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Slave Boson Approach to Neutron Scattering inYBa2Cu3O61y Superconductors
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The evolution of the so-called “41 meV resonance” in the magnetic response of YBCO cuprate
is studied with slave boson theory for thet-t0-J model. The resonance appears as a collective spin
fluctuation in thed-wave superconducting (SC) state. It is undamped at optimal doping due to a
threshold in the excitation energies of particle-hole pairs with relative wave vectorsp, pd. When hole
filling is reduced, the resonance moves to lower energies and broadens. Below the resonance energy
find a crossover to an incommensurate response in agreement with a recent experiment on YBa2Cu3O6.6.
We show that dynamic nesting in thed-wave SC state causes this effect. [S0031-9007(99)08857-2]

PACS numbers: 71.10.Fd, 74.25.Ha, 74.72.Bk, 75.20.Hr
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One of the puzzling phenomena in copper-oxide sup
conductors is the so-called “41 meV resonance” observ
in inelastic neutron-scattering (INS) experiments on o
timally doped YBa2Cu3O61y (YBCO) compounds in the
superconducting (SC) phase [1–5]. The magnetic susc
tibility x 00sq, vd shows a peak at the antiferromagnet
(AF) wave vectorsp, pd and an energyv0 ­ 41 meV.
The peak appears to be resolution limited, i.e., almost u
damped, and vanishes aboveTc. In underdoped YBCO
the peak shifts to lower energiesv0 , 41 meV [6–8] and
develops some damping. It is also visible in the spin-g
regime aboveTc. Several theoretical approaches to th
magnetic excitations have been proposed [9–15]. In m
cases [9–14] the resonance at optimal doping is identifi
as a collective spin fluctuation, which is stabilized throug
the suppression of quasiparticle damping in the SC sta
and vanishes in the normal phase. The question arises h
this mode evolves with decreasing doping. In particula
it is unclear how the finite damping at intermediate do
ing levels can be obtained, since the peak is expected
narrow and become a spin-wave (Bragg) peak at zero e
ergy when the Néel state is reached. There is also
perimental evidence [2,16] that the magnetic response
YBCO at energies somewhat belowv0 is incommensu-
rate. It is dominated by four peaks atq ­ sp , p 6 dd
andq ­ sp 6 d, pd, a pattern previously known only for
the La22xSrxCuO41y family of compounds. In view of the
new experimental data, we reinvestigate the spin respo
in slave-boson mean-field theory [9–11], focusing on th
evolution of the resonance with hole filling (doping) an
the crossover commensurate-incommensurate with va
tion of energy.

We start from thet-t0-J model for a single CuO2 layer.
Results specific to the bilayer structure of YBCO will b
presented elsewhere. The model reads

H ­ 2
X

si,jd,s
tc

y
iscjs 2

X
si,jd0,s

t0c
y
iscjs 1

1
2

X
si,jd

JSiSj .

Sums include nearest neighborsi, jd or next nearest neigh-
bor si, jd0 Cu sites on a 2D square lattice. Physical o
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ist ss0

fis0 are repre-
sented by auxiliary (“slave”) bosonsbi carrying the charge
and fermionsfis representing the spins. In mean-field
theory thed-wave superconducting phase is represent
by condensed bosonsbi ! kbil and fermions in ad-wave
BCS state with dispersion

´skd ­ 2 2etfcosskxd 1 cosskydg
2 4et0 cosskxd cosskyd 2 mf

and gapDskd ­ D0fcosskxd 2 cosskydgy2. Renormalized
hopping parameters areet ­ xt 1

1
2 Jk f

y
i"fi1x̂"l, et0 ­ xt0.

The expectation valuesk· · ·l in et and D0 ­ 2J 3

fk fi"fi1x̂#l 2 k fi#fi1x̂"lg are computed self-consistently
from minimization of the free energy. The hole concen
tration (doping)x sets the density of fermionss1 2 xd ­P

sk f
y
isfisl and bosonskbil ­

p
x.

The magnetic susceptibility is calculated in ladde
approximation,

xsq, vd ­ x0sq, vdyf1 1 aJsqdx0sq, vdg (1)

with Jsqd ­ Jfcossqxd 1 cossqydg anda ­ 1. Figure 1
showsx0sq, vd, which is built of fermion bubbles with
a vertex function to include all ladder diagrams. Bo
son excitations do not appear in ladder approximatio
Therefore the calculation does not distinguish between
SC and the spin-gap phase (D0 fi 0 but kbil ­ 0), and
the persistence of the resonance aboveTc in underdoped
cuprates appears quite naturally.

