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Black Hole Entropy from Conformal Field Theory in Any Dimension
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Restricted to a black hole horizon, the “gauge” algebra of surface deformations in general relativity
contains a Virasoro subalgebra with a calculable central charge. The fields in any quantum theory
of gravity must transform accordingly, i.e., they must admit a conformal field theory description.
Applying Cardy’s formula for the asymptotic density of states, | use this result to derive the Bekenstein-
Hawking entropy. This method is universal—it holds for any black hole, and requires no details of
quantum gravity—but it is also explicitly statistical mechanical, based on counting microscopic states.
[S0031-9007(99)08779-7]

PACS numbers: 04.70.Dy, 04.60.Ds, 11.25.Hf

Since the discovery that black holes behave as thermaially consisting of deformations of ther plane that leave
objects, an outstanding open question has been whethttte horizon fixed. The analysis of Brown and Henneaux
black hole thermodynamics has a “statistical mechanicaltan be extended to find the central charge of this alge-
description in terms of microscopic states. Until recently,bra. | show that the Cardy formula then yields the correct
we had no convincing model of microscopic black holeBekenstein-Hawking entropy, independent of the details
states. Today, we have a plethora of possibilities, fromof the black hole.

D-brane states in string theory [1] to spin network Metric and boundary terms-Let us start with a
states in loop quantum gravity [2]. A fundamental issuegeneral black-hole-like metric in spacetime dimensions,

remains, however, perhaps best described as the problem 2= CN24i + fAdr + NTdr)?
of universality [3]. The Bekenstein-Hawking entropy can ds ! fdr f)
be computed entirely within the framework of quantum + oop(dx® + Ndit) (dxP + NPdr), (1)

field theory in a fixed curved background. It is hard toiih 4 lapse functionV that vanishes at a horizon= r
see how such a calculation could “know” the details of3nq pehaves near= r. as

a microscopic gravitational theory. Rather, it seems more 5 N 5
likely that some unknown universal mechanism foraeg N = h(x*)(r = rs) + O(r = ry)7, @
suitable quantum theory to give the standard result. a =2
. > . . n“d,N /B,
A major step toward finding a universal mechanism was 0 . _
taken by Strominger [4], who reanalyzed the + 1)- w_heren is the unit normal tor = r+ On a constant
dimensional black hole [5] using conformal field the- slice. For a stationary black hole with coordinates such

ory methods. Brown and Henneaux had shown that théhatNr =08 ;15 tne inverse Hawking temperature, and

asymptotic symmetry algebra for this solution was a'° f;’vri'ﬁtt?g;fnt € oeilszgnboun dary—or, more precisely

Virasoro algebra, implying that any theory of micro- r= T+ SO —h )
g Pying y y a surface at which certain fields are fixed, and at which

scopic states should be a conformal field theory [6].b q heref ded iational
Strominger observed that the Cardy formula [7] for thePoUndary terms are therefore needed In a variationa
principle [9]—and will assume that the metric approaches

asymptotic growth of states could thus be used to com ) .
ymp g at of a standard, momentarily stationary, black hole near

pute the entropy, and that the result agreed with the usug|’ bound itable falloff diti a
Bekenstein-Hawking expression. This analysis was sub!!'S Poundary. Suitable falloff conditions nefir= 0 are

sequently extended to a number of higher-dimensional _ Bh . 5

black hole with near-horizon geometries resembling that f= EN + o), N = oW,

of the (2 + 1)-dimensional black hole (see [8] for a par- Tap = O(1), N = 0(1),

tial list of references). 3)
But while many black holes have the appropriate near- (3 = N"9,)8ur = O(N)guv,

horizon geometry for such an analysis, others do not. VoNg + VgN, = O(N).

Moreover, the Virasoro algebra of Brown and Henneaux __ ] ) )
is an algebra of asymptotic symmetries at spatial infinity,The last condition is essentially the requirement that

while black hole entropy should arguably be a more locafngular velocity _be constant on t_he horizon. The extrinsic
property of horizons. curvature of a slice of constant time then behaves as

In this paper, | generalize Strominger's approach byk,, = 0(1/N?), Kar = O(1/N), Ko = O(1)
looking at the symmetries of the horizon of an arbitrary
black hole. The relevant algebra of surface deformations 4)
contains a physically important Virasoro algebra, essenaear the horizon. [Note th@.N = O(1/N).]
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In the Hamiltonian [Arnowitt-Deser-Misner (ADM)] 1 ] Jn2 ac b _ _ab c

formulation of general relativity, the group of “gauge” 167G e (on 7n)

symmetries is the surface deformation group, generated, V.5 v.2s 4 ogasat — Erpabg

by the quantlty (f 8ab — cf gab) f T, f ™ gab}’
(7)

wherew® = f. /o (K — g®K) is the momentum con-
jugate tog,,. To have a well-defined symmetry genera-
tor, we must add a boundary term Hj £] to cancel the
where {H,, H,} are the Hamiltonian and momentum Vvariation (7). Note that the falloff conditions (3) and (4)
constraints. The parameted* are almost, but not necessitate that

H[£] = f d"'xé* 3, + boundary terms (5)
3

quite, identical to parameterg* labeling infinitesi- & = O0(N?), & = 0o(N), & =0(), (8
mal spacetime diffeomorphisms; the two are relatedsince otherwise surface deformations would change the
by [10] metric neatNV = 0.

