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Statistical Mechanics of Support Vector Networks
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Using methods of statistical physics, we investigate the generalization performance of support vector
machines (SVMs), which have been recently introduced as a general alternative to neural networks.
For nonlinear classification rules, the generalization error saturates on a plateau when the number o
examples is too small to properly estimate the coefficients of the nonlinear part. When trained on
simple rules, we find that SVMs overfit only weakly. The performance of SVMs is strongly enhanced
when the distribution of the inputs has a gap in feature space. [S0031-9007(99)08788-8]

PACS numbers: 84.35.+ i, 05.20.–y, 87.10.+e, 89.80.+h
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Statistical mechanics provides an important approach
analyzing and understanding the ability of neural networ
to learn and generalize from examples (see, e.g., [1–3
The majority of this work has been devoted to the simple
network architecture, the perceptron. This network, how
ever, has limited power because it classifies examples w
a simple linear separating hyperplane and is able to lea
only linear separable rules. More complicated multilaye
neural nets can realize general nonlinear rules (when
size of their hidden layer is large enough) but also ha
practical and theoretical disadvantages. Learning in the
networks results in a usually nonconvex optimization pro
lem, and there is no guarantee that an algorithm will fin
the minimum of the training cost function. The complex
ity of the training error surface reflects itself in the theo
retical analysis by statistical mechanics. The occurrence
phases of broken ergodicity [4] makes their analysis a co
plicated task. Finally, network parameters must be chos
carefully in order to adapt the network’s complexity on th
task and to avoid overfitting.

Recently, a new type of learning machine has been
troduced by Vapnik and his collaborators [5,6] which ma
become a reasonable alternative to neural networks. Th
support vector machines(SVMs) seem to have several ad
vantages over neural networks. Being generalizations
perceptrons, their training involves only simple convex op
timization. Further, for several applications, it has bee
shown that SVMs do not have a strong tendency to over

In this Letter, we present a detailed analysis of th
typical performance of SVMs by methods of statistica
mechanics. To understand the basic idea behind the SV
approach, assume a nonlinear mapping$Csxd from vec-
tors x [ RN onto vectors $C which belong to anM-
dimensional feature space. A nonlinear classification
inputs x can be defined by a linear separation of fea
ture vectors$Csxd using a perceptron with a weight vecto
$w [ RM perpendicular to the separating hyperplane v
sgnf $Csxd ? $wg. The dot denotes the standard inner prod
uct of vectors inRM . The vector $w can be adapted to a
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set of example data by any learning algorithm for perce
trons. This simple approach has major problems whi
result from the typical high dimensionality of the featur
space. Assuming, e.g., that the vector$C contains all bi-
linear expressions of components of the input vectorx (in
addition to linear ones), the dimensionM is of orderN2.
First, there is a big computational problem in storing an
learning the weights, and second, one can expect that th
is also a large tendency of these machines to overfit b
cause there is much less training data than adjustable
rameters in this model. The main idea to overcome the
problems is to use the optimal stability learning algorithm
which has also been studied extensively in the statisti
mechanics approach to neural networks (see, e.g., [
The goal of this algorithm is to find a vector of weight
$w which allows for a separation of positive and negativ
example points with the maximal margin defined by

k  max
$w

min
m

hhmy
p

$w ? $w j . (1)

The local fieldshm are given by

hm  sm
$Csxmd ? $w . (2)

Here,sm [ h21, 1j is the classification of the pointxm,
for m  1, . . . , m, and m is the total number of labeled
examples in the training set. This maximization problem
found to be equivalent to a quadratic minimization proble
for the function1

2 $w ? $w under the constraints thathm $ 1
for all examples in the training set. According to conve
optimization theory the solution vector can be expanded
a linear combination of example feature vectors via

$w 
X
m

amsm
$Csxmd , (3)

where am $ 0 are Lagrange parameters which accou
for the m inequality constraints. Hence, the number o
adjustable parametersam for this algorithm never exceeds
the number of examples. Theam are nonzero only for
© 1999 The American Physical Society 2975
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those examples, for whichhm  1, defining thesupport
vectors(SVs) of the data set. If the remaining example
(am  0) would be discarded from the training set, th
SVM would predict their correct labelsm. Hence, if
the relative number of SVs is small, we can expect th
the SVM generalizes well. In fact, a simple argument [5
shows that the expected ratio of the number of suppo
vectors overm yields an upper bound on the generalizatio
error. We will see later within the average case scenario
statistical mechanics that this mechanism prevents a co
plex SVM from overfitting when learning a simple rule.

