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Minimal Surfaces, Screw Dislocations, and Twist Grain Boundaries
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Large twist-angle grain boundaries in layered structures are often described by Scherk’s first su
whereas small twist-angle grain boundaries are usually described in terms of an array of s
dislocations. We show that there is no essential distinction between these two descriptions and th
particular, their comparative energetics depends crucially on the core structure of their screw-disloc
topological defects. [S0031-9007(99)08846-8]
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Contrary to their name, minimal surfaces are wide
observed. It has been proposed [1] that lamellae
diblock copolymer systems form minimal surfaces so a
to minimize the interfacial area between blocks. Oth
systems, such as cubic phases [2] and the smecticQ
phase [3], are also described in this way. These minim
surfaces contain grain boundaries, which rotate the lay
normals. On the other hand, a twist grain bounda
(TGB) in a smectic-A liquid crystal phase is described
in terms of a lattice of screw dislocations [4]. We wil
show that these two different descriptions lead to near
identical geometrical surfaces even though the philosop
behind their construction is quite different.

Minimal surfaces are simply surfaces of zero mea
curvature. Because of this, they play an important ro
in the physics of complex fluids: Their curvature energ
always vanishes. Although they may have periodical
repeated unit cells or, like Scherk’s first surface [5
provide a continuous transition between parallel plan
at different angles, they do not have an inherent leng
scale—a uniform dilation of a minimal surface isstill
minimal. One of the simplest minimal surfaces i
the helicoid: a surface with height functionhsx, yd ­
h0 1 fbys2pdg tan21s yyxd. This surface is smooth and
continuous, and there are no constraints on the parame
b giving the pitch of the helicoid. A screw dislocation in
a smectic-A, however, is a topological defect in a lamella
structure with a specified periodic spacingd. It has a
height function identical to that of a helicoid, though it
pitch must be an integer multiple of the layer spacin
As we discuss below, this contraint is most easily imple
mented in a Eulerian picture in which the single-value
phase of the mass-density wave is spatially depende
Moreover, a true dislocation has a singular core becau
the layer spacing and thus the strain diverge there. T
costs energy precisely because there is a preferred la
spacing. Thus the existence of a well-defined period
reference state distinguishes screw dislocations from he
coids. In this Letter, we will explore the consequences
this distinction.

We start by considering Scherk’s first surface. Th
height functionhsx, yd is given implicitly via [5]
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x sina ­ ln

"
cosfcoss a

2 dhsx, yd 1 sinsay2dyg
cosfcoss a

2 dhsx, yd 2 sinsay2dyg

#

­ ln

"
cosfsN1 ? td
cosfsN2 ? td

#
, (1)

where t ; sssx, y, hsx, ydddd and N1,2 ­ sss0, 6 sinsay2d,
cossay2dddd are unit vectors. By using the rightmos
expression in (1), it is easy to see that, asx ! 2`

(for 0 , a , py2) the surface is the solution of
cossN1 ? td ­ 0, i.e., Scherk’s surface is a family o
parallel planes with layer normalN1 and spacingd ­ p.
Similarly, asx ! ` Scherk’s surface becomes a famil
of parallel layers with normalN2 and spacingd ­ p.

Note that, asa ! 0, Eq. (1) becomes

x sina ø lnf1 2 2y sinsay2d tanhg ø 2y sina tanh

(2)
so that

hsx, yd ­
p

2
1 tan21

µ
y
x

∂
, (3)

which is a single helicoid with pitchp ­ 2p ­ 2d
located at the origin. Since planes at infinity are separa
by p, this can be interpreted as a12 screw dislocation.
Note, however, that the normal distance between
planes diverges along thêz axis, a fact that will prove
to be essential in our discussion of energetics. In bipha
materials, such as diblock copolymers, these layers sho
be alternately identified asA blocks andB blocks. This
would make the layer spacing at infinitỹd ­ 2d ­ 2p,
and thus the Burgers vectorb ­ 2p would be a strength
11 dislocation [1]. However, in the following we will
take each layer to be identical. It will only be conventio
as to the strength of the dislocation—the actual length
the Burgers vector is the appropriate invariant.