. . Itis straightforward to check that a term

¢ =N¢', 9= ¢+ NUE. (6) N N

J[E] = 3G G d"_zx{n“Vaftx/EJr §hry

As usual, the variation of the “volume piece” &f[£] R
contains surface terms at the boundary—in this case, the + n,&°KJo} 9)
horizon—which take the standard form [6] | added to the generator (5) yields a variation

S(H[E] + J[E]) = bulk terms+ % f d"*2x<5nra,$f + %E’SK,, + 5n,§’1<>ﬁ. (10)

In contrast to more familiar variational problems, the nor- WhereK[gl, & ] is a possible central term in the algebra.
mal n* need not be fixed at the boundary, But” can be  Here {§1,§2}5D is the Lie bracket for the algebra of
computed from the requirement thétg,,n?n?) = 0. If  surface deformations, given by [10]

we now restrict our variations to those satisfyidg§/f =

O(N) and8K,,/K,. = O(N), the boundary term in (10) _ 2 2an 3t
vanishes, as required. 6. &lp 9a62 = £30a¢)
A useful check of Eq. (9) can be obtained by special- (1,68, = €00, 88 — Eha, ¢l
izing to variationso H that are themselves surface defor- abi Bt 2f Rra 3t
mations. LetL[£] = H[£] + J[£] be the full generator + 87606 — Haé).  (12)

of surface deformations. Then the deformationZ€]

should itself be generated i £]: that is, it should be The equality (11) will be used in the next section to

given by the Poisson bracket [6] compute the central charge. For now, let us note that
21 frr2 AN o s 2 2 2 when evaluated at a stationary black hole metric in

dpLler] = L&) Llan] = L&, Slso] + KLen &), gandard coordinates, for whick,, = 0 = Kap, the

(11) | boundary term in (10) becomes

1

- 1 Zr >t Zr Zt 1 Zra &t 2t
“ore | S EeE - aEDe i+ 4ol d - nd). (19

!

If we assume, as suggested by Eq. (12), tﬁgt@f{ = We now focus our attention on a particular subalgebra
&50,&1, then this expression is antisymmetric §n and  of the surface deformation algebra with the following
&,, as required by Eq. (11). Our boundary terms are thughree properties:
consistent with the interpretation 6f¢] as the generator (i) The surface deformations are restricted to ihe
of surface deformations in the presence of a horizon. plane. This specialization is inspired by the path integral

The Virasoro algebra—In the preceding section, we approach to black hole thermodynamics, in which it is
considered general variations of a general black-hole-likglear that the -+ plane has the central role in determining
metric. Let us now specialize to the case of an axiallythe entropy [11].
symmetric black hole, with an adapted angular coordinate (2) The diffeomorphism parametg’ = &'/N “lives
¢ such thatdgg,, = 0. For simplicity, | will assume on the horizon,” in the sense that near r, it depends
that only the componem¥ ¢ of the shift vector is nonzero; on ¢ and r only in the combinationsr — r., where
the higher-dimensional generalization to more than ongdr = Ndr. in the time slicing such thawv, = 0. For
rotational Killing vector is straightforward. the Kerr black holes — r. is essentially the standard
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Eddington-Finkelstein retarded time, up to corrections of pq__A T
orderr — ry. JL&p] 167G B 0 (22)

(3) The lapse functiov? is fixed at the horizon. The on shell. Hence
horizon is defined by the conditioN?> = 0, while our A T2
boundary term (9) is written at = r.; this condition K[ém &] = —— B in(n2 - —> Om+n,  (23)
ensures that the boundary remains at the horizon. 87G T B?

Condition 1 and Eq. (6) imply that the diffeomorphism the correct form for the central term of a Virasoro algebra
parameteg? has the form with central charge

é
¢ = -Nvg = =T (14) e A B (24)
. . 207G T
Condition 2 requires that f [The n dependence in (23) can be made into the usual
9, = —'ﬁ 9,&! (15)  n(n* — 1) by shifting Lo by a constant. This alters the

eigenvalue (22), but also changes the “effective central
charge” so that the entropy (26) is unaffected.]

