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Noise-Correlation-Time—Mediated Localization in Random Nonlinear Dynamical Systems
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We investigate the behavior of the residence times density function for different nonlinear dynamical
systems with limit cycle behavior and perturbed parametrically with a colored noise. We present
evidence that, underlying the stochastic resonancelike behavior with the noise correlation time,
there is an effect of optimal localization of the system trajectories in the phase space. This
phenomenon is observed in systems with different nonlinearities, suggesting a degree of universality.
[S0031-9007(99)08904-8]
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Stochastic resonance (SR) is normally understood to b&ined when changing the noise intensity. A similar re-
the phenomenon by which an additive noise (usually consult was recently obtained analytically for an overdamped
sidered uncorrelated) can enhance the coherent resporigear system periodically driven and parametrically per-
of a periodically driven system. First proposed in climateturbed by an OU process [13].
model studies [1], SR was first experimentally verified by In this paper, we present numerical evidence which sug-
Fauve and Heslot [2], and since then this behavior hagests that, underlying the SR-like behavior as a function
been predicted and observed in many different theoreticalf the noise correlation time, there is a localization ef-
and experimental systems (see [3] for an extensive reviefect of the system trajectories in the phase space for a
and a complete list of references). In particular, the presparticular value of the correlation time. This is obtained
ence of SR has been discussed in a great number of mouh systems with intrinsic limit cycle, perturbed parametri-
els including spatiotemporal systems [4], and has helpedally by an OU process and with different nonlinearities,
us to understand how biological organisms may use noisehich is also a clear indication that the phenomenon is
to enhance the transmission of weak signals through nenot a peculiarity of a specific model.
vous systems [5,6]. Quite recently it has been numerically We study three different 2D random systems. The
shown that SR can also occur in the absence of an externdélayed regulation model, known from population dy-
periodic force as a consequence of the intrinsic dynamiceamics [14],
of the nonlinear system [7], a behavior that has been de-
nominatedautonomous stochastic resonanddost of the X1 = A (1L = x-1), ()
work on SR has traditionally focused on systems with ad- , )
ditive noise, and with some exceptions (see, for instancéN® Sel'kov model for glycolysis [15]

Ref. [8]) little attention has been given to cases where the
noise perturbs the system parametrically, in spite of the
well-known differences with the additive situation. With y=0b— Ay — x°y,
respect to nonwhite noise, the effect of additive colored

noise on SR has been considered in periodically drive@nd the Odell model, also from population dynamics [16],
overdamped systems [9], showing that the correlation time .

can suppress SR monotonically, a feature demonstrated ex- x = x[x(l = x) = y], 3)
perimentally in [10]. However, only very recently the situ- y=yx —A).

ation in which the system is subject to both multiplicative

and colored noise has been discussed in the literature. In Here,z takes discrete values in (1) or continuous values
[11] the authors analyze the effect of multiplicative coloredin (2) and (3), and in all cases we will consider the control
noise on periodically driven linear systems, discussing th@arameter as a random variable= A + ¢, i.e., as a de-
appearance of SR by changing either the intensity or théerministic partA, plus a stochastic perturbatidgp which
correlation time of the noise. For nonlinear models, in [12]is assumed to be an OU process, i.e., a stationary Gauss-
we considered a system without periodic external force builan Markov noise with zero meaty;) = 0, and exponen-
with an intrinsic limit cycle behavior, which was paramet- tial correlation,(;¢») = (D/7)exp(—|t — t'|/7), where
rically perturbed by an Ornstein-Uhlenbeck (OU) noise,r is the correlation time anfd /7 = o2 is the variance of
finding a nonmonotonic behavior of the coherence in théhe noise. We refer to the square root of the variamce
system response when measured as a function of the noias the intensity of the noise. The deterministic counter-
correlation time, while no coherence enhancement was olparts of (1)—(3) undergo a supercritical Hopf bifurcation

x = —x + Ay + x%y,

()
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at A = Ay which, in the Sel’kov model, also depends onA = kA\. This series divides the phase spac#&/inngs,
the parameteb. each one denoted b/ (yi) = (A(Ar), A(Ax+1)), where
The numerical integration has been carried out with y, = (A,+; + Ax)/2 is the mean control parameter ob-
in the limit cycle parameter domain. The iteration of (1) tained with the control parameters that define the bound-
has been recreated using an integral algorithm [17] thadry of the ring. The stochastic system is integrated on this
guarantees the quality of the correlation function in themesh, and its evolution describes random trajectories as
simulations of the noise at discrete times, while (2) and (3}he one described in Fig. 1b for the particular case of (1),
have been integrated by an order-2 explicit weak schemesiting during a finite time each ring of the mesh. During
[18]. The results presented hereafter are independent dfie integration process we measure the residence time in
the initial conditions and were obtained after the decay othe rings as follows: Let' and#4 be the entrance and exit
the initial transients. times to the ringl'(y,), respectively. The residence time
The observed fact [12] that for a particular correlationin this ring is #(y.) = t5 — ¢, and we denote the resi-
time 7, the coherence of the system oscillations has a maxidence time of the visit event to the ring”(y;) by ¢, (y).
mum, and that the frequency of these oscillations is clos&hen, if during an integration timé, which is achieved
to the deterministic oney,, seems to indicate that, for the by integratingR realizations ofM time steps, there have
resonant correlation time, the probability that the systenbeenV; visit events to the rind"(y; ), the mean residence
visits the attractors associated with the mean control paime of the system in this ring is given by the mean of the
rameter valuex = (A,) also has a maximum. If this is residence events, that B(T'(y;)) = 3¢, ’<1_W Such a
the case, this maximum should be accompanied with a defetermination of the residence times gives an alternative
crease in the probability to visit other attractors associatediatistical measure of the resonant amplification described
with parameters far awayfrom or,in oth_ervyords, shc_)uld in [12]. Therefore, given a paifo, 7), the function de-
lead to an effect otoncentratioror localizationof orbits .4 by the histogran® (T) = P(T(y;)) = P(T(FA(Ik))) is

