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The Brownian motion in a tilted washboard potential subjected to a low-frequency periodic drive
develops large hysteresis loops, which attain their maximum at the locked-to-running transition in the
underdamped regime. The dependence of such a critical phenomenon on the drive parameters and
on the temperature is investigated numerically. Moreover, this hysteresis mechanism is related to the
occurrence of random multiple jumps, whose length and time duration distributions appear to decay
according to a universal power law with exponent= 1.5. This model may explain various instances
of low-frequency excess damping in material science. [S0031-9007(99)08872-9]

PACS numbers: 05.40.Jc, 05.20.Dd, 05.60.Cd, 82.20.Db

The classical Brownian motion in a washboard potendicle temperature. Furthermore, hysteresis induces an ad-
tial has been investigated to a great extent in conneditional contribution to the internal friction that opposes the
tion with a variety of condensed phase phenomena, sualriving periodic modulation [11]: In the present model of
as Josephson junction currents [1], superionic conductioBrownian motion the excess damping turns out to diverge
[2], dielectric relaxation [3], plasma physics [4], surface at vanishingly low frequencies, in suggestive analogy with
diffusion [5], and polymer dynamics [6], to mention but a the internal friction in various materials and devices.
few. The most comprehensive review on this topic is to The Brownian motion in a tilted washboard potential is
be found in Risken’s textbook [7], where the diffusion in afully described by the stochastic differential equation (in
washboard potential is analyzed within the framework ofrescaled units [7])
the Fokker-Planck formalism. Lately, a surge of interest
[8—10] was kindled by the debate on the characterization
and physics significance of the so-called multiple jumpswhere the force terms on the right-hand side represent, re-
or flights, when an underdamped Brownian particle jumpsspectively, a viscous damping with constanta spatially
over many a potential barrier before getting trapped agaiperiodic, tilted substrate described by the potential
(see also Risken’s unstationary solutions [7]). Eventually, )
the extension of the Fokker-Planck formalism to spatially Vi, F) = oy(l = cosx) = Fu, (2)
periodic systems (eigenvalue-band analysis [10], dynamiand a stationary zero mean-valued, Gaussian noise with
structure factor approach [9]) proved capable of reproautocorrelation functiofé (r)£(0)) = 2ykT 8(¢).
ducing quite closely the flight statistics reported in recent The time evolution of the stochastic procesg) is
simulation studies [8]. characterized by random switches betwedockedstate

In this Letter we take on the ultimate challenge posed inwith zero average velocity and sunning state with
Risken’s textbook, namely, the question of hysteresis in @asymptotic average velocity) = (x) = F/y. Interms
periodically driventilted potential at low damping. Such of the mobility u(F) = (v)/F the locked and running
a phenomenon becomes apparent at the locked-to-runnirsgate correspond teyu = 0 and yu = 1, respectively.
transition, which is known to occur for weak static tilts In the noiseless cas&(r) = 0, the average speed of the
(proportional to the damping constant). The relevant hysBrownian particle depends on the initial conditions ac-
teresis loops are the largest for certain values of the forcingording to a static hysteresis loop [7]: In thender-
frequency and the temperature. Moreover, we observedampedregimey < wy, the transition from the locked
that the multiple jump statistics changes dramatically in théo the running state occurs when increasifigabove
presence of a low-frequency periodic drive, no matter how’s = w§, while the opposite transition takes place on
small its amplitude: The flight length and time durationlowering F below F; = (4/7)ywq. Of course, for suf-
distributions seem to decay according to a universal powsficiently large values ofy, say, in thedampedregime
law, independent of the forcing frequency and the parwith y > (7/4)wo, the distinction betweer; and F;

¥ = —yx — wisinx + F + £(1), 1)
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is meaningless; the locked-to-running transition is locate@nd the system response(r)) decreases fromr down

at F = F3, no matter what the initial conditions.
The weak noise case, or zero temperature lifit=

to zero (Fig. 1a). Hysteresis loops have been observed
even for values ofTfg much larger than the relevant

0+, brings about a totally different scenario, where theKramers timerx ~ (kT/2wiy)exp2wd/kT) [12], the

stationary dynamics of x(¢) is controlled by a single
thresholdF, = (2 + v2)ywy: For F < F, the Brown-
ian particle gets trapped in one potential well; for> F,
it falls down the tilted periodic substrate with average
speedF/y. At the thresholdF, the quantity yu(F)
jumps from zero up to one stepwise. For finite but low
temperatureskT < wg, the locked-to-running transition
is continuous, but still confined within a narrow neighbor-
hood at abouf’, (Fig. 1). The critical behavior of wu(F)
in the vicinity of the transition threshold is the signature
of a strongly nonlinear system response and involves lon
relaxation times [7].

In order to shed light on the mechanism responsible fo

longest relaxation time scale in the stationary process (1).

The main properties of the hysteresis phenomenon thus
revealed are displayed graphically in Figs. 1-3.

