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Black Hole Entropy from Conformal Field Theory in Any Dimension
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Restricted to a black hole horizon, the “gauge” algebra of surface deformations in general relativ
contains a Virasoro subalgebra with a calculable central charge. The fields in any quantum the
of gravity must transform accordingly, i.e., they must admit a conformal field theory descriptio
Applying Cardy’s formula for the asymptotic density of states, I use this result to derive the Bekenste
Hawking entropy. This method is universal—it holds for any black hole, and requires no details
quantum gravity—but it is also explicitly statistical mechanical, based on counting microscopic stat
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Since the discovery that black holes behave as therm
objects, an outstanding open question has been whe
black hole thermodynamics has a “statistical mechanic
description in terms of microscopic states. Until recent
we had no convincing model of microscopic black ho
states. Today, we have a plethora of possibilities, fro
D-brane states in string theory [1] to spin networ
states in loop quantum gravity [2]. A fundamental issu
remains, however, perhaps best described as the prob
of universality [3]. The Bekenstein-Hawking entropy ca
be computed entirely within the framework of quantu
field theory in a fixed curved background. It is hard t
see how such a calculation could “know” the details
a microscopic gravitational theory. Rather, it seems mo
likely that some unknown universal mechanism forcesany
suitable quantum theory to give the standard result.

A major step toward finding a universal mechanism w
taken by Strominger [4], who reanalyzed thes2 1 1d-
dimensional black hole [5] using conformal field the
ory methods. Brown and Henneaux had shown that
asymptotic symmetry algebra for this solution was
Virasoro algebra, implying that any theory of micro
scopic states should be a conformal field theory [6
Strominger observed that the Cardy formula [7] for th
asymptotic growth of states could thus be used to co
pute the entropy, and that the result agreed with the us
Bekenstein-Hawking expression. This analysis was su
sequently extended to a number of higher-dimensio
black hole with near-horizon geometries resembling th
of the s2 1 1d-dimensional black hole (see [8] for a par
tial list of references).

But while many black holes have the appropriate ne
horizon geometry for such an analysis, others do n
Moreover, the Virasoro algebra of Brown and Hennea
is an algebra of asymptotic symmetries at spatial infini
while black hole entropy should arguably be a more loc
property of horizons.

In this paper, I generalize Strominger’s approach
looking at the symmetries of the horizon of an arbitra
black hole. The relevant algebra of surface deformatio
contains a physically important Virasoro algebra, esse
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tially consisting of deformations of ther-t plane that leave
the horizon fixed. The analysis of Brown and Henneau
can be extended to find the central charge of this alg
bra. I show that the Cardy formula then yields the corre
Bekenstein-Hawking entropy, independent of the deta
of the black hole.

Metric and boundary terms.—Let us start with a
general black-hole-like metric inn spacetime dimensions,

ds2 ­ 2N2dt2 1 f2sdr 1 Nrdtd2

1 sabsdxa 1 Nadtd sdxb 1 Nbdtd , (1)

with a lapse functionN that vanishes at a horizonr ­ r1

and behaves nearr ­ r1 as

N2 ­ hsxad sr 2 r1d 1 Osr 2 r1d2,

na≠aN ­ 2pyb ,
(2)

where na is the unit normal tor ­ r1 on a constantt
slice. For a stationary black hole with coordinates suc
that Nr ­ 0, b is the inverse Hawking temperature, and
is constant on the horizon.

I will treat r ­ r1 as a boundary—or, more precisely
a surface at which certain fields are fixed, and at whic
boundary terms are therefore needed in a variation
principle [9]—and will assume that the metric approache
that of a standard, momentarily stationary, black hole ne
this boundary. Suitable falloff conditions nearN ­ 0 are

f ­
bh
4p

N21 1 Os1d, Nr ­ OsN2d ,

sab ­ Os1d, Na ­ Os1d ,

s≠t 2 Nr≠rdgmn ­ OsNdgmn ,
(3)

=aNb 1 =bNa ­ OsNd .

