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Resonance with Noise and Delay
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We propose here a stochastic binary element whose transition rate depends on its state at a fixed
interval in the past. With this delayed stochastic transition this is one of the simplest dynamical models
under the influence of “noise” and “delay.” We demonstrate numerically and analytically that we
can observe resonant phenomena between the oscillatory behavior due to noise and that due to delay.
[S0031-9007(99)08909-7]

PACS numbers: 05.40.Ca, 02.30.Ks, 02.50.–r
g
n

a

o

a

-

se
me

th.
as

ility
ast.

as
pt
y,

del
eak
on
bit
tic
lest
he

a

u-
il-
el.
ics
Resonant behavior is one of the most studied and u
ized fundamental physical phenomena. As well as b
ing of interest in a variety of fields of physics, rangin
from elementary particle experiments, such as resona
analyzed with the Breit-Wigner formula [1], to resonan
electrical circuits [2], it has recently been actively inves
tigated in the context of biological information processin
as an application of stochastic resonance (see, e.g., [
In these studies, noise, which is normally treated as
obstacle to information processing, is considered as pl
ing a positive role in biological information processing
It is known that delay, which is another element prese
and studied in biological phenomena and information pr
cessing (see, e.g., [4]), can cause a complex oscillat
behavior in an otherwise simple, stable dynamical sy
tem. Analogous resonant phenomena with respect to
lay have also been noted and investigated. In [5], f
example, the effect of delay in a lateral inhibition in
neural network is investigated both experimentally an
theoretically. It is found that delayed lateral inhibition
can cause amplification of neural responses to sinusoi
stimuli in spite of the fact that, without delay, this inhibi
tion generally attenuates such responses.

The main theme of this paper is the presentation of
simple model which shows that delay and noise can ha
a resonance by themselves without an external perio
0031-9007y99y82(14)y2811(5)$15.00
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driving force. Our model is a two state system who
dynamics is governed by combinations of its state at so
fixed interval in the past and noise with a certain wid
In the probability space, this model can be described
a stochastic binary element whose transition probab
depends on its state at some fixed interval in the p
Thus, in this description the model can be considered
a previously studied “delayed random walk” [6] exce
that it can only take two states. With a fixed dela
we show analytically and numerically that such a mo
has a residence time histogram which shows a p
of maximum height with appropriately chosen transiti
probability, i.e., noise and delay “tuned” together exhi
a resonance. From the point of view of stochas
resonance, this is a new type and one of the simp
models which is analytically tractable. We conclude t
report with a discussion of a possible utilization of such
resonant behavior with noise and delay.

Before presenting our model, we briefly discuss a n
merical study on a simple one dimensional system to
lustrate the physics motivating the proposal of the mod
Let us consider a simple one dimensional map dynam
with delayt and noisejL, which is given by

zst 1 1d ­ tanhhbfzst 2 td 2 ugj 1 jL . (1)

b and u are parameters andjL has the following
© 1999 The American Physical Society 2811
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probability distribution:

PsjL ­ ud ­
1

2L
s2L # u # Ld ,

­ 0 su , 2L, u . Ld . (2)

In other words,jL is a time uncorrelated uniformly dis-
tributed noise taking the ranges2L, Ld. This map can be
considered as a discrete time correspondence of the
lowing differential equation model:

dz
dt

­ 2
≠

≠z
V szd 1 jL ,

V szd ­
1
2

z2std 2
1
b

log ssscoshhbfzst 2 td 2 ugjddd .
(3)

The shape of the asymmetric potentialV szd with no delay
is shown in Fig. 1(A). We have numerically simulate
the map (1) with various noise width and delay an
found that we can have a regular spiking behavior
shown in Fig. 1(C) for tuned noise width and delay. Also
we have observed that the signal to noise ratio of t
corresponding peak in the Fourier spectrum goes throu
a maximum with varying noise width as is generall
found in a system showing a stochastic resonance.
can qualitatively argue that the delay alters the effecti
potential into an oscillatory one just like that due to a
external oscillating force leading to a stochastic resonan
with tuned noise width. The analysis of the dynamic
given by (1) or (3), however, is a nontrivial task. Ou
model is an approximate abstraction of this dynami
retaining asymmetric stochastic transition and delay
order to gain insight into the resonant behavior with noi
and delay.

Let us now describe our model in detail. The sta
of the systemXstd at time stept can take either21 or
1. With the same noisejL, we can define our model
formally.

Xst 1 1d ­ uffsssXst 2 tdddd 1 jLg ,

fsnd ­
1
2

fsa 1 bd 1 nsa 2 bdg ,

ufng ­ 1sn $ 0d, 21sn , 0d , (4)

where a and b are parameters such thatjaj # L and
jbj # L, andt is the delay. In relation to the map (1)
this model is an approximate discretization of space in
two states witha andb controlling the bias of transition
(reflecting the two different barrier heights from the tw
stationary points of the potential), depending on the sta
of X at t steps before.

This model can be described in the probability spa
more concisely as shown in Fig. 2. The formal definitio
is given as follows:
2812
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FIG. 1. (A) The shape of the asymmetric potential forb ­
2.0 and u ­ 0.1. Also the typical dynamics ofZstd from the
map model as we change noise widthL. The values ofL
are (B)L ­ 0.2, (C) L ­ 0.4, and (D)L ­ 0.8. The data are
taken witht ­ 20, b ­ 2.0, u ­ 0.1, and the initial condition
Zstd ­ 0.0 for t [ f2t, 0g. The plots are shown between
t ­ 1000 to 2000.

