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We report the first large scale numerical study of the dynamics of a second order phase transition
caused by a gradual decrease of temperature in a MgT)theory in three spatial dimensions. We
present a detailed account of the dynamics of the fields and focus on vortex string formation as a
function of the quench rate. The results are found in good agreement with the theory of defect
formation proposed by Kibble and Zurek. [S0031-9007(99)08817-1]
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Topological defects are of fundamental importance to Indeed, the emerging understanding of the defect pro-
the (thermo)dynamics of phase transitions in some ofluction could be called into question on the grounds
the most fascinating materials in the laboratory—e.g.that the present estimates completely ignore the inevitable
superfluids, type Il superconductors, liquid crystals—andGinzburg regime. There, just belo#., fluctuations can
presumably also to symmetry breaking phase transitiongearrange large spatial regions, which could destroy pro-
in the early universe [1]. When present at low energiegodefects produced by freeze-out [3], or create them at
they constitute the last traces of disorder inherited frondensities set by the Ginzburg length, as it was originally
high temperatures and thus determine the nonequilibriurauggested [2] and is still occasionally argued [9].
evolution of many systems. In this Letter, we perform the first large-scale numerical

The theory of defect formation combines the realiza-studies of a gradual temperature quench in 3D U(1)
tion, due to Kibble [2], of the paramount role of causality, symmetric A¢* [12]. This is the familiar Ginzburg-
with the calculation, due to one of us [3], of the actual sizeLandau model for the free energy of a neutral system
of the causally independent domains in a second ordde.g.,*He) which as is well known displays a true second
phase transition. Experiments in liquid crystals [4] and inorder phase transition in 3D, with the establishment of
3He [5] lend support to the resulting theory of the dynam-long range order at low temperatures. This implies, in
ics of second order phase transitions. The evidence frormparticular, contrary to the case of lower dimensions, that
“He experiments [6] is more ambiguous while superconno defects (vortex strings) can exist in equilibrium at
ductors and Bose-Einstein condensates may offer excitingufficiently low temperatures in any causally connected
future possibilities [7]. volume [13].

Laboratory experiments were thus far unable to test the In order to implement the temperature quench, we
key theoretical prediction—the scaling of the initial den-evolve the fields according to
sity of defects with the rate at which the phase transition 2 _ w2y, _ 2, (42 2 YT
takes place [3]. Numerical studies of defect formation as(a’ Vidi = m'di + Agi(i + &) + nei =11,

a function of a quench rate carried out until now were lim- 1)

ited to 1D and 2D systems [8], where they have confirmeqyhere i, j € {1,2} andi # j in Eq. (1). T:(x) is the

the scalings predicted by the theory. Moreover, they havgsaussian noise characterized by

focused on transitions induced by the explicit change of
the mass term in the potential which governs dynamics<ri(x)> =0, (N6 = 29T(0)8;6(x — x),
of the order parameter fiekdh), while the temperatur@ 2
of the heat bath to whickb is coupled was kept constant
and relatively small. This simplification is not necessarily
unrealistic—phase transitionsirle can be induced with-
out significant changes in temperature, purely by changin ;
pressure. However such “pressure quenches” are far less T(t)=T, — To—. 3)
common than temperature quenches, and temperatures are !

rarely small. Moreover, the analytic approach to the presThe time 7y controls the rate of the quench. For>
sure quench problem seems to be within reach, aIthoug%‘tQ, T = 0. In the numerical evolution we take the
only in the limit of very small temperatures. Even in this grid spacingAx = 0.5 andA: = 0.02. All results shown
limiting case unanimous conclusion has not been reacheate for computational domains of sizé?, with N =
[9-11], further obviating the need to study quenchesl28-160 and n = 1. Strings are detected by integer
numerically. windings of the field phases around lattice plaquettes.