For finite a, the intersection of the Scherk’s sur
face with the planex ­ 0 (Fig. 1) consists of two sets
of equally spaced lines: one parallel to theẑ axis at
positions yk ­ kld for integer k, with separationld ­
py sinsay2d ­ dy sinsay2d and a second set paralle
to the ŷ axis at the heightshk ­ kd0 with separation
d0 ­ py cossay2d ­ dy cossay2d. Around the first set
© 1999 The American Physical Society
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FIG. 1. Twist-grain-boundary structure for12 screw disloca-
tions. The horizontal lines are the smectic layers at the gra
boundary, while the line at6ay2 are the layers far from the
boundary. The very dark set of horizontal lines follows a sing
smectic layer across grain boundaries. Note that, at the gr
boundary, the smectic layers are dilated by1y cossay2d.

of lines, Scherk’s surface is a local helicoid with heigh
functionhsx, yd ­ 2f1y cossay2dg tan21fx cossay2dydyg
for small dy ­ y 2 yk. Thus these helicoids have pitch
pz ­ 2d0 equal to twice the separation between th
planes parallel tôy at x ­ 0. Similarly, around the sec-
ond set of lines there are helicoids: For smalldh ­
h 2 hk, ysx, hd ­ 2f1y sinsay2dg tan21fx sinsay2dydhg.
Thus they have pitchpy ­ 2ld equal to twice the sepa-
ration between planes parallel toẑ at x ­ 0. Note that
neitherpz nor py are integer multiples of the layer spac
ing at infinity d. The two sets of helicoids can be inter
changed through the “dual” transformationhsx, yd $ y
and a ! p 2 a which leaves Scherk’s surface invari
ant and interchangesd0 andld. In the following we shall
show that if the (nonchiral) ground state of the system
lamellar, with a preferred layer spacing, then energet
will break the geometric degeneracy of the dual mappi
by converting one set of helicoids into true topologica
screw dislocations with cores. Finally, for compariso
with the smectic structures which we will consider, w
calculate the derivatives ofhsx, yd:

≠xhsx, yd ­ 2sinsay2d
sins2ud

coshs2gd 2 coss2ud
,

≠yhsx, yd ­ tansay2d
sinhs2yd

coshs2gd 2 coss2ud
,

(4)

where u ; y sinsay2d and g ; 1
2 x sina. From these

derivatives and boundary conditions Scherk’s surface c
be reconstructed.

We will now consider a surface constructed via a line
superposition of screw dislocations (LSD) in a smectic-A
phase, parallel tôz with separationld along theŷ axis.
Recall that a smectic is described in terms of a compl
scalar mass-density wave

c ­ jcjeiqjz2ūsx,y,zdg, (5)

where q ­ 2pyd and d is the layer spacing. While
the surfacehsx, yd is a true height function expressed in
in
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Lagrangiancoordinates, smectics are described in term
of the phase variablēu, which is Eulerian. To compare
with Scherk’s surface we taked ­ p here and in the
following. Becausec must be single valued, the Burgers
vectorb must be an integer multiple of the layer spacing
The (Lagrangian) surfaces of constant phaseh̄sx, yd are
defined implicitly though

h̄sx, yd 2 ūsssx, y, h̄sx, ydddd ­ kd , (6)

where k is an integer. Thus≠xh̄ ­ ≠xūs1 2 ≠zūd and
similarly for ≠yh̄. For low-angle grain boundaries,≠zū ø
0 and the derivatives of̄h and ū are equal. This will not
be the case forlarge-angle grain boundaries. With this in
mind, we will add together the effect of a plane of equall
spaced screw dislocations with spacingld.

A single screw dislocation is described bȳu1 ­
fbys2pdg tan21s yyxd with b ­ kd:

f≠xū1, ≠yū1, ≠zū1g ­
b

2p

∑
2y

x2 1 y2 ,
x

x2 1 y2 , 0

∏
.

(7)

An array of screw dislocations gives

≠xūarray ­ 2
b

2p

X̀
n­2`

y 2 nld

x2 1 s y 2 nldd2 ,

≠yūarray ­ 2
b

2p

X̀
n­2`

x
x2 1 s y 2 nldd2 .

(8)

These sums can be performed explicitly via the Poiss
summation formula:

≠xūarray ­
b

2ld

sins2pyyldd
coshs2pxyldd 2 coss2pyyldd

,

≠yūarray ­
b

2ld

sinhs2pxyldd
coshs2pxyldd 2 coss2pyyldd

.
(9)

Note that the superposition of (7) gives≠zūarray ­ 0,
and thusūarray is independent ofz. However, ūarray is
the displacement due only to the screw dislocations—
the smectic will relax via a smooth displacement fiel
ūsmoothsx, y, zd. To find ūsmooth we consider the boundary
condition on the smectic: The strain must vanish a
x ­ 6`. Writing ū ­ ūarray 1 ūsmooth, the rotationally
invariant strain isuzz ­ ≠zū 2

1
2 s=ūd2 and the boundary

condition becomes

2≠zū 2 s≠zūd2 ­

µ
b

2ld

∂2

(10)

or ≠zū ­ 1 6
p

1 2 sby2ldd2. Sinceū should vanish as
ld ! ` (or b ! 0), we have≠zū ­ 1 2

p
1 2 sby2ldd2.