The last condition is essentially the requirement th
angular velocity be constant on the horizon. The extrins
curvature of a slice of constant time then behaves as

Krr ­ Os1yN3d, Kar ­ Os1yNd, Kab ­ Os1d

(4)

near the horizon. [Note that≠rN ­ Os1yNd.]
© 1999 The American Physical Society
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In the Hamiltonian [Arnowitt-Deser-Misner (ADM)]
formulation of general relativity, the group of “gauge
symmetries is the surface deformation group, genera
by the quantity

Hfĵg ­
Z

S

dn21xĵmHm 1 boundary terms, (5)

where hHt , Haj are the Hamiltonian and momentum
constraints. The parameterŝjm are almost, but not
quite, identical to parametersjm labeling infinitesi-
mal spacetime diffeomorphisms; the two are relat
by [10]

ĵt ­ Njt , ĵa ­ ja 1 Najt . (6)

As usual, the variation of the “volume piece” ofHfĵg
contains surface terms at the boundary—in this case,
horizon—which take the standard form [6]
”
ted

ed

the

2
1

16pG

Z
r­r1

dn22xh
p

s ssacnb 2 sabncd

3 sĵt=cdgab 2 =cĵtdgabd 1 2ĵadpr
a 2 ĵrpabdgabj ,

(7)
wherepab ­ f

p
s sKab 2 gabKd is the momentum con

jugate togab . To have a well-defined symmetry gener
tor, we must add a boundary term toHfĵg to cancel the
variation (7). Note that the falloff conditions (3) and (
necessitate that

ĵr ­ OsN2d, ĵt ­ OsNd, ĵa ­ Os1d , (8)
since otherwise surface deformations would change
metric nearN ­ 0.

It is straightforward to check that a term

Jfĵg ­
1

8pG

Z
r­r1

dn22xhna=aĵtps 1 ĵapr
a

1 naĵaK
p

s j (9)
added to the generator (5) yields a variation
dsHfĵg 1 Jfĵgd ­ bulk terms1
1

8pG

Z
r­r1

dn22x

µ
dnr≠r ĵt 1

1
f

ĵrdKrr 1 dnrĵrK

∂
p

s . (10)
.

at
in
In contrast to more familiar variational problems, the no
mal na need not be fixed at the boundary, butdnr can be
computed from the requirement thatdsgabnanbd ­ 0. If
we now restrict our variations to those satisfyingdfyf ­
OsNd anddKrryKrr ­ OsNd, the boundary term in (10)
vanishes, as required.

A useful check of Eq. (9) can be obtained by specia
izing to variationsdH that are themselves surface defo
mations. LetLfĵg ­ Hfĵg 1 Jfĵg be the full generator
of surface deformations. Then the deformation ofLfĵg
should itself be generated byLfĵg: that is, it should be
given by the Poisson bracket [6]

dĵ2
Lfĵ1g ­ hLfĵ2g, Lfĵ1gj ­ Lfhĵ1, ĵ2jSDg 1 Kfĵ1, ĵ2g ,

(11)
r-

l-
r-

whereKfĵ1, ĵ2g is a possible central term in the algebra
Here hĵ1, ĵ2jSD is the Lie bracket for the algebra of
surface deformations, given by [10]

hĵ1, ĵ2jt
SD ­ ĵa

1 ≠aĵt
2 2 ĵa

2 ≠aĵt
1

hĵ1, ĵ2ja
SD ­ ĵb

1 ≠bĵa
2 2 ĵb

2 ≠bĵa
1

1 gabsĵt
1≠b ĵt

2 2 ĵt
2≠bĵt

1d . (12)

The equality (11) will be used in the next section to
compute the central charge. For now, let us note th
when evaluated at a stationary black hole metric
standard coordinates, for whichKrr ­ 0 ­ Kab, the
boundary term in (10) becomes
2
1

8pG

Z
r­r1

dn22x
p

s

Ω
1

f2 f≠rs fĵr
2 d≠r ĵt

1 2 ≠r s fĵr
1 d≠r ĵt

2g 1
1
f

≠rfĵr
1 ≠r ĵt

2 2 dĵ2
ĵt

1g
æ

. (13)
l
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If we assume, as suggested by Eq. (12), thatdĵ2
ĵ

t
1 ­

ĵ
a
2 ≠aĵ

t
1, then this expression is antisymmetric inĵ1 and

ĵ2, as required by Eq. (11). Our boundary terms are th
consistent with the interpretation ofLfĵg as the generator
of surface deformations in the presence of a horizon.

The Virasoro algebra.—In the preceding section, we
considered general variations of a general black-hole-li
metric. Let us now specialize to the case of an axia
symmetric black hole, with an adapted angular coordina
f such that≠fgmn ­ 0. For simplicity, I will assume
that only the componentNf of the shift vector is nonzero;
the higher-dimensional generalization to more than o
rotational Killing vector is straightforward.
us

ke
ly
te
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We now focus our attention on a particular subalgebr
of the surface deformation algebra with the following
three properties:

(i) The surface deformations are restricted to ther-t
plane. This specialization is inspired by the path integr
approach to black hole thermodynamics, in which it i
clear that ther-t plane has the central role in determining
the entropy [11].

