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Minimal Surfaces, Screw Dislocations, and Twist Grain Boundaries
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Large twist-angle grain boundaries in layered structures are often described by Scherk’s first surface,
whereas small twist-angle grain boundaries are usually described in terms of an array of screw
dislocations. We show that there is no essential distinction between these two descriptions and that, in
particular, their comparative energetics depends crucially on the core structure of their screw-dislocation
topological defects. [S0031-9007(99)08846-8]

PACS numbers: 61.30.Jf, 02.40.Hw, 61.41.+e

Contrary to their name, minimal surfaces are widely .~ _ In[COS{COS(%)h(x,y) + Sin(a/2)y]i|

observed. It has been proposed [1] that lamellae in cogcos5)h(x,y) — sin(e/2)y]

diblock copolymer systems form minimal surfaces so as

to minimize the interfacial area between blocks. Other _ |n|:C05{(N1 : t)}

systems, such as cubic phases [2] and the sméktic- cog(N;, - t)

phase [3], are also described in this way. These minimal )

surfaces contain grain boundaries, which rotate the laye¥here ¢ = (x.y.h(x,y)) and N, = (0, = sin(a/2),

normals. On the other hand, a twist grain boundanf0da/2)) are unit vectors. By using the rightmost

(TGB) in a smecticA liquid crystal phase is described €xpression in (1), it is easy to see that, as> —o

in terms of a lattice of screw dislocations [4]. We will (for 0 < a < m/2) the surface is the solution of

show that these two different descriptions lead to nearifo¥Ni - t) = 0, i.e., Scherk's surface is a family of

identical geometrical surfaces even though the philosoph@rallel planes with layer norm&, and spacing/ = 7.

behind their construction is quite different. imilarly, asx — o Scherk’s surface becomes a family
Minimal surfaces are simply surfaces of zero mearPf parallel layers with normaN, and spacing/ = .

curvature. Because of this, they play an important role Note that, agx — 0, Eq. (1) becomes

in the physics of complex fluids: Their curvature energy xsina = In[1 — 2y sin(a/2)tank] = —y sina tank

always vanishes. Although they may have periodically

repeated unit cells or, like Scherk’s first surface [5], (2)

provide a continuous transition between parallel plane

at different angles, they do not have an inherent length hx,y) = 7oy tanfl<X>’ 3)

scale—a uniform dilation of a minimal surface ssill 2 X

minimal. One of the simplest minimal surfaces iswhich is a single helicoid with pitchp = 27 = 24

the helicoid: a surface with height functiol(x,y) =  located at the origin. Since planes at infinity are separated

ho + [b/(2a)]tan !(y/x). This surface is smooth and by 7, this can be interpreted as-& screw dislocation.

continuous, and there are no constraints on the parameti®liote, however, that the normal distance between the

b giving the pitch of the helicoid. A screw dislocation in planes diverges along the axis, a fact that will prove

a smecticA, however, is a topological defect in a lamellar to be essential in our discussion of energetics. In biphasic

structure with a specified periodic spacidg It has a materials, such as diblock copolymers, these layers should

height function identical to that of a helicoid, though its be alternately identified as blocks andB blocks. This

pitch must be an integer multiple of the layer spacingwould make the layer spacing at infinity = 2d = 2,

As we discuss below, this contraint is most easily imple-and thus the Burgers vectér= 27 would be a strength

mented in a Eulerian picture in which the single-valued+1 dislocation [1]. However, in the following we will

phase of the mass-density wave is spatially dependertiake each layer to be identical. It will only be convention

Moreover, a true dislocation has a singular core becausas to the strength of the dislocation—the actual length of

the layer spacing and thus the strain diverge there. Thithe Burgers vector is the appropriate invariant.

costs energy precisely because there is a preferred layerFor finite «, the intersection of the Scherk’'s sur-

spacing. Thus the existence of a well-defined periodidace with the planex = 0 (Fig. 1) consists of two sets

reference state distinguishes screw dislocations from helaf equally spaced lines: one parallel to theaxis at

coids. In this Letter, we will explore the consequences ofositions y, = kl; for integer k, with separationl; =

1)

§0 that

this distinction. m/sin(e/2) = d/sin(e/2) and a second set parallel
We start by considering Scherk’s first surface. Theto the § axis at the heights:y, = kd’ with separation
height functioni(x, y) is given implicitly via [5] d' = m/coda/2) = d/coda/2). Around the first set
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d Lagrangiancoordinates, smectics are described in terms
\Ag of the phase variablg, which is Eulerian. To compare
with Scherk’s surface we také = 7 here and in the
d following. Because) must be single valued, the Burgers
cos(a/2) vectorb must be an integer multiple of the layer spacing.