The expansion (3) also reduces the computational c
of the algorithm drastically because any inner product
$w with vectors $Csxd in the feature space (including$w ?
$w) is entirely expressed in terms of the so called kern
Ksx, yd  $Csxd ? $Cs yd 

P
r CrsxdCrs yd. In particu-

lar, for anyx, we have

$w ? $Csxd 
X
m

amsmKsx, xmd . (4)

Hence, both learning and prediction on novel inputs d
pend only on the feature vectors$C through the kernelK.
In fact, there is no need to specify the high dimension
mapping $Cs?d explicitly. Instead, one can directly take any
reasonable positive semidefinite operator kernelK, which
by Mercer’s theorem has a decompositionKsx, yd P

r lrfrsxdfrs yd in terms of eigenvalueslr and or-
thonormal eigenfunctionsfrsxd and identifiesCr withp

lr fr. This approach even allows one to take kerne
with feature space dimensionM  ` without problems.

We will now study the generalization performance o
SVMs within the framework of statistical mechanics. W
define the partition function

Z 
Z MY

r1

dwr e2 b

2
$w? $w

3

mY
m1

Q

"
sm

MX
r1

q
lr wrfrsxmd 2 1

#
, (5)

which for b ! ` is dominated by the solution vector$w
of the SVM algorithm. The properties of the SVM can b
computed from the average free energyF  2

1
b kkln Zll,

in the zero temperature limitb ! `, where the double
brackets denote the average over the distribution ofm
training examples. The main difference from the stati
tical mechanics of learning in a simple perceptron withM
weights is that, in the SVM, each couplingwr is weighted
by

p
lr , which typically diminishes the influence of

the more complex, higher order degrees of freedom
the eigenvector expansion. As we will see, this mak
the generalization behavior of the SVM rather differen
from that of a simple perceptron in the thermodynam
limit N ! `, when the rule to be learned has a sim
2976
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lar eigenvector expansion. We will first consider he
a rule of the formsm  sgnf

P
r

p
lr Brfrsxmdg where

the teacher weight vector is given byBr  61. We will
further average the performance over all teachers of t
form with equal probability for all nonzero components
We will specialize on a family of kernels of the form
Ksx, yd  ks x?y

N d, where the only constraint on the func
tion ks?d is the non-negativity of the eigenvalues. Thes
kernels are permutation symmetric in the components
the input vectors and contain the simple perceptron a
special case, whenk is a linear function. This choice has
the nice feature that for binary input vectorsx [ h21, 1jN

the eigenvalue decomposition ofKsx, yd can be explicitly
calculated [7]. The eigenfunctions are labeled by su
setsr # h1, . . . , Nj. We havefrsxd  22Ny2

Q
i[r xi .

The eigenvalues arelr  2Ny2
P

x Kse, xdfrsxd, where
e  s1, . . . , 1dT , which depend on the cardinalityjrj only
and show for largeN an exponential decay withjrj like
2N

N jrj ksjrjds0d. The corresponding degeneracy grows exp
nentially:njrj  s N

jrj d . N jrjyjrj!.
We expect that a decay of the generalization error,eg,

to zero should occur only on the scale ofm  O sMd,
sinceM is the number of learnable parameters. Howev
as we will show,eg may drop to small values already
on a scale ofm  aN examples. Hence, we make
the general ansatzm  aNl , l [ N and calculatefl 
limb!` limN!` N2lF.

If we assume that the inputsxm are drawn at ran-
dom with respect to a uniform probability distribution
Dsxd on h21, 1jN , we can perform the average over th
input distribution by the replica method [1–3]. Thi
becomes tractable by the fact that the eigenfunctio
are orthonormal with respect toDsxd and we have
2N kfrsxdfr0sxdlD 