(i) Criticality.—The phenomenon attains its maximum
for values of Fy comprised within the transition jump
width of the curveu(Fy); more precisely, the optimal
choice of Fy seems to be given by the condition that
vu(Fo) = 1/2. Figure 1b shows indirectly theritical
nature of this hysteresis mechanism. For valueg'of
relatively far from F, no appreciable hysteresis loops
were detected. Moreover, the area encircled by these
loops grows quadratically with the amplitudeF of the
periodic drive, as expected [7].

the locked-to-running transition, we replaced the static tilt (i) Frequency dependence-In order to characterize

F in Eq. (1) with

F(t) = Fg + AFcodQr + ¢). 3)
Here, the sinusoidal component #f(¢) is treated as a
perturbation withAF < F,, while its initial phasep can

be set to zero without loss of generality.
The most evident effect of the time periodic drive

in Eqg. (3) is the appearance of hysteresis loops in the
parametric curves of the steady state average velocity

(v(F)) or, equivalently, of the mobilityu(F) versusF
(Fig. 1). For forcing periodgq = 27/ larger than the
intrawell resonance peridtir / wg, the mobility hysteresis
loops ar2A F wide, centered on the static mobility curve
n(Fo) and traversed in the counterclockwise direction;
with increasing T their major axis approaches the
tangent to the curve(Fy); for the phase lag betwedf(r)
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FIG. 1. Oriented hysteresis loops for the mobilit(F) at
different values of the forcing period with7 = 1/3 (a) and
different values okT with To = 8 X 103 (b). In both panels
Fo = 0.085 and AF = 0.01; the dashed curves represent

the frequency dependence of the phenomenon at hand
we plotted the aread({)) encircled by the velocity
hysteresis loops and the corresponding average power
P(Q) dissipated by the periodic drive (3) versus the
angular frequency) (see Figs. 2a and 2b). The quantities
A(Q) and P(Q) are easily related to the first coefficients
of the Fourier series expansion @f(z)), namely,

AQ) = — f(v(t))dF = 7AFv,(Q), 4)
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FIG. 2. Frequency dependence of the velocity hysteresis loop
area A(Q)) (a) and average poweP({)) dissipated by the
periodic drive (b) for different values of the temperature.
The ratio P(Q2)/A(Q) is the internal friction®(Q)/27 per
defect plotted in (c) (see text). In (a)—(cFo is chosen

to coincide with the optimal choiceu(Fy) = 0.5, namely,

102 107

vu(F) as obtained numerically in the absence of periodicF, = 0.086 at kT = 1/4 (triangles);F, = 0.085 at kT = 1/3

forcing for y = 0.03 and wq
spaced in time.

1. Points on loops are equally

(squares)F, = 0.090 at kT = 2/5 (circles). Other simulation
parameters arAF = 0.01, y = 0.03, andw, = 1.
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FIG. 3. Hysteresis loop are&4 and average dissipated power
P versus temperature fofp = 8 X 10° and F, = 0.085.
Other simulation parameters ateF = 0.01, y = 0.03, and
wy — 1.

AF

PO) = oo fOTﬂ (w(1)) codQr)dr — Az—FUC(Q), (5)

where
2 Ta/2
vl @) = o fw (w(1)) cos )1,
2 [T .
v,(Q) = T_Q f—m/z (v(2))sin(Q1)dr . (6)

The curvesA()) exhibit a main peak in correspondence

with the interwell hopping rat€) ~ 7¢' [12], and a side

peak, attributable to the intrawell relaxation process for
Q) ~ v, that shoots up from the background only at low

temperatures. In the limit of) tending to zero A(Q))
vanishes proportional t&, while P({)) increases up to a
plateau; hence, at low frequencifs< 7!, the average

dissipated power is frequency independent. The different 1

low-frequency behaviors of(€)) andP({)) are discussed
at a later time.
(iii) Temperature dependence-The temperature de-

pendence of the critical hysteresis phenomenon was inves-
tigated by keeping the parameters of the time dependent

tilt F(z) (Fo, 1, andAF) fixed and by varying the tem-
perature. Forinstance, in Fig. 3 the static Eijt was cho-
sen so as to satisfy the optimal conditigm(Fy) = 1/2
atkT/wi = 1/3 and thenkT was varied without further

tuning Fy. The loop area (7)) and the average dissipated
power P(T) peak at different values of the temperature

peaks at a higher temperature and is a more reliable
signature of stochastic resonance [14,15].

Critical hysteresis in a tilted washboard potential has
interesting consequences on the statistics of the multiple
jumps that are known to occur in the underdamped regime
[8—10]. Figure 4 summarizes well the conclusions of our
simulation work: Under the action of a low-frequency
periodic drive, the flight lengths and time durations are
distributed according to aniversalpower law.

In the absence of periodic drivdF = 0, we explored

the static tilt range from belowr; up to aboveF;:
For no value ofFy, we managed to detect flight length
(or time duration) distributions with nonexponential tails.
In close agreement with the predictions of Ref. [9],
our distributions show a fast drop for relatively short
flights, followed by a slower exponential decay with time
constant of the order afi for the longest flights (see inset
of Fig. 4) [16].

In the presence of a low-frequency periodic drigke,<
rx', we distributed the flights recorded during each cycle
according to their lengtik and time durationT,, thus
obtaining the relevant distributiod$(X) andN(7,). For
the sake of comparison, we then rescalBd into an
effective lengthX, by multiplying the flight time duration
T, times the asymptotic spedd/y of therunning state
X, = (Fo/y)T,. InFig. 4 the two distribution®/(X) and
N(X,) are compared: They appear to overlap even if,
for the parameter values of the simulatioqs), = Fy/27y.
This means that the Brownian particle performs multiple
jumps with average speédt/y andvery small dispersian
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FIG. 4. Distribution of the number of flights per forcing

'cycle according to length and time duration (in length units,

closely resembling the stochastic resonance phenomengse text) forT, = 3.2 X 10* (squares) and’q = 6.4 X 10*

[13]. The reason why(T) peaks akT/wi = 1/3 is a

consequence of the critical nature of the hysteresis mech

nism under study (see also Fig. 1b): On chandifgthe
choice of the static tiltFy is no longer optimal and thus
the relevant hysteresis loop shrinks. The quankity’)
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(circles). The power law(X) ~ X~* with « = 1.5 is drawn

fpr reader’s convenience (dotted straight line). Inset: Flight
number density with respect to length and time duration in the
absence of periodic forcing for different values Bf close to

F,. Other simulation parameters ateF = 0.01, v = 0.03,
andwg = 1.
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