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Richardson Pair Dispersion in Two-Dimensional Turbulence
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We report the first experimental study of the dispersion of pairs of passive particles, performe
a controlled two-dimensional turbulent flow, in which Kolmogorov-Kraichnan scalingEskd , k25y3

holds. The Richardsont3 law is observed, and strongly non-Gaussian behavior is obtained for
Lagrangian distributions of separations. The process is shown to be isotropic, and self-similar in
The observations, which fit well in the Kolmogorov framework, jeopardize the relevance of the L
walk approach. [S0031-9007(99)08856-0]

PACS numbers: 47.27.Qb, 05.40.Fb
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The dispersion of pairs of passive particles is a fu
damental problem in turbulence. The early empiric
proposal of Richardson [1], leading to a mean squar
separation growing as the third power of time, has lon
served as a backbone for the analysis of dispersion p
cesses in the atmosphere and the ocean [2–4]. Richard
law has further been reinterpreted in the framework
Kolmogorov theory [5,6], and the concept of effectiv
diffusivity on which it relies reassessed by Batchelor [7
Batchelor and Richardson approaches lead to the sa
scaling law for the pair mean squared separation, b
provide strongly different expressions for the underlyin
distributions [8]. Kraichnan further reanalyzed the prob
lem in the context of Lagrangian history direct interactio
(LHDI) closure approximation [9] and more recently,
reinterpretation of thet3 law, based on Lévy walks, was
proposed by Shlesingeret al. [10].

Richardson law has, nonetheless, received little expe
mental support, owing to the difficulty of performing
Lagrangian measurements in turbulent flows. Existing e
perimental data, bearing on limited statistics and weak
controlled flows, show exponents lying in the rang
2–3 [2–4]. The situation stands at a more advanced st
in numerical simulations, where the law has been co
vincingly observed in a two-dimensional inverse casca
[11]. To date, however, there is no information in suc
systems on quantities such as the Lagrangian velocity c
relations and the distributions of separations, which pl
a central role in the theory of the process [2,7–9], and f
which markedly different predictions exist [1,7,9]. Th
aim of this paper is to convey this information, obtaine
in a physical experiment.

The experimental setup we use has been described
viously [12,13]. The flow is generated in a square PV
(polyvinylchloride) cell,15 cm 3 15 cm. The bottom of
the cell is made of a thin (1 mm thick) glass plate, belo
which permanent magnets,5 3 8 3 4 mm in size, and
delivering a magnetic field, of maximum strength 0.3 T
are placed. In order to ensure two dimensionality [14
the cell is filled with two layers of NaCl solutions, 3 mm
thick, with different densities, placed in a stable configu
ration, i.e., the heavier underlying the lighter. Unde
0031-9007y99y82(14)y2872(4)$15.00
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typical operating conditions, the stratification remains un
altered for periods of times extending up to 10 min. The
interaction of an electrical current driven across the ce
with the magnetic field produces local stirring forces. The
flow is visualized by using clusters of2 mm in size latex
particles, placed at the free surface, and the velocity field
vsx, td are determined using particle image velocimetry
technique, implemented on64 3 64 grids. In the experi-
ments we describe here, the experimental conditions a
those described in [12]: the magnets are arranged so as
energy is injected, in the average, on a scale of 1.5 cm
and the excitation is permanently maintained. In suc
conditions—as reported in [12]—the flow develops, afte
a short transient, an inverse cascade with Kolmogorov
Kraichnan scaling,Eskd , k25y3. In this state, the flow
has a zero mean velocity, and the energy which is tran
ferred at large scales is burned by friction onto the bottom
plate. The flow pattern looks as a collection of unstead
recirculating zones of various sizes. In contrast with th
three-dimensional case, the statistics of the velocity incre
ments, in the inertial range, are close to Gaussian at a
scales and, consistently, the structure functions exponen
do not display any intermittency deviation [15].