Comparing (4) and (9), while translating from Eulerian to
Lagrangian coordinates, we find that Scherk’s surface
an array of screw dislocations, i.e., a TGB with

tansay2d ­ sby2ldd f1 2 sby2lddg21y2, (11a)
2893
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tansay2d ­ pyld , (11b)

hsx, yd ­ h̄sssx cossay2d, yddd . (11c)

Equation (11a) implies that sinsay2d ­ bys2ldd, a stan-
dard result from the theory of twist grain boundarie
while (11b) shows thatb ­ 2p ­ 2d, confirming that
there are strength12 dislocations. Finally, (11c) dis-
plays the only difference between Scherk’s surface a
the screw dislocations: Scherk’s surface is dilated alo
the twist axis by cossay2d. We also note that the Euler-
ian coordinate for Scherk’s surface is simplyusx, y, zd ­
ūsssx cossay2d, y, zddd.

We now consider the free energies of Scherk’s surfa
and an LSD surface with arbitrary Burgers vectorb ­ kd.
This free energy has two contributions. The first is th
bending energy. In Lagrangian coordinates it can
written as the product of the free energy per surface, t
density of surfaces per unit length, and the total leng
of the system. We use the Helfrich-Cahn energy for ea
surface, as has been utilized to study lyotropic monolay
[6]. We find

Fb ­
kLz

2d cossay2d

Z
dxdy

p
1 1 s≠xhd2 1 s≠yhd2H2,

(12)

where H is the mean curvature of the surface. No
thatkyd ­ K1 is the three-dimensional splay modulus o
the smectic. Scherk’s surface is minimal and thus h
H ­ 0—which is precisely why it proves to be a usefu
ansatz. The LSD surfaces have a nonzero bending ene
Using the standard nonlinear expression forH [5], we find

Fb ­
kLzG3

8d cossay2d

3
Z

dx̃dỹ
sinh2sx̃d sin2sỹd fcoshsx̃d 2 coss ỹdg23y2

fs1 1 Gd coshsx̃d 2 s1 2 Gd coss ỹdg5y2 ,

(13)
where G ­ tan2say2d. Inspection shows that (13) is a
convergent integral, proportional to the cross-section
area of the sample, and that for small anglesFb ,
b4LyLzysdl5

dd. Thus for largeld, we see that the in-
teraction energy between two defects scales asl25

d .
This is different from the usual exponential interaction
that a linear theory with both director and displaceme
fields [7] would predict. Moreover, for fixed anglea ­
2 sin21sby2ldd, larger values ofb are favored over smaller
ones. We note that, in addition to the mean curvature te
in (12), one could also consider a Gaussian curvature te
of the formk̄

R
dS K, whereK is the Gaussian curvature

If the elastic constants do not depend on the coordina
sx, yd, then the integral of the Gaussian curvature is i
dependent of the surface geometry. The case of vary
elastic constants has been considered elsewhere [8].

Since smectic and lamellar layers have a preferr
spacing, there is an energy cost for layer compressi
The compression energyFc is most simply written in
2894
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terms of the Eulerian coordinatesu:

Fc ­
B
2

Z
d3xf≠zu 2

1
2

s=ud2g2, (14)

where the nonlinear terms assure complete rotatio
invariance. The compression energy does not van
either for LSD surfaces or for Scherk’s surface. F
Scherk’s surface,Fc is proportional to the cross-sectiona
area of the sample in theyz plane:

Fc ­
2BLyLx sin3say2d

p cossay2d

Z py2

0
du

Z `

0
dy

3 fD coss2ud 2
1
2

D2 sin2say2d sin2s2ud
∏2

,

(15)

where D21 ­ fcoshs2gd 2 coss2udg , fg2 1 u2g for
g, u ø 1. For an LSD surface, this compression ener
F̄c is also proportional to the cross-sectional area:

F̄c ­
BLyLzb4

p2s2ldd3

Z py2

0
du

Z `

0
dg D2 cos2s2ud . (16)

Note that the leading terms in the expansions ofFc and
F̄c in a for a ø 1 are identical whenb ­ 2d, i.e., for
an LSD surface made of12 dislocations. Because of
the relative sign between the two terms in (15), it
difficult to determine the relative magnitudes ofFc and
F̄c for the same twist anglea andb ­ 2d. However, it
is easy to see from (16) that, for small angle, strength11
dislocations lead to alower compression energy Scherk’
surface.