P
x frsxdfr0sxd  drr0. Further-

more, all but the constant eigenfunctions have zero me
under the uniform distribution. By restricting the ker
nels to havingks0d  0, the average over the inputs i
expressed in the thermodynamic limitN ! ` by expec-
tations over Gaussian random variables. These avera
can be further expressed by the order parameters

q0 
X
r

Lrkswrd2l ,

q 
X
r

Lrkwrl2,

R 
X
r

LrkwrlBr ,

where Lr  lry2N , and k· · ·l denotes a statistical me
chanical averaging specified by Eq. (5). The generaliz
tion error is eg  1

p arccos Rp
Bq

, where B 
P

r Lr 

ks1d is the squared norm of the teacher vector. In repli
symmetry (which is expected to be exactly fulfilled by th
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convexity of the phase space) we obtainfl by extremizing
the function

flsq, R, xd  a
Z 1yp

q

2`

Dt F

√
Rtp

Bq 2 R2

!
s1 2

p
q td2

x

1
1

2Nl

√
nl

Ls1d 2 x
1

1
Ll

!

3

√
q 2

R2

Bs2d 1 nlLl 1 Ls1d 2 x

!
,

(6)

with respect to the order parametersq, R, andx. Further,
Dt 

dt
p

2p
e2t2y2, Fsxd 

Rx
2` Dt, and x  limb!` 3

bsq0 2 qd. Ls1d 
P

jrj.l Lr denotes the sum over the
higher order components andBs2d 

P
jrj,l Lr.

As a general result of solving the order parame
ter equations we find that all high order componen
jrj . l of the teacher vector are completelyundeter-
mined by learning onlyO sNld examples, in the sense
that Rs1d 

P
jrj.l LrwrBr  0 and also thatq

s1d
0 P

jrj.l Lrswrd2  0, in the largeN limit. However, as
we will see, the values of the corresponding weightswr

are not zero but are determined by the expansion (3).
the other hand, all lower order components arecompletely
determined, in the sense thatwr  cBr for all jrj , l,
wherec depends ona only. The only components which
are actually learned at a scalel are those forjrj  l.
We will illustrate these results for quadratic kernels o
the form ksxd  s1 2 ddx2 1 dx, where the parameter
d, 0 , d , 1, tunes the degree of nonlinearity in the
SVM’s decision boundary. On a scale ofm  aN ex-
amples (left side of Fig. 1), the SVM is able to learn th
linear part of the teacher’s rule. However, since the
is not enough information to infer the remainingO sN2d
weights of the teacher’s quadratic part, the generaliz
tion error of the SVM reaches a nonzero plateau wi
egsad 2 egs`d , a21, where egs`d  p21 arccos

p
d.

This scaling may be understood from the fact that the u
determined componentswr andBr , with jrj  2, act as
a noise term during classification similar to learning o
perceptrons with weight noise [3]. For comparison, w
also show the performance of a simplelinear SVM (i.e.,
a perceptron) for whichwr  0 whenjrj . 1. The bet-
ter performance of the nonlinear SVM does not contradi
the fact that, on the linear scale, its higher order weigh
wr for jrj  2 are uncorrelated with the correspondin
teacher values. Those weights are needed to learn
training examples perfectly which is not possible for th
linear machine whena exceeds a critical valueacsdd,
given bypyac  arctanpysacdd.

Increasing the number of examples to a scale ofm 
aN2 (right side of Fig. 1), the well known [8]1ya

asymptotic vanishing ofeg is found. A similar stepwise
learning has been obtained for the case of Gibbs learning
-
ts
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FIG. 1. Decrease of the generalization error on differe
scales of examples, for quadratic SVM kernel learning
quadratic teacher rule (d  0.5, B  1) and various gapsg.
The inset compares the SVM to a linear perceptron (upp
curve) trying to learn the same task. Simulations we
performed withN  201 and averaged over 50 runs (left an
next figure), andN  20, 40 runs (right).

higher order perceptrons [9]. In general, for kernels whi
are polynomials of orderz, more plateaus will appear. On
the scale ofm  aNl21 examples, the generalization erro
decays to a plateau ata ! ` given by

eg 
1
p

arccos

s
Bs2d

B


1
p

arccos

vuutPl21
j1

ksjds0d
j!

ks1d
.

(7)

Finally, at the highest scalem  aNz, the generalization
error converges to zero aseg ø 0.500489

z! a21. This form is
in accordance with general results [5] which show that (
the worst case) the number of examples must be larger t
the capacity of the classifier in order to achieve a sm
generalization error. The capacitymc  acNz is found
from (6) by solving the order parameter equations with t
restrictionR  0, as the value ofa whereq0 diverges.
We obtainac  2

z! which agrees with the results in [10
for polynomial separation surfaces in the largeN limit.