wherex, x’ denote space-time coordinates. We allow the
fields to thermalize above the transition and proceed to
8uench the system by changing the noise temperature as
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Vortices hence found are connected by enforcing fluxransition will cease to increase gs= &ymo/|€|” once
conservation on each unit volume [13]. As a result ofthe adiabatic-impulse boundaryt= —7 is reached.
boundary conditions all strings are closed. Ab@yeand We expect, then, that the characteristic length scale
immediately below, strings are little more than nonpertur-over which ¢ is ordered already in the course of the
bative field fluctuations. Below,, they gradually acquire transition will be the correlation length at freeze-gut=
stability and can be regarded as either vortex lines or cost/&”,

mic strings. . m v/(1+v7)
Another useful quantity is the kinetic temperature, £y = (— 7Q> . (7
Tk, defined as the average kinetic energy per degree n

of freedom. In equilibrium the canonical momentum g, length scales smaller thahthe effect of criticality

istribution i i 2y D, —

distribution is purely Gaussian anfr(x)I*)d°x = 2T.  op the field dynamics is negligible. The initial density of
We generalize this for situations away from equilibrium,,qtex lines is then expected to scale with as

as

1 1 (m?> \ ¢
(e )P)dPx = 275(0). @) - —m=n(%n) . ®
All temperature quenches are started Tat= 1.91T7,. (f3¢4) fgim

Even though the choice of initial (high) temperature iswheref ~ 0(1) is a dimensionless factor, parametrizing

somewhat arbitrary, it is important that it is sufficiently o, ignorance about the exact relation between domain

high that the length density in long strings in each;;q ang defect densities, and= —li”y . Lattice mea-
computational domain is substantial [13]. z

: . L . surements and renormalization group analysis yiele
In the immediate vicinity o', _fqr a system undgrgomg 0.6705 andz = 2.03 for the very overdamped case when
a second order phase transition, the dynamics¢of

: . ; X the second time derivative in Eqgs. (1) and (2) is com-
are subject to critical slowing down. This leads to the as.- (1) (2)

i . letely negligible. Withn = 1 this is not truly the case.
estimate of the expected density of defects through a y negig ! y

; . e expectl = z = 2.03, implying 0.568 = a = 0.8,
argument [3], which we briefly reproduce below. For ..o the| limits refer to th
the dynamics of Egs. (1) and (2) in the overdampe ere the lower and upper limits refer to the underdamped

. ! / . ) ase, respectively. This is different from mean-field ex-
regime where the first time derivative dominates, th

T . onentspy = 1/2 andz = 2, implyin = 0.5.
characteristic time scale over which the order parameterelo In a teymperélture qZuench tﬁey sgs?eMrﬁ is evolved from
can react is given by y

an initial state at genuinely high temperature, with a bare
| negative mass squared. As a result the physical mass
T¢ - 2 vz’ (5) 2 . .
m?|e|?? squared,m,y,, which takes into account the self-energy
where » and z are universal critical exponents, and 9enerated by the high-temperature field fluctuations, is
the relative temperature = TL = é = LQ % The Positive and potentially large. The temperature quench
) ) < T’ proceeds by the decrease of the external bath temperature
quench time scale is a rescaling ofg, 7o = 7710 at a rate given by, according to Eq. (3). Initially, the
This overdamped scenario, valid when’ro > 1 system locally rethermalizes to the new lower tempera-
[8], is presumably more relevant for condensed mattefyre. Close to the critical point, the physical mass squared
appllcatlons and will be the focus of. the present Letterapproximately vanishes leading to the critical slowing
Cosmological order parameters may in contrast be undefown of the field response over large spatial scales. This
damped—or in reality redshifted [1], corresponding t0 afreezes the dynamics of the order parameter: It can no
different dynamics than that of Egs. (1) and (2). longer react to the systematic changes of thermodynamic
The characteristic time scale of variationefs z = 7. or dynamical parameters, although slow drift under the
We expect the system to be able to readjust to the newompined influence of noise and damping continues un-
equilibrium as long as the relaxation time is smaller thangpated, even in the large scale structure, including long
1. Hence, outside the time intervat 7, 7] defined by the  strings. Critical slowing down has little effect over the
equationr(e(7)) = 7, the evolution of¢ is approximately  gmall scale dynamicgk? > mf)h), which accompanies
adiabatic, and physical quantities associated with largg,e externally imposed change of bath temperature. In
length scales will approximately follow their (critical) this manner, critical slowing down sows the seeds for the

equilibrium values. The time out-of-equilibrium dynamics to follow. Figure 1a shows
R I R L/a+vz) the equilibrium string densities as a function B¢, and
¢ =~ 2\7e ’ quench trajectories for several valuesrgf In 3D, Tk is