Here we use such velocity fields, determined at all time
by PIV technique, to compute trajectoriesxstd of simulated
particles (which we will call simply “particles” later on);
this is achieved by integrating the following Lagrangian
equations of motion:

dxstd
dt

­ vsx, td

[wherevsx, td is the measured velocity field], for chosen
initial conditions, using a fourth order Runge-Kutta
method. Statistical averages are then computed o
ensembles of up to6 3 105 trajectories. Using large
ensembles turned out to be critical in the present contex
since, as will be shown later, the distributions of pair
separations develop large tails, and thus require large da
sets to be characterized. Following trajectories of rea
particles, although yielding a more direct experimenta
approach to the problem, would not have permitted us t
obtain such large statistics.
© 1999 The American Physical Society
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We now look at the results concerning the pair dispe
sion. Figure 1 shows the typical trajectories of one pa
of particles initially released in the system with a separ
tion of 0.03 cm. One can see that the particles stay clo
to each other for 1 or 2 s, then separate out vigorous
wandering increasingly far from each other for the ne
5 s and eventually undergo apparently uncorrelated wal
At variance with Brownian motion, the pair separation i
not a progressive process, but rather involves sequen
of quiet periods and sudden bursts.

The temporal evolution of the mean squared separatio
obtained by averaging over104 such pairs, is shown
in Fig. 2. There is a power law regime in a rang
of scales extending from 0.5 to 4 cm, which matche
reasonably well the inertial range of the inverse casca
in this particular experiment. The exponent we find
within such a range, is consistent with Richardsont3

law. This is shown in the inset of Fig. 2, which display
the compensated evolutions2yt3, and indicates that
Richardson law is reasonably well observed. By writin
the law in the form

s2 ­ g´t3 ,

where ´ is the energy transfer rate, measured indepe
dently, we obtain for the dimensionless constantg the fol-
lowing estimate:

g , 0.5 .

This value is difficult to compare with those obtained i
the three-dimensional case, owing to the large spread
available estimates [2].

We now turn to the measurement of the probabilit
density functions (PDF) of pair separations, which is
central quantity of the problem. We thus release6 3 105

particles, initially separated by a distancer0 ­ 0.03 cm
and determine, at timet, the number of pairs separated
by a distancer. We focus here on the range of time fo

FIG. 1. Typical trajectories for a pair of particles, release
at the upper right of the figure, with an initial separation o
0.03 cm; the time interval between two successive dots is 0.2
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which Richardson scaling holds, i.e., between 3 and 10
The distributions are displayed in Fig. 3.

One sees the distributions are strongly non-Gaussi
Long tails develop, indicating the presence of inten
events, consistently with our description of the wanderi
of isolated pairs. The tails of the PDFs of Fig. 3 see
to show straight lines, with different slopes, suggesti
exponential behavior. However, a different structu
appears on rescaled plots: this is shown in Fig. 3(
where the PDFs have been rescaled so as their varianc
equal to unity. We obtain a reasonably good collapse
the curves, revealing the separation process is self-sim
in time. Figure 3(b) also indicates there exists a sing
underlying distribution governing the process, and th
the tails of such a distribution look stretched exponentia
[16]. We focus here on the rescaled PDFs, which allo
us to describe the observations in a simple way. A b
fit for the tails of the PDFs of Fig. 3(b) reads

qss, td ­ spsss, td ­ A exps2asbd ,

with a , 2.6 andb ­ 0.50 6 0.10.
It is represented as a full line in Fig. 3. It applie

well for s lying between 0.4 and 20; expanding aroun
the origin shows it does not hold there. The expone
b is slightly below Richardson’s proposal [1], which i
b ­ 2y3. However, the difference between the measu
ment and the expectation is small and, owing to expe
mental uncertainty, both are consistent.b is well below
the Gaussian expectation, proposed by Batchelor [
and the value4y3, obtained in [9]. It is also worth noting
that the tails of the PDFs are not algebraic [psrd , r2m],
which jeopardizes the relevance of Lévy walks mode
such as those proposed in [10].

We have further displayed, for several timest lying in
the range where Richardson law applies, the correlat
functions of pair separation, i.e., the quantity

Rst, td ­ krstdrst 1 tdl with 2t # t # 0 .