arpund the attractor associated witfas soon as ~ 7,.  a measure of the probability density for the system state
It is worth recalling that, because of changes in the stabil;; pa in the region defined by the ring(y;). An ex-

ity properties, a somehow similar localization effect Canample of the histogram is depicted in Fig. 2 and shows

also occur in parametric deterministic systems with imép o the system visits mostly the attractors surrounding
dependent parameters, as is the case, for instance, in t ring T((A,)). We remark that we have carefully se-

well-known parametric resonance phenomenon. —|acted the simulation parameters to ensure that the partition
With the aim of studying the residence time distribu-

correlation time is depicted in Fig. 3 for the three mod-
Mels. Obviously, the localization of the system trajectories
depends strongly om. The RTDF height shows a non-
monotonous behavior reaching a maximum at a particu-
lar value ofr ~ 7* and, at the same value, the width

with the deterministic counterpart of the stochastic syste
evaluated at a particular value of the control paramster
Next we divide the system phase spaceVint 1 attrac-
tors associated witlv + 1 values of the parameter sepa-
rated a distancé& A. In this way, a mesh is composed
by concentric deterministic attractors centered around the
stationary equilibrium statéx®, y*)[y~,,, with A in the
fixed point domain. This partition looks like the one
shown in Fig. 1a. With this construction, we have a se- m
ries of N + 1 attractordA(Any2 ) --- A(A; ), A(Ag), A X [

(A1,) -~ A(Ans2,)}, where we use the definition,- = | I
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FIG. 1. Phase space partition of Eq. (1); (&) wikh+ 1 =9 )
deterministic periodic attractors and (b) with superimposedrIG. 2. Residence times density function for (2), obtained
random states (dots), and with, = 0.05 and 7 = 3. The  with 50 realizations of X 107 time steps of size\t = 1072,
thick line corresponds to the attractbf(A)). (A) =0.123, ¢ =5 X 107, and7 = 6.
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FIG. 3. The RTDF versus for (a) Eq. (1), (b) Eq. (2), and
(c) Eq. (3). Data obtained with (&)\) = 2.02, o, = 0.05, 7 L
and 100 realizations of0° iterations; (b){A) = 0.123, o = 0 20 40
5 X 107*, and 50 realizations of X 107 time steps of size T

At = 107%; and (c){A) = 0.49, o = 1073, and realizations

as in (b). The inset plots indicate the height and widthFIG. 4. n/W versus r for different (A) for (a) Eq. (1)

behavior. (h/W X 10°, o, = 0.05, and, from top to bottom(A) =
2.00828, 2.01055, 2.01344, 2.01713, 2.02182, and 2.02781);
(b) Eq. (2) ¢/W X 105, o =5 X 1074, and (1) = 0.124,

; i 0.1235, 0.123, 0.1225, 0.122, and 0.1215); and (c) Eg. (3)
calculated at the heighit/./e shows a remarkable mini (/W X 10°. & = 103, and(A) = 0.496, 0.494, 0.492, 0.49.

mum, as represented in the inset curveBhe correla- (488 and 0.486). The number of realizations, iterations, and
tion time of the parametric random perturbation acts astime steps are the same as in Fig. 3.

a tuner which controls (in a statistical sense) the behav-

ior of the system, maximizing its localization on the re-

gion of the phase space surroundify). Furthermore, from the deterministic bifurcation point. With this infor-
the relationz/W has a maximum for a particular value mation, in Fig. 5 we plot the behavior af* with the

of 7, and this optimal value depends an= (A;), as can quantity AT* = |T* — T(Ag)|, whereT(Ay) is the pe-
be appreciated in Fig. 4. Such a dependence enables tied of the deterministic system at precisely the Hopf bi-
to relate the optimal correlation time for maximal local- furcation point. The curves can be fitted by a power law
ization 7*, with the temporal scales of the deterministic 7™ ~ (AT*)* with the exponenta = —0.59, —0.58, and
counterparts. We first study the behavior of the postpone-0.53 for (1)—(3), respectively, and this seems to indicate
ment of the bifurcation point because of the multiplicativethat the localization behavior with is characterized by a
noise in order to obtain the postponed bifurcation pointunique exponent with value close tol /2. We note that
Ay(o, 7). We next calculate the effective distance to thefor the case of (1) it is even possible to relai@* with
bifurcation pointAx* = |A — Aj|, and measure from the the system implicit periodicity,, thus recovering a simi-
deterministic temporal series the peri@d of the oscil- lar relation to that calculated in [12]. In this way, these re-
lations when the system is evaluated at a distaiaé  sults relate the resonantlike behavior previously reported
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further research is required to clarify this point. This paper
also relates the SR-like behavior previously reported with
this localization effect.
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FIG. 5. 7* versus AT* for (a) Eg. (1), (b) Egq. (2), and
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a novel effect of enhanced localization of orbits mediated
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The quality factor3, as defined in [7], is a useful quantity

to measure the changes in the degree of coherence of
an autonomous system and subject to noise. For these
systems the principal peak in the power spectrum has a
finite height and width, and, therefore, any variation in the
system response (indicating a change in the coherence)
leads to changes either in the height, the width, or in both.
The quality factor is a good indicator incorporating both
quantities.
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