FIG. 1. Particle-hole irreducible contribution to the susce
tibility Eq. (1). Single and double arrowed lines are norm
and anomalous Green’s functions of auxiliary fermions in th
d-wave BCS state. Shaded areas denote the vertex func
L ­ 1 1 LJ . LJ accounts for all ladder diagrams not include
in a simple random-phase approximation.
© 1999 The American Physical Society 2915
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If xsq, v ­ 0d is computed from Eq. (1), an instability
to an (incommensurate) Néel state occurs for hole den
ties x , xc ø 0.2. The high value ofxc is an artifact of
the mean-field theory. Since the inclusion of fluctuation
is beyond the scope of this work, we model the expecte
suppression [17,18] by settinga ­ 0.34 in Eq. (1), such
thatxc is reduced to an observed value0.02. It is assumed
that the superconducting phasex . xc is stable when fluc-
tuations are included, at least for lowT . A renormalization
of the mean-field parameters, e.g.,D0 is ignored, in order
to keepa $ xc the only phenomenological input. The
self-consistentD0 ø 45 meV at optimal doping actually
compares to experimental values [19]. We have check
numerically that the local moment sum rule is not sensitiv
to the choice ofa.

With this approach we are able to access the full rang
of hole densities0.02 , x , 0.15 of underdoped cuprates.
Numerical calculations are performed in the superconduc
ing state at low temperatureT ! 0 with parameterst ­
2J, t0 ­ 20.45t for YBCO [20,21]. Figure 2 shows the
imaginary partx 00sQp , vd of Eq. (1) at the AF wave vec-
tor Qp ; sp, pd for several hole concentrations. Appar-
entlyx 00 is dominated by a sharp resonance. Forx ­ 0.12
it appears at an energyv0 ­ 0.51J ø 60 meV, its resid-
ual width is due to the small quasiparticle damping use
in the numerical calculation. When doping is reduced t
x ø 0.08 ! 0.04 the resonance moves monotonously t
lower energies and develops some damping. For furth
reduced hole filling, the peak becomes again resolutio
limited and eventually shifts tov0 ! 0 when the AF tran-

FIG. 2. Imaginary partx 00 of the susceptibility Eq. (1) for
wave vectorsp, pd. Main figure: Superconducting state at
T ! 0; different peaks belong from left to right to hole
concentrationsx ­ 0.02 (scaled 30.1), 0.025 (30.1), 0.04,
0.06, 0.08, 0.12, 0.16. All peaks exceptx ­ 0.04, 0.06, 0.08
are d functions, computed with a quasiparticle dampingG ­
1023J. Inset: x ­ 0.06, 0.12 in the SC state (full lines) and
x ­ 0.12 in the normal stateT * Tc (dashed line). Here an
experimental energy resolution (FWHM) of 5 meV is simulated
via G ­ 0.01J.
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sition is reached atx ­ xc ­ 0.02. The peak vanishes in
the normal phaseT . Tc near optimal doping; see the in
set of Fig. 2. In heavily overdoped systemsx . 0.2 the
resonance vanishes even in the SC state.

The qualitative agreement between these results
the experimental findings summarized in the beginning
quite satisfactory. The resonance positionv0 ø 60 meV
near optimal doping (x ­ 0.12) is not too far off the ob-
served value 40 meV. We also calculated the AF cor
lation lengthz from the equal-time correlation function
kSsqdSs2qdl. When doping is reduced,z increases mono-
tonically and reaches the system size atx ­ xc ­ 0.02.
Quantitativelyz is overestimated by a factor ofø2 com-
pared to known values [22,23].