As the next problem, we study the ability of the SVM
to cope with the problem of overfitting when learning
simple rule. We keep the SVM quadratic but choose a si
pler, linear teacher rule according tojBrj  1 for jrj  1
and jBrj  0, otherwise. The results for the generaliza
tion error, obtained by a straightforward extension of (6
are shown in Fig. 2, where the number of examples
scaled asm  aN . Surprisingly, although the studen
has of O sN2d adjustable parameters, this does not le
to any strong overfitting. The SVM is able to learn th
N teacher weights on the scale ofm  aN examples far
below capacity. For comparison, we have also showneg

for a simple linear SVM (i.e., withwr  0 for jrj  2).
2977
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FIG. 2. Learning curves for linear student and quadratic SV
kernels, all learning a linear teacher rule (B  d). For a  10,
a finite size scaling is shown in the inset.

While for the latter case, the decay of the generalizatio
error is of the well known formeg , a21, the quadratic
SVM shows the somewhat slower decayeg , a22y3. The
same scaling is obtained for higher order SVMs whic
learn a low order, e.g., a linear, rule.

We can shed further light on this interesting result b
showing that the number of SVs increases likea2y3; hence,
the relative number of SVs (which is a crude upper boun
on eg) decreaseslike a21y3. This can be understood from
the following analysis, which is valid for more genera
classes of input distributions. For simplicity, we restric
ourselves to the quadratic SVM learning a linear rul
We assume that the inputs have zero mean and are s
ficiently weakly correlated such that the off-diagonal ele
ments of the quadratic part of the kernel matrixK s2d

mn 
s1 2 dd sN21xm ? xnd2 for m fi n are typicallyO s1yNd.
The diagonal elements areK s2d

mm  1 2 d. Evaluating

hm  sm
$Csxmd ? $w using Eq. (4) one finds that the rela

tive contributions of the off-diagonal elements ofK are
O fsmyN2d

1
2 g and can be neglected on the linear scalem 

aN . Hence, we obtainhm  ym 1 s1 2 ddam with ym

being the contribution from the linear weights, namely
ym  sm

p
dyN w ? x, wherew consists only ofwr with

jrj  1. Solving for the coefficientsam, noting that they
are nonzero only whenhm  1, we obtain

am  s1 2 dd21s1 2 ymdQs1 2 ymd . (8)

When a is small, all am ø 1ys1 2 dd and the SVM
acts like a Hebbian classifier. With an increasing num
ber of examplesym will grow and the probability that
am . 0 (an example is a SV) will decrease. The ex
act asymptotic scaling can be calculated self-consisten
assuming that, for largea, wr . cBr for r  1 and
c  N21

P
jrj1 wrBr 

1
N

PaN
m1 amum, whereum is the
2978
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linear contribution to the local field of the teacher vecto
Using Eq. (8) and noting thatym ø cum we obtain

c , a
Z 1yc

0
du psudus1 2 cud , (9)

valid for largea. Here psud denotes the density of the
teacher linear fieldsu. Solving Eq. (9) forc in the limit of
a ! ` yields c , faps0dy6g1y3. Similarly, the relative
number of SVs scales asps0dyc , a21y3ps0d2y3.

The dependence onps0d suggests that the density of in-
puts at the teacher’s decision boundary should play a c
cial role for the generalization ability of the SVM. When
this density vanishes close to the teacher’s separating
persurface, a much faster decay of the generalization er
can be expected. To study this property in more deta
we have analyzed the statistical mechanics for an inp
distribution correlated with the teacher weights such th
Dsxd , Qfs

P
r

p
Lr Brfrsxd 2 gg, which has a gap

of zero density with size2g around the teacher’s deci-
sion boundary. As expected, the generalization perfo
mance of a quadratic SVM which learns from a quadrat
teacher is enhanced, but the asymptotic decay towards
plateau on the linear scale (see Fig. 1) is still of the form
egsad 2 egs`d , a21. The effect of the gap is more
dramatic on the highest scalem  aN2, where instead of
an inverse power law, we now find a fast drop of the gen
eralization error likeeg , a23e2ĉsgda2
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