Counting states—The models we are investigating are
not two dimensional. Nevertheless, the results above
imply that the quantum states that characterize a black

P h hole horizon must transform under a Virasoro algebra
6g" =0= N2 (0, — N%9g)é" + N4 £ (16)  with central charge (24). This is sufficient to permit the
This structure suggests that we split our diffeomorphism&!S€ Of powerful methods from conformal field theory to

into left-moving modes¢’, for which 9,&' = Qa,éf, ~ countstates. . .
and right-moving modeg", for which 8, &' = —Q.94&' In particular, a conformal field theory with a central
’ t 1

where O = —N%(r;) is the angular velocity of the chargec_ has a density of statep(Lo) that grows
horizon. Then asymptotically as

4N? . etr L
&= o, F=o (17) log p(Lo) ~ 2#,/%, (25)

e — rog i t 1 ) .
N(:ted tt&att. ¢ _ (f/{[\[t)hf hIS,' like &', a function of wherec.sr is an “effective central charge” [7,12]. If the
re\i/r ed ume th e elt ()trlzon.t the left . d spectrum satisfies reasonable, although not universal, con-
tthe (r:]an. use these results to write the lef-moving Modeg;tiong [8]—notably that the ground state is an eigenstate
at the horizon as ) of Ly with eigenvalue zero—then.s = ¢. Following
& = 4l exp{zmn (t — re + Q_‘qb)}, (18)  Strominger [4], let us assume these conditions are satis-

at r = ry, allowing us to write radial derivatives at
the horizon in terms of time derivatives. To impose
condition 3, we can examine diffeomorphisms gf =
—1/N?. With initial coordinates chosen so thait = 0,
we find that

T fied in quantum gravity. Then from Egs. (22) and (24),
where T is an arbitrary period. (A possible choice is A
T = B, which matches the periodicity of the Euclidean logp(Ly) ~ —, (26)
black hole, but as we shall seE,drops out of the final 4G

expression for the entropy.) The normalization (18) hagecovering the standard Bekenstein-Hawking entropy. In

been fixed by the requirement that the surface deformatiogieneral, right-moving modes may make an additional
algebra (12) reproduce the Disf algebra contribution to the density of states, but it is clear from

{g:msg:n}tSD =it — m&, . (19) Eq. (17) that the central charge for those modes vanishes,

_ . so Eqg. (26) gives the full entropy.
Substituting the modes (18) into the boundary term (13), gq questions and two answersThe analysis above

we obtain strongly suggests that any quantum description of black
5z L[Z,] = bulk terms+ A B 38,1, (20) hole horizon states must yield the standard Bekenstein-
" 87G T Hawking entropy. Here, | will briefly address some de-

where A is the area of the boundary at=r.. We tajls of this analysis and raise several remaining questions.
can now use a trick of Brown and Henneaux to evaluate (1) What is the significance of the boundary condition
the central termK[¢&,, &,]. When evaluated on shell, y = 0?: For a stationary black hole, in the coordinates
the Hamiltonian and momentum constraints vanish, sgyr = o, f ~ 1/N that we used to evaluate the central
H[¢] = 0. Equation (11) thus reduces to a collection ofcharge, this is the condition for an apparent horizon. In
boundary terms, other coordinates, however, the apparent horizon condi-
A B .35 a2 2 P tion is considerably more complicated. An investigation
87G T " Omn = JU&m Enlsp] + Kl&m, &n] of possible alternative boundary conditions might help an-
i(n — m)J[Ensn] + K[&m, &n]. swer the question of what kind of “horizon” is needed for
black hole entropy. It may also be possible to extend this
(21) analysis to more general gravitational actions along the
From Eq. (9), it is easily checked that lines of Ref. [13].
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(2) The Cardy formula (25) comes from two- the ground state. The boundary conditions of this paper
dimensional conformal field theory. What are the twoare those of a specific black hole, and depend on the hori-
relevant dimensions here?: The Cardy formula requires aon metric. This difference is hard to avoid, since without
modular invariant partition function of the form the extra length scale provided by a cosmological constant

Z = Trexpi(J¢ + E1)}, (27)  itis difficult to write down a dimensionless central charge

where J and E are conserved charges associated WitHndependent of the boundary values of the metric. [One

translations ing and:. For an axially symmetric black could, of course, choosE to be proportional tod/g in

hole, ¢ and are determined by the two Killing vectors, Eq. (24), but there seems to be little physical justification
for such a choice.]

and modular invariance is a consequence of diffeomor- ; . .
Co . ) S There is, however, a plausible candidate for the ground
phism invariance. The two “preferred” directions are thus

picked out by the symmetries. For a black hole in mor state in the model developed here: the extremal black

than four dimensions with more than one axial KiIIingehOIe’ which is typically characterized by a lapse function

vector, the left-moving modes are determined by the Conpehaving asv? ~ (r — r.)* near the horizon. Such a
RS e gt i o« y configuration satisfies the boundary conditions assumed in
dition 9;¢' = —N“9,¢7, so the shift vectoN* picks out . .
. this paper, but in contrast to the nonextremal result (22),
an angular direction.

(3) What specific degrees of freedom account for theEq' (9) now gives/[£,] = 0, implying that at least the

. . A . classical contribution td., vanishes.
7- 1
entropy (.26)" Like Stromlngers_ denva’qon [4], this | would like to thank Rob Meyers for pointing out some
computation does not address this question, but rather

. ) . .errors in the first version of this paper. This work was
uses symmetry to derive the behavior of any microscopic

theory of horizon states. This is good and bad: goo

because it provides a universal explanation of black hol

statistical mechanics, bad because it offers little further
insight into quantum gravity.

One possible picture of the microscopic degrees of free-
dom comes from considering the dimensional reduction of
Einstein gravity to the--¢ plane near a horizon. The re-
sulting action contains a scalar field, essentiglly, that
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