VOLUME 82, NUMBER 14 PHYSICAL REVIEW LETTERS 5 ARIL 1999

Richardson Pair Dispersion in Two-Dimensional Turbulence
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We report the first experimental study of the dispersion of pairs of passive particles, performed in
a controlled two-dimensional turbulent flow, in which Kolmogorov-Kraichnan scalifig) ~ k53
holds. The Richardsom® law is observed, and strongly non-Gaussian behavior is obtained for the
Lagrangian distributions of separations. The process is shown to be isotropic, and self-similar in time.
The observations, which fit well in the Kolmogorov framework, jeopardize the relevance of the Lévy
walk approach. [S0031-9007(99)08856-0]

PACS numbers: 47.27.Qb, 05.40.Fb

The dispersion of pairs of passive particles is a funtypical operating conditions, the stratification remains un-
damental problem in turbulence. The early empiricalaltered for periods of times extending up to 10 min. The
proposal of Richardson [1], leading to a mean squarethteraction of an electrical current driven across the cell
separation growing as the third power of time, has longwith the magnetic field produces local stirring forces. The
served as a backbone for the analysis of dispersion prdlow is visualized by using clusters af um in size latex
cesses in the atmosphere and the ocean [2—4]. Richardsparticles, placed at the free surface, and the velocity fields
law has further been reinterpreted in the framework ofv(x, r) are determined using particle image velocimetry
Kolmogorov theory [5,6], and the concept of effective technique, implemented @@ X 64 grids. In the experi-
diffusivity on which it relies reassessed by Batchelor [7].ments we describe here, the experimental conditions are
Batchelor and Richardson approaches lead to the santkose described in [12]: the magnets are arranged so as the
scaling law for the pair mean squared separation, bugnergy is injected, in the average, on a scale of 1.5 cm,
provide strongly different expressions for the underlyingand the excitation is permanently maintained. In such
distributions [8]. Kraichnan further reanalyzed the prob-conditions—as reported in [12]—the flow develops, after
lem in the context of Lagrangian history direct interactiona short transient, an inverse cascade with Kolmogorov-
(LHDI) closure approximation [9] and more recently, a Kraichnan scalingE(k) ~ k~5/3. In this state, the flow
reinterpretation of the? law, based on Lévy walks, was has a zero mean velocity, and the energy which is trans-
proposed by Shlesinget al. [10]. ferred at large scales is burned by friction onto the bottom

Richardson law has, nonetheless, received little experplate. The flow pattern looks as a collection of unsteady
mental support, owing to the difficulty of performing recirculating zones of various sizes. In contrast with the
Lagrangian measurements in turbulent flows. Existing exthree-dimensional case, the statistics of the velocity incre-
perimental data, bearing on limited statistics and weaklynents, in the inertial range, are close to Gaussian at all
controlled flows, show exponents lying in the rangescales and, consistently, the structure functions exponents
2-3 [2-4]. The situation stands at a more advanced stagio not display any intermittency deviation [15].
in numerical simulations, where the law has been con- Here we use such velocity fields, determined at all times
vincingly observed in a two-dimensional inverse cascadéy PIV technique, to compute trajectorie) of simulated
[11]. To date, however, there is no information in suchparticles (which we will call simply “particles” later on);
systems on quantities such as the Lagrangian velocity cothis is achieved by integrating the following Lagrangian
relations and the distributions of separations, which playequations of motion:

a central role in the theory of the process [2,7-9], and for dx(t)
which markedly different predictions exist [1,7,9]. The

aim of this paper is to convey this information, obtained at
in a physical experiment. [wherev(x, t) is the measured velocity field], for chosen

The experimental setup we use has been described prigitial conditions, using a fourth order Runge-Kutta
viously [12,13]. The flow is generated in a square PVCmethod. Statistical averages are then computed on
(polyvinylchloride) cell,15 cm X 15 cm. The bottom of ensembles of up t® X 10° trajectories. Using large
the cell is made of a thin (1 mm thick) glass plate, belowensembles turned out to be critical in the present context,
which permanent magnets, X 8 X 4 mm in size, and since, as will be shown later, the distributions of pair
delivering a magnetic field, of maximum strength 0.3 T,separations develop large tails, and thus require large data
are placed. In order to ensure two dimensionality [14],sets to be characterized. Following trajectories of real
the cell is filled with two layers of NaCl solutions, 3 mm particles, although yielding a more direct experimental
thick, with different densities, placed in a stable configu-approach to the problem, would not have permitted us to
ration, i.e., the heavier underlying the lighter. Underobtain such large statistics.