FIG. 2. Time evolution of the mean squared separation
104 pairs of particles. Inset: The same curve divided byt3,
showing the existence of the Richardson regime.
2873
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FIG. 3. (a): Probability density functions of pair separation
for t ­ 3, 5, 7, and 9 s (from left to right), using3 3 105 pairs.
(b) Probability density functionsqss, td of rescaled separations
s ­ rys for t ­ 3, 4, 5, 6, 7, 8, and 9 s; the full line represent
the function 1.2 exps22.6s0.5d.

Despite turbulence is stationary, we do not expect he
the Lagrangian correlations to be time independent qua
tities, owing to the fact that in the Lagrangian framewor
the pair separation is a transient process. This make
crucial difference between the corresponding Euleri
quantities, which are time independent in stationa
turbulence. As time grows, we effectively find the
correlation curve broadens, and the time beyond whi
the particles decorrelate raises up. Similarly as for t
PDF, the set of curves of Fig. 4 collapses well onto
single curve, by renormalizing their maximum to unit
and using the rescaled timetyt, wheret is the time spent
since they have been released. This is shown in Fig.
This suggests that the general form for the correlati
function reads

Rst, tdyRst, 0d ­ fstytd, 2t # t # 0 ,

where f is a dimensionless function. This result ca
be obtained by applying Kolmogorov arguments t
Lagrangian statistics. There is therefore, in this proble
a single underlying correlation function, for all the
inertial domain. The corresponding physical Lagrangia
2874
s

s

re
n-

k,
s a
an
ry

ch
he
a

y

4.
on

n
o
m,

n

correlation timetc, estimated from Fig. 4, is

tc ø 0.60t ,

which underlines the persistence of correlations throug
out the separation process. At any time, the pairs
member more than half of their history, considering the
history starts once they are released.

Lagrangian velocities correlations are also central qua
tities in this problem. We consider here the followin
tensor:

Dijst, td ­ kV L
i stdV L

j st 1 tdl with 2t # t # 0 ,

whereV L
i std denotes theith component of the Lagrangian

relative velocity (that is, the separation velocity of a give
pair of particles). The results are represented in Figs. 5
and 5(b), using 5000 pairs.

Figure 5(a), obtained for a fixed time within the inertia
range, shows that the diagonal terms of the tensor
equal, and well larger than the others. Then, isotro
can be considered to hold. Moreover, the diagonal ter
evaluated att ­ 0 are found to be proportional to timet
(not shown here) and temporal self-similarity, similarl
as for the separation correlations, is observed: this

FIG. 4. (a) Lagrangian separation correlation factorRst, td
for t ­ 4, 5, 7, and 9 s (from right to left). (b) Rescaled
correlationsRst, tdyRst, 0d as a function oftyt for t ­ 4, 5, 7,
and 9 s.
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FIG. 5. (a) Lagrangian velocities correlation tensorDijst, td
for t ­ 6 s; the triangles correspond to the diagonal term an
the circles and disks to the nondiagonal ones. (b) Diagon
Lagrangian velocity correlation factor for timest ­ 3, 5, 7,
and 9 s, using rescaled units.

shown in Fig. 5(b), where one diagonal term is plotted,
rescaled units, for different times in the inertial domain
We then obtain, here again, a rather simple picture, who
main aspects can be inferred by applying Kolmogoro
arguments to Lagrangian statistics. It is worth notin
that, from the particular form of the Lagrangian velocit
correlations we obtain here, one can directly infer thet3

law from Taylor dispersion theorem. This underlines th
the origin of this law is associated with the persistence
correlations.

To summarize, we have observed Richardson’st3 law
for the dispersion of pairs of particles in our exper
ment, in a range of scale where Kolmogorov-Kraichna
scaling holds. The distributions of separations devel
stretched exponential tails, with an exponent slight
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below Richardson’s conjecture. The forms of the dis
tribution are, nonetheless, inconsistent with Batchelor
proposal. Temporal self-similarity holds, either for the
distributions or the correlation functions, and this im
plies the existence of long-range correlations given by
Lagrangian correlation time proportional to the startin
time (see Fig. 5). This memory effect probably explain
the non-Gaussian behavior of the process, and there is
need to call for Lévy flights. Proposing a theoretical de
scription of pair dispersion in turbulence is a challenge
and we hope this experiment will be helpful in the sens
that it provides a clear picture of the process, in a conce
tually simple, albeit physically realized, situation.
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