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Noise-Correlation-Time–Mediated Localization in Random Nonlinear Dynamical Systems
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We investigate the behavior of the residence times density function for different nonlinear dynamical
systems with limit cycle behavior and perturbed parametrically with a colored noise. We present
evidence that, underlying the stochastic resonancelike behavior with the noise correlation time,
there is an effect of optimal localization of the system trajectories in the phase space. This
phenomenon is observed in systems with different nonlinearities, suggesting a degree of universality.
[S0031-9007(99)08904-8]
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Stochastic resonance (SR) is normally understood to
the phenomenon by which an additive noise (usually co
sidered uncorrelated) can enhance the coherent respo
of a periodically driven system. First proposed in clima
model studies [1], SR was first experimentally verified b
Fauve and Heslot [2], and since then this behavior h
been predicted and observed in many different theoreti
and experimental systems (see [3] for an extensive revi
and a complete list of references). In particular, the pre
ence of SR has been discussed in a great number of m
els including spatiotemporal systems [4], and has help
us to understand how biological organisms may use no
to enhance the transmission of weak signals through n
vous systems [5,6]. Quite recently it has been numerica
shown that SR can also occur in the absence of an exte
periodic force as a consequence of the intrinsic dynam
of the nonlinear system [7], a behavior that has been d
nominatedautonomous stochastic resonance. Most of the
work on SR has traditionally focused on systems with a
ditive noise, and with some exceptions (see, for instan
Ref. [8]) little attention has been given to cases where t
noise perturbs the system parametrically, in spite of t
well-known differences with the additive situation. With
respect to nonwhite noise, the effect of additive colore
noise on SR has been considered in periodically driv
overdamped systems [9], showing that the correlation tim
can suppress SR monotonically, a feature demonstrated
perimentally in [10]. However, only very recently the situ
ation in which the system is subject to both multiplicativ
and colored noise has been discussed in the literature.
[11] the authors analyze the effect of multiplicative colore
noise on periodically driven linear systems, discussing t
appearance of SR by changing either the intensity or t
correlation time of the noise. For nonlinear models, in [1
we considered a system without periodic external force b
with an intrinsic limit cycle behavior, which was parame
rically perturbed by an Ornstein-Uhlenbeck (OU) nois
finding a nonmonotonic behavior of the coherence in t
system response when measured as a function of the n
correlation time, while no coherence enhancement was
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tained when changing the noise intensity. A similar re
sult was recently obtained analytically for an overdampe
linear system periodically driven and parametrically pe
turbed by an OU process [13].

In this paper, we present numerical evidence which su
gests that, underlying the SR-like behavior as a functio
of the noise correlation time, there is a localization e
fect of the system trajectories in the phase space for
particular value of the correlation time. This is obtaine
in systems with intrinsic limit cycle, perturbed parametri
cally by an OU process and with different nonlinearities
which is also a clear indication that the phenomenon
not a peculiarity of a specific model.

We study three different 2D random systems. Th
delayed regulation model, known from population dy
namics [14],

xt11 ­ ltxts1 2 xt21d , (1)

the Sel’kov model for glycolysis [15]

Ùx ­ 2x 1 lty 1 x2y ,

Ùy ­ b 2 lty 2 x2y ,
(2)

and the Odell model, also from population dynamics [16

Ùx ­ xfxs1 2 xd 2 yg ,

Ùy ­ ysx 2 ltd .
(3)

Here,t takes discrete values in (1) or continuous value
in (2) and (3), and in all cases we will consider the contro
parameter as a random variablelt ­ l 1 zt, i.e., as a de-
terministic partl, plus a stochastic perturbationzt , which
is assumed to be an OU process, i.e., a stationary Gau
ian Markov noise with zero mean,kztl ­ 0, and exponen-
tial correlation,kztzt0l ­ sDytd exps2jt 2 t0jytd, where
t is the correlation time andDyt ­ s2 is the variance of
the noise. We refer to the square root of the variances

as the intensity of the noise. The deterministic counte
parts of (1)–(3) undergo a supercritical Hopf bifurcatio
© 1999 The American Physical Society
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at l ; lH which, in the Sel’kov model, also depends o
the parameterb.