=v(x,1)
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We now look at the results concerning the pair disperwhich Richardson scaling holds, i.e., between 3 and 10 s.
sion. Figure 1 shows the typical trajectories of one paifThe distributions are displayed in Fig. 3.
of particles initially released in the system with a separa- One sees the distributions are strongly non-Gaussian:
tion of 0.03 cm. One can see that the particles stay closkong tails develop, indicating the presence of intense
to each other for 1 or 2 s, then separate out vigorouslygvents, consistently with our description of the wandering
wandering increasingly far from each other for the nextof isolated pairs. The tails of the PDFs of Fig. 3 seem
5 s and eventually undergo apparently uncorrelated walk$o show straight lines, with different slopes, suggesting
At variance with Brownian motion, the pair separation isexponential behavior. However, a different structure
not a progressive process, but rather involves sequenceppears on rescaled plots: this is shown in Fig. 3(b),
of quiet periods and sudden bursts. where the PDFs have been rescaled so as their variance is
The temporal evolution of the mean squared separatiorgqual to unity. We obtain a reasonably good collapse of
obtained by averaging over0* such pairs, is shown the curves, revealing the separation process is self-similar
in Fig. 2. There is a power law regime in a rangein time. Figure 3(b) also indicates there exists a single
of scales extending from 0.5 to 4 cm, which matchesunderlying distribution governing the process, and that
reasonably well the inertial range of the inverse cascadthe tails of such a distribution look stretched exponentials
in this particular experiment. The exponent we find,[16]. We focus here on the rescaled PDFs, which allow
within such a range, is consistent with Richardsdn us to describe the observations in a simple way. A best
law. This is shown in the inset of Fig. 2, which displays fit for the tails of the PDFs of Fig. 3(b) reads
the compensated evolutionr?/t3, and indicates that
Richardson law is reasonably well observed. By writing
the law in the form with @« ~ 2.6 andB = 0.50 = 0.10.
It is represented as a full line in Fig. 3. It applies

where ¢ is the energy transfer rate, measured indepenwe” for s lying between 0.4 and 20; expanding around

. : . " the origin shows it does not hold there. The exponent
ﬁ)?/vnitr%, :’S?ir?]tgg_n for the dimensionless constate fol B is slightly below Richardson’s proposal [1], which is

B = 2/3. However, the difference between the measure-
g~ 05. ment and the expectation is small and, owing to experi-
This value is difficult to compare with those obtained in mental uncertainty, both are consistens. is well below
the three-dimensional case, owing to the large spread dhe Gaussian expectation, proposed by Batchelor [7],
available estimates [2]. and the valuel/3, obtained in [9]. It is also worth noting

We now turn to the measurement of the probabilitythat the tails of the PDFs are not algebragi¢{) ~ r~#],
density functions (PDF) of pair separations, which is awhich jeopardizes the relevance of Lévy walks models,
central quantity of the problem. We thus releésg 10°  such as those proposed in [10].
particles, initially separated by a distangg= 0.03 cm We have further displayed, for several timelying in
and determine, at time, the number of pairs separated the range where Richardson law applies, the correlation
by a distance.. We focus here on the range of time for functions of pair separation, i.e., the quantity

R, 7)={@®)r(t + 7)) with —tr =7 =0.

