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Vortex String Formation in a 3D U(1) Temperature Quench
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We report the first large scale numerical study of the dynamics of a second order phase tran
caused by a gradual decrease of temperature in a U(1)lf4 theory in three spatial dimensions. We
present a detailed account of the dynamics of the fields and focus on vortex string formation
function of the quench rate. The results are found in good agreement with the theory of de
formation proposed by Kibble and Zurek. [S0031-9007(99)08817-1]
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Topological defects are of fundamental importance
the (thermo)dynamics of phase transitions in some
the most fascinating materials in the laboratory—e.g
superfluids, type II superconductors, liquid crystals—an
presumably also to symmetry breaking phase transitio
in the early universe [1]. When present at low energie
they constitute the last traces of disorder inherited fro
high temperatures and thus determine the nonequilibriu
evolution of many systems.

The theory of defect formation combines the realiza
tion, due to Kibble [2], of the paramount role of causality
with the calculation, due to one of us [3], of the actual siz
of the causally independent domains in a second ord
phase transition. Experiments in liquid crystals [4] and i
3He [5] lend support to the resulting theory of the dynam
ics of second order phase transitions. The evidence fro
4He experiments [6] is more ambiguous while superco
ductors and Bose-Einstein condensates may offer exciti
future possibilities [7].

Laboratory experiments were thus far unable to test t
key theoretical prediction—the scaling of the initial den
sity of defects with the rate at which the phase transitio
takes place [3]. Numerical studies of defect formation a
a function of a quench rate carried out until now were lim
ited to 1D and 2D systems [8], where they have confirme
the scalings predicted by the theory. Moreover, they ha
focused on transitions induced by the explicit change
the mass term in the potential which governs dynami
of the order parameter fieldkfl, while the temperatureT
of the heat bath to whichf is coupled was kept constant
and relatively small. This simplification is not necessaril
unrealistic—phase transitions in4He can be induced with-
out significant changes in temperature, purely by changi
pressure. However such “pressure quenches” are far l
common than temperature quenches, and temperatures
rarely small. Moreover, the analytic approach to the pre
sure quench problem seems to be within reach, althou
only in the limit of very small temperatures. Even in this
limiting case unanimous conclusion has not been reach
[9–11], further obviating the need to study quenche
numerically.
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Indeed, the emerging understanding of the defect p
duction could be called into question on the ground
that the present estimates completely ignore the inevita
Ginzburg regime. There, just belowTc, fluctuations can
rearrange large spatial regions, which could destroy p
todefects produced by freeze-out [3], or create them
densities set by the Ginzburg length, as it was origina
suggested [2] and is still occasionally argued [9].

In this Letter, we perform the first large-scale numeric
studies of a gradual temperature quench in 3D U(
symmetric lf4 [12]. This is the familiar Ginzburg-
Landau model for the free energy of a neutral syste
(e.g.,4He) which as is well known displays a true secon
order phase transition in 3D, with the establishment
long range order at low temperatures. This implies,
particular, contrary to the case of lower dimensions, th
no defects (vortex strings) can exist in equilibrium a
sufficiently low temperatures in any causally connecte
volume [13].

In order to implement the temperature quench, w
evolve the fields according to

s≠2
t 2 =2dfi 2 m2fi 1 lfisf2

i 1 f2
j d 1 n Ùfi  Gi ,

(1)

where i, j [ h1, 2j and i fi j in Eq. (1). Gisxd is the
Gaussian noise characterized by

kGisxdl  0, kGisxdGjsx0dl  2hT stddijdsx 2 x0d ,

(2)

wherex, x0 denote space-time coordinates. We allow th
fields to thermalize above the transition and proceed
quench the system by changing the noise temperature

T std  Tc 2 T0
t

tQ
. (3)

The time tQ controls the rate of the quench. Fort .
Tc

T0
tQ , T  0. In the numerical evolution we take the

grid spacingDx  0.5 andDt  0.02. All results shown
are for computational domains of sizeN3, with N 
128 160 and h  1. Strings are detected by intege
windings of the field phases around lattice plaquette
© 1999 The American Physical Society
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Vortices hence found are connected by enforcing flu
conservation on each unit volume [13]. As a result
boundary conditions all strings are closed. AboveTc, and
immediately below, strings are little more than nonpertu
bative field fluctuations. BelowTc, they gradually acquire
stability and can be regarded as either vortex lines or c
mic strings.

Another useful quantity is the kinetic temperature
TK , defined as the average kinetic energy per deg
of freedom. In equilibrium the canonical momentum
distribution is purely Gaussian andkjpsxdj2ldDx  2T .
We generalize this for situations away from equilibrium
as

kjpsx, tdj2ldDx ; 2TK std . (4)

All temperature quenches are started atT0  1.91Tc.
Even though the choice of initial (high) temperature
somewhat arbitrary, it is important that it is sufficientl
high that the length density in long strings in eac
computational domain is substantial [13].