The numerical integration has been carried out withl

in the limit cycle parameter domain. The iteration of (1
has been recreated using an integral algorithm [17] th
guarantees the quality of the correlation function in th
simulations of the noise at discrete times, while (2) and (
have been integrated by an order-2 explicit weak sche
[18]. The results presented hereafter are independen
the initial conditions and were obtained after the decay
the initial transients.

The observed fact [12] that for a particular correlatio
timetr the coherence of the system oscillations has a ma
mum, and that the frequency of these oscillations is clo
to the deterministic one,wd, seems to indicate that, for the
resonant correlation time, the probability that the syste
visits the attractors associated with the mean control p
rameter valuel ­ kltl also has a maximum. If this is
the case, this maximum should be accompanied with a
crease in the probability to visit other attractors associat
with parameters far away froml, or, in other words, should
lead to an effect ofconcentrationor localizationof orbits
around the attractor associated withl as soon ast , tr .
It is worth recalling that, because of changes in the stab
ity properties, a somehow similar localization effect ca
also occur in parametric deterministic systems with tim
dependent parameters, as is the case, for instance, in
well-known parametric resonance phenomenon.

With the aim of studying the residence time distribu
tion of the system on the different available attractors
the system periodic or quasiperiodic domain, we consid
a deterministic attractorLsld, i.e., the attractor obtained
with the deterministic counterpart of the stochastic syste
evaluated at a particular value of the control parameterl.
Next we divide the system phase space inN 1 1 attrac-
tors associated withN 1 1 values of the parameter sepa
rated a distanceDl. In this way, a mesh is composed
by concentric deterministic attractors centered around
stationary equilibrium statesxp, ypdjl,lH , with l in the
fixed point domain. This partition looks like the one
shown in Fig. 1a. With this construction, we have a s
ries ofN 1 1 attractorshLslNy22

d · · · Lsl12
d, Lsl0d, L 3

sl11
d · · · LslNy21

dj, where we use the definitionlk6 ;

FIG. 1. Phase space partition of Eq. (1); (a) withN 1 1 ­ 9
deterministic periodic attractors and (b) with superimpose
random states (dots), and withsr ­ 0.05 and t ­ 3. The
thick line corresponds to the attractorGsklld.
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l 6 kDl. This series divides the phase space inN rings,
each one denoted byGsgkd ; sssLslkd, Lslk11dddd, where
gk ; slk11 1 lkdy2 is the mean control parameter ob-
tained with the control parameters that define the bound
ary of the ring. The stochastic system is integrated on th
mesh, and its evolution describes random trajectories
the one described in Fig. 1b for the particular case of (1
visiting during a finite time each ring of the mesh. During
the integration process we measure the residence time
the rings as follows: Lettk

1 andtk
2 be the entrance and exit

times to the ringGsgkd, respectively. The residence time
in this ring is tsgkd ­ tk

2 2 tk
1 , and we denote the resi-

dence time of then visit event to the ringGsgkd by tnsgkd.
Then, if during an integration timeI, which is achieved
by integratingR realizations ofM time steps, there have
beenVk visit events to the ringGsgkd, the mean residence
time of the system in this ring is given by the mean of the
residence events, that is,T sssGsgkdddd ;

PVk
n­1

tnsgkd
I . Such a

determination of the residence times gives an alternativ
statistical measure of the resonant amplification describe
in [12]. Therefore, given a pairss, td, the function de-
fined by the histogramPsT d ; PsssT sgkdddd ; Ps T sssGsgkdddd

Dl d is
a measure of the probability density for the system stat
to be in the region defined by the ringGsgkd. An ex-
ample of the histogram is depicted in Fig. 2 and show
that the system visits mostly the attractors surroundin
the ring Gskltld. We remark that we have carefully se-
lected the simulation parameters to ensure that the partitio
does not contain overlapped attractors such that this has
well-defined meaning. An illustrative example of the resi-
dence times density function (RTDF) as a function of the
correlation time is depicted in Fig. 3 for the three mod-
els. Obviously, the localization of the system trajectorie
depends strongly ont. The RTDF height shows a non-
monotonous behavior reaching a maximum at a particu
lar value oft , tp and, at the same value, the widthW