(2) The diffeomorphism parameterjt ­ ĵtyN “lives
on the horizon,” in the sense that nearr ­ r1 it depends
on t and r only in the combinationt 2 rp, where
fdr ­ Ndrp in the time slicing such thatNr ­ 0. For
the Kerr black hole,t 2 rp is essentially the standard
2829
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Eddington-Finkelstein retarded time, up to corrections o
orderr 2 r1.

(3) The lapse functionN2 is fixed at the horizon. The
horizon is defined by the conditionN2 ­ 0, while our
boundary term (9) is written atr ­ r1; this condition
ensures that the boundary remains at the horizon.

Condition 1 and Eq. (6) imply that the diffeomorphism
parameterjf has the form

jf ­ 2Nfjt ­ 2
Nf

N
ĵt . (14)

Condition 2 requires that

≠rjt ­ 2
f
N

≠tj
t (15)

at r ­ r1, allowing us to write radial derivatives at
the horizon in terms of time derivatives. To impose
condition 3, we can examine diffeomorphisms ofgtt ­
21yN2. With initial coordinates chosen so thatNr ­ 0,
we find that

dgtt ­ 0 ­
2

N2 s≠t 2 Nf≠fdjt 1
h

N4 jr . (16)

This structure suggests that we split our diffeomorphism
into left-moving modesjt , for which ≠tj

t ­ V≠fjt ,
and right-moving modes̃jt , for which ≠tj̃

t ­ 2V≠fj̃t ,
where V ­ 2Nfsr1d is the angular velocity of the
horizon. Then

jr ­ 2
4N2

h
≠tj

t , j̃r ­ 0 . (17)

Note that jrp ­ s fyNdjr is, like jt, a function of
retarded timet 2 rp at the horizon.

We can use these results to write the left-moving mod
at the horizon as

jt
n ­

T
4p

exp

Ω
2pin

T
st 2 rp 1 V21fd

æ
, (18)

where T is an arbitrary period. (A possible choice is
T ­ b, which matches the periodicity of the Euclidean
black hole, but as we shall see,T drops out of the final
expression for the entropy.) The normalization (18) ha
been fixed by the requirement that the surface deformati
algebra (12) reproduce the DiffS1 algebra

hĵm, ĵnjt
SD ­ isn 2 mdĵt

m1n . (19)

Substituting the modes (18) into the boundary term (13
we obtain

dĵm
Lfĵng ­ bulk terms1

A
8pG

b

T
in3dm1n , (20)

where A is the area of the boundary atr ­ r1. We
can now use a trick of Brown and Henneaux to evalua
the central termKfĵm, ĵng. When evaluated on shell,
the Hamiltonian and momentum constraints vanish, s
Hfĵg ­ 0. Equation (11) thus reduces to a collection o
boundary terms,

A
8pG

b

T
in3dm1n ­ Jfhĵm, ĵnjSDg 1 Kfĵm, ĵng

­ isn 2 mdJfĵm1ng 1 Kfĵm, ĵng .

(21)

From Eq. (9), it is easily checked that
2830
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Jfĵpg ­
A

16pG
T
b

dp0 (22)

on shell. Hence

Kfĵm, ĵng ­
A

8pG
b

T
in

µ
n2 2

T2

b2

∂
dm1n , (23)

the correct form for the central term of a Virasoro algeb
with central charge

c ­
3A

2pG
b

T
. (24)

[The n dependence in (23) can be made into the usu
nsn2 2 1d by shifting L0 by a constant. This alters the
eigenvalue (22), but also changes the “effective cent
charge” so that the entropy (26) is unaffected.]

Counting states.—The models we are investigating ar
not two dimensional. Nevertheless, the results abo
imply that the quantum states that characterize a bla
hole horizon must transform under a Virasoro algeb
with central charge (24). This is sufficient to permit th
use of powerful methods from conformal field theory t
count states.