q(s,1) = op(os,t) = Aexp(—asP),

0'2 = g8t3 s
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FIG. 1. Typical trajectories for a pair of particles, releasedFIG. 2. Time evolution of the mean squared separation of
at the upper right of the figure, with an initial separation of 10* pairs of particles. Inset: The same curve dividedby
0.03 cm; the time interval between two successive dots is 0.2 showing the existence of the Richardson regime.
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10! ———F————————————1——— correlation timer,., estimated from Fig. 4, is
: @) 7o = 0.60t,
F which underlines the persistence of correlations through-
- out the separation process. At any time, the pairs re-
i i member more than half of their history, considering their
history starts once they are released.
s Lagrangian velocities correlations are also central quan-
tities in this problem. We consider here the following
10'4 ;r w e o %d mom . tensor:
105 L NI Dyj(1,7) = (VE@)VEG + 7)) with —r =7 =0,
0 2 r (cm) 10 whereV/(r) denotes théth component of the Lagrangian
relative velocity (that is, the separation velocity of a given
10! /Fr—r———+———— 71— pair of particles). The results are represented in Figs. 5(a)
. (b) ] and 5(b), using 5000 pairs.
10 E Figure 5(a), obtained for a fixed time within the inertial
s ] range, shows that the diagonal terms of the tensor are
10 E equal, and well larger than the others. Then, isotropy
2 102 ] can be considered to hold. Moreover, the diagonal terms
o evaluated at = 0 are found to be proportional to tinre
1073 ] (not shown here) and temporal self-similarity, similarly
as for the separation correlations, is observed: this is
10°* .
-5 X ] T T
10 o o 1 : T T T T 35:
5 (a) .8‘
s=r1/0 0.8 |- ot
FIG. 3. (a): Probability density functions of pair separations § L ;°°‘ ¢
fort = 3,5, 7, and 9 s (from left to right), usirg) X 10° pairs. & 0.6 oot 4 ]
(b) Probability density functiong(s, r) of rescaled separations ~ - . %0 8
s=r/ofort =3,4,56,7, 8 and9 s; the full line represents & ¢4 [ 0o’ A s ]
the function 1.2 exp-2.65"2). Z - o ‘.‘ N
. . . 0.2 L .o'.. o°° a * AAA 1
Despite turbulence is stationary, we do not expect here i ' °°o°° Ata08
the Lagrangian correlations to be time independent quan- 0 L ,,,_,.,..I--;;;;o?oﬁ"%nf‘? o
tities, owing to the fact that in the Lagrangian framework, -10 -8 -6 -4 2 0
the pair separation is a transient process. This makes a T
crucial difference between the corresponding Eulerian
quantities, which are time independent in stationary 1 , . , .
turbulence. As time grows, we effectively find the (b)
correlation curve broadens, and the time beyond which 08 N
the particles decorrelate raises up. Similarly as for the
PDF, the set of curves of Fig. 4 collapses well onto a g 0.6 i
single curve, by renormalizing their maximum to unity &
and using the rescaled time'¢, wherer is the time spent f\.: 04 L _
since they have been released. This is shown in Fig. 4. &
This suggests that the general form for the correlation o2 | #f |
function reads ' Y oad X
* ¢, %
RG.T/R(,0) = f(r/1), —1=71=0, o ddimmide} » »
where f is a dimensionless function. This result can -1 -0.8 0.6 T/t 0.4 0.2 0

be Obta.med b.y _applylng Kolmogorov _arggments toFIG. 4. (a) Lagrangian separation correlation facry, )
Lagrangian statistics. There is therefore, in this problemy ™ Z— 4“5 7 20d 95 (from right to left). (b) Rescaled

a single underlying correlation function, for all the correlationsk(z, 7)/R(t,0) as a function ofr/¢ for t = 4, 5, 7,
inertial domain. The corresponding physical Lagrangiarand 9 s.
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30 — — below Richardson’s conjecture. The forms of the dis-
tribution are, nonetheless, inconsistent with Batchelor’s
s | @ B proposal. Temporal self-similarity holds, either for the
2 distributions or the correlation functions, and this im-
© 20 - h plies the existence of long-range correlations given by a
e 15 f . Lagrangian correlation time proportional to the starting
- . time (see Fig. 5). This memory effect probably explains
A ok L the non-Gaussian behavior of the process, and there is no
: need to call for Lévy flights. Proposing a theoretical de-
5+ A4 o] scription of pair dispersion in turbulence is a challenge,
. geeer’ o and we hope this experiment will be helpful in the sense
0 “'"'!“"'””}:22!§°“oo°° ] that it provides a clear picture of the process, in a concep-
I — tually simple, albeit physically realized, situation.
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