FIG. 2. Residence times density function for (2), obtained
with 50 realizations of5 3 107 time steps of sizeDt ­ 1022,
kll ­ 0.123, s ­ 5 3 1024, andt ­ 6.
2817
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FIG. 3. The RTDF versust for (a) Eq. (1), (b) Eq. (2), and
(c) Eq. (3). Data obtained with (a)kll ­ 2.02, sr ­ 0.05,
and 100 realizations of106 iterations; (b)kll ­ 0.123, s ­
5 3 1024, and 50 realizations of5 3 107 time steps of size
Dt ­ 1022; and (c) kll ­ 0.49, s ­ 1023, and realizations
as in (b). The inset plots indicate the height and wid
behavior.

calculated at the heighthy
p

e shows a remarkable mini-
mum, as represented in the inset curves.The correla-
tion time of the parametric random perturbation acts a
a tuner which controls (in a statistical sense) the beha
ior of the system, maximizing its localization on the r
gion of the phase space surroundingkltl. Furthermore,
the relationhyW has a maximum for a particular value
of t, and this optimal value depends onl ­ kltl, as can
be appreciated in Fig. 4. Such a dependence enable
to relate the optimal correlation time for maximal loca
ization tp, with the temporal scales of the determinist
counterparts. We first study the behavior of the postpon
ment of the bifurcation point because of the multiplicativ
noise in order to obtain the postponed bifurcation po
l

p
Hss, td. We next calculate the effective distance to th

bifurcation pointDlp ­ jl 2 l
p
H j, and measure from the

deterministic temporal series the periodTp of the oscil-
lations when the system is evaluated at a distanceDlp
2818
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FIG. 4. hyW versus t for different kll for (a) Eq. (1)
(hyW 3 103, sr ­ 0.05, and, from top to bottom,kll ­
2.00828, 2.01055, 2.01344, 2.01713, 2.02182, and 2.02781
(b) Eq. (2) (hyW 3 106, s ­ 5 3 1024, and kll ­ 0.124,
0.1235, 0.123, 0.1225, 0.122, and 0.1215); and (c) Eq. (
(hyW 3 105, s ­ 1023, and kll ­ 0.496, 0.494, 0.492, 0.49.
0.488, and 0.486). The number of realizations, iterations, a
time steps are the same as in Fig. 3.

from the deterministic bifurcation point. With this infor-
mation, in Fig. 5 we plot the behavior oftp with the
quantity DTp ; jTp 2 T slHdj, whereT slHd is the pe-
riod of the deterministic system at precisely the Hopf b
furcation point. The curves can be fitted by a power la
tp , sDTpda with the exponentsa ­ 20.59, 20.58, and
20.53 for (1)–(3), respectively, and this seems to indicat
that the localization behavior witht is characterized by a
unique exponent with value close to21y2. We note that
for the case of (1) it is even possible to relateDTp with
the system implicit periodicityT2, thus recovering a simi-
lar relation to that calculated in [12]. In this way, these re
sults relate the resonantlike behavior previously report
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FIG. 5. tp versus DTp for (a) Eq. (1), (b) Eq. (2), and
(c) Eq. (3). Simulation parameters are the same as in Fig. 3

in [12] using the quality factorb [19], with an increase
(in mean) of the localization of the orbits of the system
From the behavior of the quantityhyW , it is clear that a
concentration of orbits around a narrow range of bands
the phase space implies a bigger weight of those particu
frequencies in the power spectrum, and, as a conseque
a nonmonotonous behavior qualitatively similar to that o
Fig. 4 should be expected forb, indicating an increase of
the coherence in the system response. This is indeed
case for our three models (with quality factors showing
maximum for values of the correlation time close totp),
clearly indicating that the SR-like effect induced by col
ored noise in nonlinear systems with limit cycle behavio
is quite general.

In summary, we have presented numerical evidence
a novel effect of enhanced localization of orbits mediate
by the correlation time of a multiplicative OU process in
nonlinear dynamical systems with limit cycle behavio
This effect is characterized by a power law with th
exponent close to21y2 for all of the models considered in
spite of their different nonlinearities. This behavior coul
indicate the universal character of this phenomenon, b
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further research is required to clarify this point. This pap
also relates the SR-like behavior previously reported w
this localization effect.
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