It is at first sight surprising that the resonance occu
at energiesv0 & 2D0 without significant damping from
particle-holesp-hd excitations, since thed-wave SC phase
has a finite density of states. Figure 3 shows the imagin
part x000sQp , vd of the p-h bubblesx0 ­ x00 1 ix000

from Fig. 1, together with the real part of the denomin
tor of Eq. (1), KsQp , vd ­ f1 1 aJsQp dx00sQp , vdg.
From the numerical calculation the vertex correctio
have no effect on the outcome of Eq. (1) and are omitt
here. x000 has a full gap up to an energyV0, which
increases with doping. A pole occurs in Eq. (1) sinc
the correspondingK crosses zero at an energyv0 , V0
in the gap. The result is ad-like resonance for a hole
filling near the AF transition (x ­ 0.025) or near optimal
doping (x ­ 0.12). In the underdoped case (x ­ 0.06)
we havev0 ø V0, and the resonance is asymmetrical
broadened. To explain this we note that apart from BC

FIG. 3. Imaginary partx000 of the particle-hole bubbles from
Fig. 1 for wave vectorsp, pd (continuous lines), and the
inverse Stoner enhancement factorK defined in the text [scaled
3s210d, dashed lines]. Main figure: Shown are three ho
fillings x in the SC state atT ! 0. An arrow points to the
threshold energyV0 in the respectivex000; the correspondingK
crosses zero atv0 nearby. x000 shows a van Hove singularity
at 2D0 $ 0.7J (a peak) and forx ­ 0.12 also atV0 ø 0.53J
(a step). Inset: Normal stateT * Tc for x ­ 0.12.
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coherence factors,x000sq, vd ,
P

k dfv 2 Vsq, kdg at
T ! 0, whereVsq, kd ­ Eskd 1 Esk 1 qd andEskd ­p

´2skd 1 D2skd. HereVsq, kd denotes thep-h excita-
tion energies of fermions with relative wave vectorq. For
q ­ Qp this has a minimum valueV0, which determines
the threshold inx000. It is given by V0 ­ 2jmf jZ,
where mf is the fermion chemical potential andZ ­ 1
for k ­ D

2
0ys4mfet0d . 2 and Z ­

p
k 2 k2y4 for

0 , k , 2. Note thatV0, and therefore the resonanc
energyv0 do not follow2D0.

The reason for the absence of damping at optimal do
ing (x ­ 0.12) is identified in the steplike Van Hove sin-
gularity (VHS) atv ­ V0 in x000 (see Fig. 3), induced by
a locally flat p-h dispersion. By virtue of the Kramers-
Kroenig transformation the real partx00 develops a sharp
structure aroundV0, shifting the positionv0 of the reso-
nance (i.e., the zero crossing ofK) well into the gap. When
x is reduced, the VHS and with it the peak structure inx00

weaken, andv0 moves close to and may cross the thres
old V0 to dampingp-h excitations. At very low doping
x * xc this trend is over-compensated by the monotono
increase ofx0 with reducedx, which shiftsv0 back into
the gap. The increase ofx0 comes from the shrinking of
the upper cutoff2 eW for p-h excitations, with the band-
width eW ø 8et ø 8sxt 1 Jy8d of Gutzwiller renormalized
fermions. It should be noted that the steplike VHS
x000 near optimal doping depends on the coexistence
a finite D0 and effective next-nearest-neighbor hoppinet0, which lead to a sufficiently flatVsQp , kd. Setting
t0 ­ 0 eliminates the step, and the resonance from Eq.
is severely broadened. In the normal phaseD0 ­ 0 no
resonance appears at all. Thep-h dispersionVsQp , kd ­
j´skdj 1 j´sk 1 Qp dj then has a zero minimum value
without VHS, resulting in a gapless and structurelessx000

andK (see the inset of Fig. 3).
The approach presented here supports the understa

ing of the “41 meV resonance” as a collective spin fluctu
tion. We find that the sharp resonance is entirely caus
by the pole in the random-phase approximation (RPA
which sums up spin-singlet particle-hole excitations, i.e
transversal spin fluctuations. The vertex functionL ­
1 1 LJ in x0 (see Fig. 1) has numerically no effect (LJ ø
0) in the energy and doping range considered here. T
is, we can neglect, in particular, the resonant contrib
tion from spin-triplet particle-particlesp-pd pairs, which
are involved through the mixing withp-h-excitations
f

y
k1Qp "fk# $ f

y
k1Qp "f

y
2k" in the SC state [15]. Our view

on the neutron scattering differs from, e.g., Ref. [15
where thep-p channel is considered the main contributio
to the “41 meV resonance.” Some further comparison
these viewpoints has been given in Refs. [24,25].