The (Lagrangian) surfaces of constant phase y) are
defined implicitly though

h(x,y) — a(x,y, h(x,y)) = kd, (6)

where k is an integer. Thus) h = a,a(1 — d.a) and
FIG. 1. Twist-grain-boundary structure fer2 screw disloca similarly for 9, k. For low-angle grain boundaries, i =
tions. The horizontal lines are the smectic layers at the grah%) and the derivatives of ande are equa!. Thls.wm r.IOt.
boundary, while the line at-a/2 are the layers far from the P€ the case folarge-angle grain boundaries. With this in

boundary. The very dark set of horizontal lines follows a singlemind, we will add together the effect of a plane of equally
smectic layer across grain boundaries. Note that, at the graigpaced screw dislocations with spacipg

a/2

boundary, the smectic layers are dilatedigycog« /2). A single screw dislocation is described hy =
[b/Qm)]tan (y/x) with b = kd:

of lines, Scherk’s surface is a local helicoid with height (0.1 0y, 9.71] = b -y X 0

functionh(x,y) = —[1/ coga/2)]tan"'[x coda/2)/56y] UL O UL CM = o L X2+ 92752 + 427

for small6y = y — yx. Thus these helicoids have pitch (7

p. = 2d’' equal to twice the separation between theA ; dislocati .
planes parallel tg atx = 0. Similarly, around the sec- harrdy ot screw disiocations gives

ond set of lines there are helicoids: For smélt = _ b < y — nlg

h — h, y(x,h) = —[1/sin(a/2)]tan [x sin(a/2)/5h]. Oxllarray = T om _Z 2+ (y — nig)?’

Thus they have pitchp, = 2/, equal to twice the sepa- ”:m 8)
ration between planes parallel foat x = 0. Note that _ b X

neitherp. nor p, are integer multiples of the layer spac- Oyltamay = . n;x X2+ (y — nlg)?’

ing at infinity 4. The two sets of helicoids can be inter- o _ _
changed through the “dual” transformatidiix,y) — y  These sums can be performed explicitly via the Poisson
and @ — 7 — « which leaves Scherk’s surface invari- summation formula:

aﬁt antc}i1irtlt$r;1har(1geﬂ ﬁ_ndll)d. In tr:je f:)llowi;w?hwe shtall . . b sin2my/1y)

show that if the (nonchiral) ground state of the system is xllarray = 77 — ,
lamellar, with a preferred layer spacing, then energetics 2y cost2ax/ly) = cod2ay/la)
will break the geometric degeneracy of the dual mapping b sinh(27x/1,) 9)
by converting one set of helicoids into true topological Oyllarray = L Homx/ly) — cosomy/ly)
screw dislocations with cores. Finally, for comparison d COSNemx/ia) — COSemy/ia

with the smectic structures which we will Consider, we Note that the Superpos|t|on of (7) givesaan_ay = O’

calculate the derivatives af(x,y): and thusii,,, is independent of. However, ity is
a.h(r.y) — —sin(/2) sin(26) the displacement due only to the screw dislocations—
L Y cosh2y) — cog26)’ the smectic will relax via a smooth displacement field
_ 4 fsmooth (X, ¥, 2). To find fgmeotn We consider the boundary
_ sinh(2y) 4 condition on the smectic: The strain must vanish at
3yh(X,y) - tar(a/2) 5 — + Y = - h H ”
cosh2y) — codq26) X Foo, Writing # = #array + #smooth, the rotationally

invariant strain ist,, = 0,it — %(Vﬁ)2 and the boundary

where § = ysin(w/2) and y = = xsina. From these L
ysin(a/2) Y = 2 * S ondition becomes

derivatives and boundary conditions Scherk’s surface cah
be reconstructed. 2

We will now consider a surface constructed via a linear 20,0 — (9.)° = (i) (10)
superposition of screw dislocations (LSD) in a smedtic- d
phase, parallel t@ with separation/, along they axis. ora.in =1 =41 — (b/2ly)*. Sincen should vanish as
Recall that a smectic is described in terms of a complex; — o (or b — 0), we haved. i = 1 — /1 — (b/214)*.
scalar mass-density wave Comparing (4) and (9), while translating from Eulerian to