More importantly, in both cases (LSD and Scherk
surfaces), the integrals diverge for smallg and u. This
means that all of them must be cut off at some sh
distance2pyL , d as has been observed by Kléma
[9]. Inside the cutoff there is a defect core in which th
smectic order parameter must vanish. The “core energ
that we find here is actually a nonlinearelastic energy,
not to be confused with the usual core energy whi
arises from the order parameter vanishing at the def
and from relaxation of director modes. We shall use t
term “core energy” to refer to the elastic core, keepin
in mind that this is only part of the total core energy
The integrals (15) and (16) diverge assLldd2. Thus
the dominant contribution to the compression energy
ld ¿ L21 , d is

Fc ,
Bb4Lz

l2
d

Ly

ld
sLldd2. (17)

This has a simple interpretation: SinceLyyld is the total
number of dislocations, (17) is the sum over individu
dislocations of elastic core energieseLz with energy
per unit lengthe ­ Bb4L2. Unlike the bending energy,
this energy strongly favors small Burgers vectors.
addition, we may use (15) or (16) to calculate the leadi
interaction energy between defects. One finds that
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interaction energy is cutoff dependent through logarithm
terms. Therefore, on dimensional grounds the interacti
energy per unit length scales asBb4l22

d lnsLldd. The
cutoff dependence of the interaction is somewhat unusu
In linear elasticity, defect-defect interactions depend on
on the defect separation. Because this system is nonlin
no such decomposition can be easily made.

Since both LSD and Scherk’s structures necessar
have core regions, the energy of the core itself must a
be taken into account. A detailed analysis of the co
structure would be interesting and would allow for ex
plicit energy comparisons between the Scherk and LS
structures. In such a calculation, the core size2pyL itself
would be set so as to minimize the total energy. This
similar to the analysis of defects in lyotropic lamellar sys
tems [10]. Note that there is only one set of parallel co
regions despite the fact that there are two, perpendi
lar sets of helicoidlike structures in Scherk’s surface (1
Once the core regions are present in one set of helico
the other set no longer consists of perfect helicoids—th
are interrupted by the cores of the first set. Thus, one c
unambiguously identify a single set of dislocations in th
LSD and Scherk structures. This corroborates our e
lier claim that Scherk’s surface contains a single set
true dislocations, while the second set of (interrupted) h
licoids appears only through the geometry of the other d
fects. Presumably, energy considerations will determi
which set of helicoids become dislocations. Ata ­ py2
the energy is degenerate. However, at smallera the pre-
ceding discussion suggests that a system with a larger
fect separationld will have a lower energy. This choice
of true topological defects is consistent with the tradition
construction of grain boundaries in the TGB-A phase [4].
Finally, we note that Scherk’s surface has a nonzero co
pression energy. The true equilibrium twist grain boun
ary will adopt a geometry that is an energetic compromi
between bending and compression deformations. As a
sult, it will have a nonvanishing mean curvature, and
will have a structure that is not identical to either Scherk
surface or to any LSD surface discussed here, It wou
be interesting to consider a variationalansatzbased on
Scherk’s surface with arbitrary, independent dilations ofx
andy.

We have shown that Scherk’s surface is an anisotro
dilation of a periodic surface constructed of a sing
set of strength-2 screw dislocations. Furthermore, sin
the lamellar ground state has a preferred layer spaci
ic
on

al:
ly

ear,

ily
lso
re
-
D

is
-

re
cu-
).

ids,
ey
an
e
ar-
of
e-
e-
ne

de-

al

m-
d-
se
re-
it
’s
ld

pic
le
ce
ng,

layer compression contributes to the free energy of th
structure. This breaks the dual mapping between th
helicoids. It thus follows that Scherk’s surface is a
twist grain boundary composed of asingle setof parallel
screw dislocations and that the geometry of these defe
creates a perpendicular set of helicoidal structures
the surface. We have also demonstrated that Scher
surface has a higher energy than an LSD structure
built of 11 dislocations for small angles. In the case o
biphasic materials, the11 dislocations we consider here
would be topologically forbidden—they would become
11y2 dislocations. In this case the energetic would be
competition between Scherk’s surface and the12 LSD.
In either case, a detailed analysis of the core structu
would be required to make an unambiguous prediction
the most stable structure at larger angles, whether it
a distorted Scherk’s surface, a distorted LSD surface,
some interpolation between them.
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