In particular, a conformal field theory with a centra
charge c has a density of statesrsL0d that grows
asymptotically as

logrsL0d , 2p

s
ceffL0

6
, (25)

whereceff is an “effective central charge” [7,12]. If the
spectrum satisfies reasonable, although not universal, c
ditions [8]—notably that the ground state is an eigensta
of L0 with eigenvalue zero—thenceff ­ c. Following
Strominger [4], let us assume these conditions are sa
fied in quantum gravity. Then from Eqs. (22) and (24),

logrsL0d ,
A

4G
, (26)

recovering the standard Bekenstein-Hawking entropy.
general, right-moving modes may make an addition
contribution to the density of states, but it is clear from
Eq. (17) that the central charge for those modes vanish
so Eq. (26) gives the full entropy.

Four questions and two answers.—The analysis above
strongly suggests that any quantum description of bla
hole horizon states must yield the standard Bekenste
Hawking entropy. Here, I will briefly address some de
tails of this analysis and raise several remaining questio

(1) What is the significance of the boundary conditio
N ­ 0?: For a stationary black hole, in the coordinate
Nr ­ 0, f , 1yN that we used to evaluate the centra
charge, this is the condition for an apparent horizon.
other coordinates, however, the apparent horizon con
tion is considerably more complicated. An investigatio
of possible alternative boundary conditions might help a
swer the question of what kind of “horizon” is needed fo
black hole entropy. It may also be possible to extend th
analysis to more general gravitational actions along t
lines of Ref. [13].
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(2) The Cardy formula (25) comes from two-
dimensional conformal field theory. What are the tw
relevant dimensions here?: The Cardy formula requires
modular invariant partition function of the form

Z ­ Tr exphisJf 1 Etdj , (27)

where J and E are conserved charges associated wi
translations inf and t. For an axially symmetric black
hole, f and t are determined by the two Killing vectors,
and modular invariance is a consequence of diffeomo
phism invariance. The two “preferred” directions are thu
picked out by the symmetries. For a black hole in mo
than four dimensions with more than one axial Killing
vector, the left-moving modes are determined by the co
dition ≠tj

t ­ 2Na≠ajt , so the shift vectorNa picks out
an angular direction.

(3) What specific degrees of freedom account for th
entropy (26)?: Like Strominger’s derivation [4], this
computation does not address this question, but rath
uses symmetry to derive the behavior of any microscop
theory of horizon states. This is good and bad: goo
because it provides a universal explanation of black ho
statistical mechanics, bad because it offers little furth
insight into quantum gravity.

One possible picture of the microscopic degrees of fre
dom comes from considering the dimensional reduction
Einstein gravity to ther-t plane near a horizon. The re-
sulting action contains a scalar field, essentially

p
s, that

couples to the two-dimensional scalar curvatures2dR. The
action is not conformally invariant, but we know from
the c theorem [14] that it must flow to a conformal field
theory—presumably a Liouville theory—under the reno
malization group. Since the dimensionally reduced actio
has a prefactor ofAy16pG, the central charge of such a
Liouville theory is likely to be proportional toAy16pG,
and might reproduce the central charge (24). De Alw
has considered a similar renormalization group flow
a somewhat different context [15], and Solodukhin ha
recently proposed a related analysis of dimensionally r
duced gravity [16].

It also seems plausible that the description of blac
hole entropy here is related to the picture of microscop
states as “would-be pure gauge” degrees of freedom t
become dynamical at a boundary [9,17]. The existence
a central charge is an indication that the algebra of surfa
deformations has become anomalous, and that invaria
cannot be consistently imposed on all states.

(4) Does the relevant conformal field theory satisfy th
technical conditions required for the Cardy formula? I
particular, does the ground state haveL0 ­ 0?: Without
a much more detailed description of the conformal fie
theory, this question cannot be answered. My approa
differs from Strominger’s in an important respect. Stro
minger’s boundary conditions were those of anti–de Sitt
space, offering the possibility that anti–de Sitter space
o
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the ground state. The boundary conditions of this pap
are those of a specific black hole, and depend on the ho
zon metric. This difference is hard to avoid, since withou
the extra length scale provided by a cosmological consta
it is difficult to write down a dimensionless central charge
independent of the boundary values of the metric. [On
could, of course, chooseT to be proportional toAyb in
Eq. (24), but there seems to be little physical justificatio
for such a choice.]

There is, however, a plausible candidate for the groun
state in the model developed here: the extremal bla
hole, which is typically characterized by a lapse functio
behaving asN2 , sr 2 r1d2 near the horizon. Such a
configuration satisfies the boundary conditions assumed
this paper, but in contrast to the nonextremal result (22
Eq. (9) now givesJfĵ0g ­ 0, implying that at least the
classical contribution toL0 vanishes.
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