g = |pletdlm iyl (5) Lagrangian coordinates, we find that Scherk’s surface is

where ¢ = 277/d and d is the layer spacing. While an array of screw dislocations, i.e., a TGB with

the surfacei(x, y) is a true height function expressed in tan(a/2) = (b/21,)[1 — (b/21)]" "2, (11a)
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tana/2) = 7 /1y, (11b) terms of the Eulerian coordinates
Equation (11a) implies that qia/2) = b/(21,), a stan- 2 2

dard result from the theory of twist grain boundaries,where the nonlinear terms assure complete rotational

while (11b) shows thab = 27 = 2d, confirming that invariance. The compression energy does not vanish

there are strengtht+2 dislocations. Finally, (11c) dis- either for LSD surfaces or for Scherk’s surface. For

plays the only difference between Scherk’s surface an@cherk’s surfaceF. is proportional to the cross-sectional

the screw dislocations: Scherk’s surface is dilated alongrea of the sample in the; plane:

the twist axis by cogr/2). We also note that the Euler- . - "

ian coordinate for Scherk’s surface is simplix, y,z) = _ 2BLy L sir(a/2) ? dgf dy
0

i(x coda/2),y, 7). ‘ 7 CoSa /2) 0

We now consider the free energies of Scherk’s surface 1 2
and an LSD surface with arbitrary Burgers vedior= kd. X [D coq26) — — D*sin*(a/2) sinz(ze)} :
This free energy has two contributions. The first is the 2

bending energy. In Lagrangian coordinates it can be (15)
written as the product of the free energy per surface, theyhere D! = [coshi2y) — coq26)] ~ [y? + 6?] for
density of surfaces per unit length, and the total lengthy, 9 < 1. For an LSD surface, this compression energy
of the system. We use the Helfrich-Cahn energy for eaclF. is also proportional to the cross-sectional area:
surface, as has been utilized to study lyotropic monolayers BL.L.b* 72 "
[6]. We find F. = #f d&[ dy D?cos(26). (16)
> 5 w2 (214)° Jo 0

dxdy V1 + (3:h)* + (0,h)H, Note that the leading terms in the expansionsFpfand

(12) F,in « for @ < 1 are identical wherb = 2d, i.e., for
where H is the mean curvature of the surface. Noteadn LSD surface made of2 dislocations. Because of
thatx/d = K; is the three-dimensional splay modulus of the relative sign between the two terms in (15), it is
the smectic. Scherk’s surface is minimal and thus ha§lifficult to determine the relative magnitudes bf and
H = 0—which is precisely why it proves to be a useful F. for the same twist angler andb = 24. However, it
ansatz. The LSD surfaces have a nonzero bending enerd§.easy to see from (16) that, for small angle, strength

kL,
Fr =74 Coa(a/Z)]

Using the standard nonlinear expressionfof5], we find islocations lead to bower compression energy Scherk’s
LT3 surface. .
Yy = —— More importantly, in both cases (LSD and Scherk’s
8d coga/2) surfaces), the integrals diverge for smalland 6. This

_ _ sink(%) sirk(5) [coshz) — cog §)]73/2  means that all of them must be cut off at some short
X fdxdy [(1 + I)cosh) — (1 — T)cod )2 distance27/A ~ d as has been observed by Kléman