In the immediate vicinity ofTc for a system undergoing
a second order phase transition, the dynamics off

are subject to critical slowing down. This leads to th
estimate of the expected density of defects through
argument [3], which we briefly reproduce below. Fo
the dynamics of Eqs. (1) and (2) in the overdampe
regime where the first time derivative dominates, th
characteristic time scalet over which the order paramete
can react is given by

t Ùf .
h

m2jejnz
, (5)

where n and z are universal critical exponents, an
the relative temperaturee 

T
Tc

2 1 
t

tQ
; t

tQ

T0

Tc
. The

quench time scaletQ is a rescaling oftQ, tQ 
Tc

T0
tQ.

This overdamped scenario, valid whenh3tQ . 1
[8], is presumably more relevant for condensed mat
applications and will be the focus of the present Lette
Cosmological order parameters may in contrast be und
damped—or in reality redshifted [1], corresponding to
different dynamics than that of Eqs. (1) and (2).

The characteristic time scale of variation ofe is e

Ùe  t.
We expect the system to be able to readjust to the n
equilibrium as long as the relaxation time is smaller tha
t. Hence, outside the time intervalf2t̂, t̂g defined by the
equationtsssest̂dddd  t̂, the evolution off is approximately
adiabatic, and physical quantities associated with lar
length scales will approximately follow their (critical)
equilibrium values. The time

t̂ Ùf  6

∑
h

m2 stQdnz

∏1ys11nzd
;

ê Ùf  6

µ
h

m2

1
tQ

∂1ys11nzd (6)

marks the borders between adiabatic and impulse stage
evolution off. In particular, the correlation lengthj as-
sociated with the connected two-point function above t
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transition will cease to increase asj  j0m0yjejn once
the adiabatic-impulse boundary att0  2t̂ is reached.

We expect, then, that the characteristic length sc
over which f is ordered already in the course of th
transition will be the correlation length at freeze-outĵ 
1yên,

ĵ Ùf 

µ
m2

h
tQ

∂nys11nzd
. (7)

On length scales smaller than̂j the effect of criticality
on the field dynamics is negligible. The initial density o
vortex lines is then expected to scale withtQ as

n Ùf 
1

s f Ùfĵ Ùfd2


1

f2
Ùf

µ
m2

h
tQ

∂2a

, (8)

wheref , Os1d is a dimensionless factor, parametrizin
our ignorance about the exact relation between dom
size and defect densities, anda  2

2n

11nz . Lattice mea-
surements and renormalization group analysis yieldn 
0.6705 andz  2.03 for the very overdamped case whe
the second time derivative in Eqs. (1) and (2) is com
pletely negligible. Withh  1 this is not truly the case.
We expect 1 # z # 2.03, implying 0.568 # a # 0.8,
where the lower and upper limits refer to the underdamp
case, respectively. This is different from mean-field e
ponents,n  1y2 andz  2, implying aMF  0.5.

In a temperature quench, the system is evolved fr
an initial state at genuinely high temperature, with a ba
negative mass squared. As a result the physical m
squared,m2

ph, which takes into account the self-energ
generated by the high-temperature field fluctuations,
positive and potentially large. The temperature quen
proceeds by the decrease of the external bath tempera
at a rate given bytQ, according to Eq. (3). Initially, the
system locally rethermalizes to the new lower tempe
ture. Close to the critical point, the physical mass squa
approximately vanishes leading to the critical slowin
down of the field response over large spatial scales. T
freezes the dynamics of the order parameter: It can
longer react to the systematic changes of thermodyna
or dynamical parameters, although slow drift under t
combined influence of noise and damping continues
abated, even in the large scale structure, including lo
strings. Critical slowing down has little effect over th
small scale dynamicssk2 ¿ m2

phd, which accompanies
the externally imposed change of bath temperature.
this manner, critical slowing down sows the seeds for t
out-of-equilibrium dynamics to follow. Figure 1a show
the equilibrium string densities as a function ofTK , and
quench trajectories for several values oftQ. In 3D, TK is
dominated by small scales and generally follows faithfu
the external bathT variation.

As predicted by the theory, all quenched string densit
follow the equilibrium trajectory at high temperature
but start deviating just above the critical point, due
critical slowing down. The magnitude of the effect
2825
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FIG. 1. (a) The evolution of the total string density pe
plaquetten with TK . s denote thermal equilibrium densities
(b) kjfjl vs t. Solid lines denote quench trajectories fo
tQ  4, 8, 16, 32, 64, 128, 256.

small and difficult to measure. After falling out of
equilibrium the string densities do not freeze, but rath
decay slowly while the temperature drops over a period
time. This decrease is due mostly to the decay of sm
scale structure in long strings and of small loops. F
faster quenches this regime persists to much lowerTK .
Figure 1a clearly shows the hierarchy of string densiti
for differenttQ ’s, at each givenTK .

