B,| = 0, otherwise. The results for the generaliza-
teacher values. Those weights are needed to learn thi®n error, obtained by a straightforward extension of (6),
training examples perfectly which is not possible for theare shown in Fig. 2, where the number of examples is
linear machine whenr exceeds a critical valuer.(d), scaled asn = aN. Surprisingly, although the student
given by /a. = arctanm /(a.d). has of O (N?) adjustable parameters, this does not lead

Increasing the number of examples to a scalenof
aN? (right side of Fig. 1), the well known [8]l1/«a
asymptotic vanishing o€, is found. A similar stepwise

to any strong overfitting. The SVM is able to learn the
N teacher weights on the scalemf= aN examples far
below capacity. For comparison, we have also shewn

learning has been obtained for the case of Gibbs learning ifor a simple linear SVM (i.e., witlw, = 0 for |p| = 2).

2977



VOLUME 82, NUMBER 14 PHYSICAL REVIEW LETTERS 5 ARIL 1999

10° ; ; linear contribution to the local field of the teacher vector.
Using Eq. (8) and noting that, ~ cu, we obtain

k(x) = 0.5%° + 0.5 x

e K(X) = X

/c
c ~ a]ol du p(wWu(l — cu), 9

valid for largea. Here p(u) denotes the density of the
teacher linear fields. Solving Eqg. (9) forc in the limit of
a — o yields ¢ ~ [ap(0)/6]'/3. Similarly, the relative
number of SVs scales ag0)/c ~ a3 p(0)%/3.

The dependence gn(0) suggests that the density of in-
puts at the teacher’s decision boundary should play a cru-
008 & - — cial role for the generalization ability of the SVM. When
, N ‘ this density vanishes close to the teacher’s separating hy-

0 10° m/N 10 10 persurface, a much faster decay of the generalization error
can be expected. To study this property in more detail,
FIG. 2. Learning curves for linear student and quadratic SVMye have analyzed the statistical mechanics for an input
ﬁﬂﬁ'es’s ?z”eliigllilrzlg ii, ';?]%%\r":eiﬁct?]‘zri:]“it{: d). Fora =10, gistribution correlated with the teacher weights such that
9 ' D(x) ~ O[c Y, /A, B,b,(x) — y], which has a gap
of zero density with siz€y around the teacher’s deci-
r§,ion boundary. As expected, the generalization perfor-
mance of a quadratic SVM which learns from a quadratic
teacher is enhanced, but the asymptotic decay towards the
hplateau on the linear scale (see Fig. 1) is still of the form
€s(@) — €,(0) ~ a~!. The effect of the gap is more
dramatic on the highest scale = aN?, where instead of
an inverse power law, we now find a fast drop of the gen-
Fralization error likee, ~ 3¢ ¢0)",
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While for the latter case, the decay of the generalizatio
error is of the well known forme, ~ a~!, the quadratic
SVM shows the somewhat slower deeay~ a /3. The
same scaling is obtained for higher order SVMs whic
learn a low order, e.g., a linear, rule.

We can shed further light on this interesting result by
showing that the number of SVs increases hié*; hence,
the relative number of SVs (which is a crude upper boun
one,) decreasetike @ ~'/3. This can be understood from
the following analysis, which is valid for more general
classes of input distributions. For simplicity, we restrict
ourselves to the quadratic SVM learning a linear rule.
We assume that the inputs have zero mean and are sut
ficiently weakly correlated such that the off-diagonal ele-P2
ments of the quadratic part of the kernel matkiy) =
(1 —d)(N~"'x* - x¥)* for u # v are typically® (1/N).
The diagonal elements arE/(EL =1 —d. Evaluating
h, = o,%¥(x*) - w using Eq. (4) one finds that the rela-
tive contributions of the off-diagonal elements &f are
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