[9]. Inside the cutoff there is a defect core in which the
(13)  smectic order parameter must vanish. The “core energy”
where ' = tarf(a/2). Inspection shows that (13) is @ that we find here is actually a nonlinealastic energy,
convergent integral, proportional to the cross-sectionahot to be confused with the usual core energy which
area of the sample, and that for small anglEs ~  arises from the order parameter vanishing at the defect
b*LyL./(dl3). Thus for largel,, we see that the in- and from relaxation of director modes. We shall use the
teraction energy between two defects scales/@s  term “core energy” to refer to the elastic core, keeping
This is different from the usual exponential interactionsin mind that this is only part of the total core energy.
that a linear theory with both director and displacementThe integrals (15) and (16) diverge &4dl;)*>. Thus
fields [7] would predict. Moreover, for fixed angte =  the dominant contribution to the compression energy for
2sin"1(b/21,), larger values ob are favored over smaller [, > A~! ~ d is
ones. We note that, in addition to the mean curvature term BbiL. L
in (12), one could also consider a Gaussian curvature term Fo ~ —5— = (Alg)%. a7)
of the formk de K, whereK is the Gaussian curvature. la la
If the elastic constants do not depend on the coordinateBhis has a simple interpretation: Sintg//, is the total
(x,y), then the integral of the Gaussian curvature is in-number of dislocations, (17) is the sum over individual
dependent of the surface geometry. The case of varyindislocations of elastic core energied., with energy
elastic constants has been considered elsewhere [8].  per unit lengthe = Bb*A2. Unlike the bending energy,
Since smectic and lamellar layers have a preferredhis energy strongly favors small Burgers vectors. In
spacing, there is an energy cost for layer compressioraddition, we may use (15) or (16) to calculate the leading
The compression energ§. is most simply written in interaction energy between defects. One finds that the
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interaction energy is cutoff dependent through logarithmidayer compression contributes to the free energy of the
terms. Therefore, on dimensional grounds the interactiostructure. This breaks the dual mapping between the
energy per unit length scales @&b*l;”In(Al;). The helicoids. It thus follows that Scherk’s surface is a
cutoff dependence of the interaction is somewhat unusuatwist grain boundary composed ofsingle setof parallel
In linear elasticity, defect-defect interactions depend onlyscrew dislocations and that the geometry of these defects
on the defect separation. Because this system is nonlineameates a perpendicular set of helicoidal structures in
no such decomposition can be easily made. the surface. We have also demonstrated that Scherk’s
Since both LSD and Scherk’s structures necessarilgurface has a higher energy than an LSD structure of
have core regions, the energy of the core itself must alsbuilt of +1 dislocations for small angles. In the case of
be taken into account. A detailed analysis of the coréiphasic materials, the-1 dislocations we consider here
structure would be interesting and would allow for ex-would be topologically forbidden—they would become
plicit energy comparisons between the Scherk and LSDH /2 dislocations. In this case the energetic would be a
structures. In such a calculation, the core Qiz¢ A itself ~ competition between Scherk’s surface and #® LSD.
would be set so as to minimize the total energy. This idn either case, a detailed analysis of the core structure
similar to the analysis of defects in lyotropic lamellar sys-would be required to make an unambiguous prediction of
tems [10]. Note that there is only one set of parallel corehe most stable structure at larger angles, whether it is
regions despite the fact that there are two, perpendicwa distorted Scherk’s surface, a distorted LSD surface, or
lar sets of helicoidlike structures in Scherk’s surface (1)some interpolation between them.
Once the core regions are present in one set of helicoids, We acknowledge stimulating discussions with
the other set no longer consists of perfect helicoids—theW. Kléman, B. Pansu, and E.L. Thomas. R.D.K.thanks
are interrupted by the cores of the first set. Thus, one cathe Université Paris XI, Orsay, where some of this
unambiguously identify a single set of dislocations in thework was done. R.D.K.was supported by NSF
LSD and Scherk structures. This corroborates our ealAREER Grant No. DMR97-32963, an award from
lier claim that Scherk’s surface contains a single set oResearch Corporation, and a gift from L.J. Bernstein.
true dislocations, while the second set of (interrupted) heT. C. L. supported by NSF Grant No. DMR97-30405.
licoids appears only through the geometry of the other de-
fects. Presumably, energy considerations will determine
which set of helicoids become dislocations. dt= /2
the energy is degenerate. However, at smatléhe pre-

ceding discussion suggests that a system with a larger de- ) i -

fect separation}d will have a Iower energy. This ch.o'ice [1] g%ﬁ'g?ggéf;?_" ,t/cl’ ;%Imug:zﬁgggnggéua%%%; du
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pression energy. The true equilibrium twist grain bound- (1988);41, 4392 (1990).

ary will adopt a geometry that is an energetic compromise[5] J.C. C. NitscheLectures on Minimal Surfacesranslated
between bending and compression deformations. Asare- by J.M. Feinberg, edited by A. Schmidt (Cambridge
sult, it will have a nonvanishing mean curvature, and it University Press, New York, 1989).

will have a structure that is not identical to either Scherk’s [6] Z.-G. Wang and S.A. Safran, J. Phys. (Pasd) 185
surface or to any LSD surface discussed here, It would (1990).

be interesting to consider a variatiormfsatzbased on L] A-R.Dayetal.,Phys. Rev. A27, 1461 (1983).

Scherk’s surface with arbitrary, independent dilations of (6] (Sigé4)6'd° and E.L. Thomas, Macromoleculgs, 849
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