Figure 1b shows the evolution of the order paramet
amplitude kjfjl. The persistent cooling of small scale
fluctuations eventually leads to a negativem2

ph which in
turn triggers instabilities in the long wavelength mode
As these modes grow (quasiexponentially) the U(1) sym
metry is spontaneously broken, coarsening the origin
field configuration. These instabilities are reminiscent
those in pressure quenches [8–11]. However, here th
generation through a negative mass squared is explic
created by the delay in the field’s response, rather th
externally. The onset of instabilities defines in turn1t̂,
which we read off from the minima of Fig. 1b. Figure 2
shows the dependence oft̂ on tQ . We can independently
confirm the theoretical scaling laws (Fig. 2b) by examin
ing thetQ dependence of̂e, computed as the ratio ofTK

andTc at the minimum ofkjfjl.
Together the results of Fig. 2 confirm the theoretic

scaling and determinenz  0.82. We note, however,
that data corresponding to the fastest quenches app
to asymptote tojêj  1 (and, thus, ceases following the
predicted power law). This is easy to understand [8
ê, extracted from the data, is the absolute value of t
relative temperature at the instant when the dynamics
2826
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FIG. 2. (a) The freeze-out timêt as a function of the quench
time scale tQ . (b) The relative kinetic temperature att̂,
jêj  j

TK st̂d
Tc

2 1j. Slopes of the two lines are0.445 6 0.05
and 20.565 6 0.016, respectively, which compares favorably
with those theoretically predicted of 0.5. Points correspondi
to tQ # 8 exhibit saturation, and were ignored in the fitting.

restarted. Bute  TK yTc 2 1, by definition, cannot fall
to less than21 (which happens whenTK  0). Hence,
when in very fast quenches the evolution off restarts
only at t̂ $ tQ , Tc ¿ TK stQd . 0, and the values ofjêj
pile up asymptotically near12, causing saturation.

At t  t̂ many small scale fluctuations still persist in
the system obscuring the results in terms of string den
ties. It is the subsequent out-of-equilibrium evolution o
the fields, leading to spontaneous symmetry breaking a
ordering, that reveals the string densities formed at t
quench. While the large spatial scalessk2 . 0d are unsta-
ble and the corresponding modes grow towardsjfj  1,
the small spatial scalessk2 ¿ m2

phd are dissipated away.
This leads to the emergence of the field configuration c
ated by the critical dynamics on large spatial scales, a
allows the surviving vortex strings to form, i.e., to acquir
their low energy character of topological defects. The
densities, as a function oftQ , are shown in Fig. 3. As a
criterion to the completion of the transition, we measure
n at t such thatkjfjl  0.9, 0.925, 0.95, 0.975. Apart
from the cases of saturation, the density of strings form
follows the theoretical predictions quite satisfactorily, fo
all choices of kjfjl. The values off Ùf  Os10d are
similar to 1D and 2D estimates [8], and may be sufficie
to explain the nonappearance of vortex lines in the rece
4He experiment [6].

Finally, it is interesting to investigate what kind o
strings are formed. AtT above Tc, the “ephemeral
string” length distribution approaches a Brownian form
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FIG. 3. The string densities measured atkjflj  0.9, 0.925,
0.95, 0.975. The fits are to Eq. (8), fortQ $ 32, with
a  0.4296 6 0.043, 0.4378 6 0.0289, 0.5692 6 0.0256,
0.5600 6 0.0797, and f Ùf  11.11, 13.99, 12.29, 15.34,
respectively. The average a  0.4982 6 0.079 and
f Ùf  13.18 6 1.78.

[13]. Long random-walk-like strings of zeros off
coexist in equilibrium with a sea of smaller strongly
self-correlated loops. As the quench proceeds sm
scales are dissipated first. Nevertheless, the presenc
noise and absence of the restoring dynamics implies th
until t . 1t̂ a sizable population of small loops can
persist. Subsequently the system is dissipated furth
the symmetry is spontaneously broken, and the fiel
order starting from the small scales. The result
that, by the timekjfjl has come near its equilibrium
low-temperature value, only long strings, imprinted b
the critical dynamics on largest length scales, surviv
stripped of most of their small scale structure. Th
evolution is shown in Fig. 4.

Our numerical analysis lends strong support to the ge
eral picture of dynamical evolution ofkjfjl in a sec-
ond order phase transition, proposed some time ago [
and partially confirmed by experiments [5] and by simu
lation of pressure quenches in low dimensional sy
tems [8]. The key new aspects of this investigatio
are (i) its 3D character, which has allowed us to (i
study an until now numerically unexplored tempera
ture quench. In the present range of parameters
Ginzburg regime appeared to play no discernible rol
We are currently investigating its effects on the decay
individual strings.
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FIG. 4. String lengthl distributions (n dl vs l) taken between
1t̂ and the “time of formation”skjfjl  0.95d, for tQ  64.
Data sets denoted bys?, D, h, dd correspond to increasingly
later times. Lines show the integral distributions, e.g.,N≤sld R

`

l n≤sl0d dl0.
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