We now turn to the discussion of the magnetic respon
in wave-vector space. The resonance at 41 meV, as w
as its relative in underdoped samples at energiesv0 ,

41 meV, is characterized as a single (commensura
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peak atq ­ sp , pd ­ s1y2, 1y2d reciprocal-lattice units
(r.l.u.) [3–5,7]. Recent INS experiments by Mooket al.
[16], performed at an energyvi ­ 24 meV ø 0.7v0 on
an YBa2Cu3O6.6 sample withv0 ­ 34 meV, gave evi-
dence for an incommensurate response. It is dominated
four peaks, horizontally displaced fromsp , pd. The maxi-
mum intensity is strongly reduced compared tov ­ v0.
Figure 4 showsx 00sq, vd for x ­ 0.12 at T ! 0 from the
renormalized RPA Eq. (1) with vertex corrections omitte
At the energyv0 ­ 0.51J (top panel) the susceptibility
is commensurate [10]. When the energy is lowered
vi ­ 0.7v0 ­ 0.3J, the intensity drops dramatically, and
four peaks appear atq ­ sp 6 d, pd andsp , p 6 dd, as
is seen in the experiment [16]. The amountd ­ 0.1 r.l.u.
of the displacement fits well the observed value0.105 r.l.u.
The incommensurate pattern may be characterized
the intensity ratioIhyId , which is the maximum intensity
Ih found in a horizontal scan throughsp, pd, related to
the maximumId from a diagonal scan. The numerica

FIG. 4. Wave-vector scan ofx 00sq, vd (in arbitrary units)
around q ­ sp, pd in the SC state atT ! 0. qx , qy are in
units of2p ­ 1 r.l.u. The hole filling isx ­ 0.12, energies are
v ­ 0.51J ­ v0, 0.3J ­ 0.7v0, 0.1J (from top to bottom).
A quasiparticle dampingG ­ 0.02J has been used.
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FIG. 5. Left: Contour plot ofEskd in the SC state forx ­
0.12. Shown is the upper right 1y4 Brillouin zone (BZ) with
kxyy in units of 2p ­ 1 r.l.u. The nodeEskd ­ 0 appears as
a dot, encircled by contoursEskd ­ vy2 for v ­ 0.1J (most
inner curve),0.3J, 0.51J, 0.7J. Right: Contour forv ­ 0.3J
and its bysp, pd shifted image in the full BZ. Arrows indicate
the best nesting vector relative tosp, pd.

calculation yieldsIhyId ­ 1.4; from the data given in
Ref. [16] we estimate an experimental value&2.0. When
the energy is further reduced,IhyId changes continuously
to values,1, and forv ø v0 (bottom panel) four peaks
appear atq ­ sp 6 d0, p 6 d0d [9,26]. At these low
energies no information on theq-space structure has yet
been obtained from INS, due to the very dim intensity.

An explanation for the incommensurate pattern atv ­
vi can be found in the quasiparticle dispersionEskd of
the d-wave SC state. Consider again thep-h excitation
energiesVsq, kd. At low energy v ! 0 only excita-
tions between the nodesEskd * 0, Esk 1 qd * 0 con-
tribute, withq ­ sp 6 d0, p 6 d0d nearsp, pd [26]. For
small v ­ 0.1J this is still the dominant process; see
Fig. 5 (left). The situation changes forv ­ vi ­ 0.3J.
The contourEskd ­ viy2 contains a flat piece, which
allows for a nesting contribution from (nearly) degen
erate excitationsEskd ø Esk 1 qd ­ viy2. Following
Ref. [27] the best nesting vector is a horizontal (or vertica
offset to sp, pd, i.e., q ­ sp 6 d, pd and sp, p 6 dd.
This is illustrated in Fig. 5 (right); the offset is given by
d ­ arcsinfsv 1 mfdy 2 etg. The above reasoning has
been given without consideration of the renormalized RP
Eq. (1), since, in fact,x ø x0 for energies belowv0. On
the other hand, this is not the case near the resonance
ergy v0 ­ 0.51J, where x is determined by a pole in
Eq. (1), which produces the strong commensurate pe
displayed in the top panel of Fig. 4.

In conclusion, we find that the slave-boson mea
field theory, enhanced by the renormalized RPA, give
a reasonable explanation for the INS experiments
YBa2Cu3O61y compounds. The energy and vanishin
damping of the “41 meV resonance” is associated with th
threshold ofp-h excitations atq ­ sp , pd. The evolution
of the resonance with hole filling is accounted for, bu
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the damping is quite sensitive to the band structure (i.e
t0 fi 0). The same theory explains the incommensura
structure at lower energies as a dynamic nesting effe
specific to thed-wave SC state.
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