7 1 1/(1+vz) (6) dominated by small sg:al_es and generally follows faithfully
€y = i(—z —) the external batli" variation.
m=To As predicted by the theory, all quenched string densities
marks the borders between adiabatic and impulse stagesfoflow the equilibrium trajectory at high temperatures
evolution of¢. In particular, the correlation lengthas-  but start deviating just above the critical point, due to
sociated with the connected two-point function above theritical slowing down. The magnitude of the effect is
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FIG. 1. (a) The evolution of the total string density per FIG. 2. (a) The freeze-out timeas a function of the quench
plaquetten with Tx. O denote thermal equilibrium densities. time scaler,. (b) The relative kinetic temperature &t
(b) ({¢#l> vs ¢t. Solid lines denote quench trajectories for le| = Tx(®) _ 1]. Slopes of the two lines ar@.445 * 0.05

— Te
to =4, 8,16, 32, 64, 128, 256. and —0.565 £ 0.016, respectively, which compares favorably

. . with those theoretically predicted of 0.5. Points corresponding
small and difficult to measure. After falling out of to 7o = 8 exhibit saturation, and were ignored in the fitting.

equilibrium the string densities do not freeze, but rather
decay slowly while the temperature drops over a period ofestarted. Buk = T /T, — 1, by definition, cannot fall
time. This decrease is due mostly to the decay of smalio less than—1 (which happens whey = 0). Hence,
scale structure in long strings and of small loops. Fowhen in very fast quenches the evolution &f restarts
faster quenches this regime persists to much loWer only at7 = 7, T, > Tx(7o) = 0, and the values of¢|
Figure la clearly shows the hierarchy of string densitiepile up asymptotically near™, causing saturation.
for different7,’s, at each giverfk. At + = 7 many small scale fluctuations still persist in
Figure 1b shows the evolution of the order parametethe system obscuring the results in terms of string densi-
amplitude(|¢]). The persistent cooling of small scale ties. It is the subsequent out-of-equilibrium evolution of
fluctuations eventually leads to a negat'méh which in  the fields, leading to spontaneous symmetry breaking and
turn triggers instabilities in the long wavelength modes.ordering, that reveals the string densities formed at the
As these modes grow (quasiexponentially) the U(1) symguench. While the large spatial sca(é$ = 0) are unsta-
metry is spontaneously broken, coarsening the originable and the corresponding modes grow towdkgls= 1,
field configuration. These instabilities are reminiscent ofthe small spatial scalgg? > mﬁh) are dissipated away.
those in pressure quenches [8—11]. However, here theirhis leads to the emergence of the field configuration cre-
generation through a negative mass squared is explicitlgted by the critical dynamics on large spatial scales, and
created by the delay in the field's response, rather thaallows the surviving vortex strings to form, i.e., to acquire
externally. The onset of instabilities defines in turd,  their low energy character of topological defects. These
which we read off from the minima of Fig. 1b. Figure 2a densities, as a function afyp, are shown in Fig. 3. As a
shows the dependencebn r,. We can independently criterion to the completion of the transition, we measured
confirm the theoretical scaling laws (Fig. 2b) by examin-n at ¢ such that{|¢|) = 0.9, 0.925, 0.95, 0.975. Apart
ing the, dependence of, computed as the ratio dfy ~ from the cases of saturation, the density of strings formed
andT7, at the minimum of|¢|). follows the theoretical predictions quite satisfactorily, for
Together the results of Fig. 2 confirm the theoreticalall choices of(|¢[). The values off; = 0(10) are
scaling and determinez = 0.82. We note, however, similarto 1D and 2D estimates [8], and may be sufficient
that data corresponding to the fastest quenches appedocsexplain the nonappearance of vortex lines in the recent
to asymptote tdé| = 1 (and, thus, ceases following the *He experiment [6].
predicted power law). This is easy to understand [8]: Finally, it is interesting to investigate what kind of
&, extracted from the data, is the absolute value of thetrings are formed. AtI' above T., the “ephemeral
relative temperature at the instant when the dynamics istring” length distribution approaches a Brownian form
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FIG. 3. The string densities measured(gt)| = 0.9, 0.925, FIG. 4. String length distributions ( d! vs ) taken between
0.95, 0.975. The fits are to Eq. (8), for, =32, with  +i and the “time of formation'((|¢|) = 0.95), for 7, = 64.
a = 04296 + 0.043, 04378 + 0.0289, 0.5692 + 0.0256, ~ Data sets denoted bis, A,[], @) correspond to increasingly
0.5600 = 0.0797, and f4 = 11.11, 13.99, 12.29, 15.34, later times. Lines show the integral distributions, eX.(/) =
respectively.  The average@ = 0.4982 + 0.079 and J, n.(I')dl'.

fj = 1318 = 178,

Q
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