Ps1, t 1 1d ­ p, Xst 2 td ­ 21 ,

­ 1 2 q, Xst 2 td ­ 1 ,

Ps21, t 1 1d ­ q, Xst 2 td ­ 1 ,

­ 1 2 p, Xst 2 td ­ 21 ,

p ­
1
2

√
1 1

b
L

!
, q ­

1
2

√
1 2

a
L

!
,

(5)

wherePss, td is a probability thatXstd ­ s. Hence, the
transition probability of the model depends on its sta
at t steps past and is a special case of delayed rand
walks [6].

We first investigate the model numerically and obser
that a qualitatively similar feature to those shown in Fig.
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FIG. 2. Schematic view of the stochastic model dynamics

appears. We randomly generateXstd for the intervalt ­
s2t, 0d. Simulations are performed in which paramete
are varied andXstd is recorded up to106 steps. From the
trajectoryXstd, we construct a residence time histogram
hsud for the system to be in the state21 for u consecutive
steps. Some examples of histograms and correspond
Xstd are shown in Fig. 3 (q ­ 1 2 q ­ 0.5; t ­ 10).
We note that withp ø 0.5, as in Fig. 3(A), the model
has a tendency to switch or spike toX ­ 1 state after
the time step interval oft. But the spike trains do not
last long and result in a small peak in the histogram
For the case of Fig. 3(C) wherep is closer to0.5, we
FIG. 3. Residence time histogram and dynamics ofXstd as we changep. The values ofp are (A) p ­ 0.005, (B) p ­ 0.05, and
(C) p ­ 0.2. The solid line in the histogram is from Eqs. (8)–(10).
.
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observe less regular transitions and the peak height is ag
small. With appropriatep as in Fig. 3(B), spikes tend to
appear at intervalt more frequently, resulting in higher
peaks in the histogram. This change of peak height
histograms which reaches a maximum at an appropria
noise level is one way to characterize stochastic resonan
Choosing an appropriatep is equivalent to “tuning” noise
width L with other parameters appropriately fixed. In
this sense, our model shares a feature of the stochas
resonance. It can be classified among models of stochas
resonance without an external signal [7]. The differenc
and the new point is the use of delay as a source of
oscillatory dynamics. With this characteristic, it could be
termed as stochastic resonance with delayed dynamics
equivalently, a resonance with noise and delay.

In order to make this point clearer, let us treat the mod
analytically. The first observation to make with the mode
is that given t, it consists of statistically independent
t 1 1 Markov chains. Each Markov chain has its stat
appearing at everyt 1 1 interval. With this property of
the model, we label time stept by the two integerss and
k as follows:

t ­ sst 1 1d 1 k, s0 # s, 0 # k # td . (6)

Let P6std ; P6ss, kd be the probability for the state to
2813
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be in the61 state at timet or ss, kd. Then, it can be de-
rived that

P1ss, kd ­ as1 2 gsd 1 gsP1ss ­ 0, kd ,

P2ss, kd ­ bs1 2 gsd 1 gsP2ss ­ 0, kd ,

a ­
p

p 1 q
, b ­

q
p 1 q

, g ­ 1 2 sp 1 qd .

(7)
2814
In the steady state, we haveP1ss ! `, kd ; P1 ­ a

and P2ss ! `, kd ; P2 ­ b. The steady state resi-
dence time histogram can be obtained by computing
following quantity: hsud ; Ps1; 2, u; 1d, which is the
probability that the system takes consecutive21 state
u times between two11 states. With the definition of
the model and the property of statistical independen
between Markov chains in the sequence, the followi
expression can be derived:
Ps1; 2, u; 1d ­ P1sP2duP1 ­ sbdusad2 s1 # u , td , (8)

­ P1sP2dts1 2 qd ­ sbdtsad s1 2 qd su ­ td , (9)

­ P1sP2dtsqd s1 2 pdu2tspd ­ sbduspd2 su . td . (10)
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With appropriate normalization, this expression can refle
the shape of the histogram obtained by numerical simu
tions as shown in Fig. 3. Also, by differentiating Eq. (9
with respect top, we can derive the resonant condition
for the peak to reach a maximum height as

q ­ pt (11)
or, equivalently,L 2 a ­ sL 1 bdt. Figure 4(A) shows
how the maximum height changes withp and t sq ­
0.5d. We see that the peak maximum is reached b
choosing parameters according to Eq. (11). Also, b
changing q, we can control the width and height of
graphs. An example is shown in Fig. 4(B). We note th
this analysis for the histogram is exact in the stationa
limit, which is another feature of the model.

FIG. 4. (A) Plots of peak height by varyingp with q ­ 0.5
for different t: (a) t ­ 5; (b) t ­ 10; (c) t ­ 15. The solid
line is from Eq. (9). (B) Resonance curves with varyingq from
Eq. (9). The parameters aret ­ 10, andq ­ (a) 0.1, (b) 0.2,
(c) 0.3, (d) 0.4, and (e) 0.5.
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We have proposed here a very simple model whic
nonetheless illustrates resonance behavior between no
and delay both numerically and analytically. To our
knowledge, this is a new phenomena not discusse
previously. By relating a and b to the membrane
threshold, the model could be used as a very simplifie
and abstracted model of spiking neuron with delaye
self-feedback [8], and could be developed for a mode
of pulse coupled neurons with delay [9]. Also, with
the analytically tractable resonant characteristics of th
model described in this paper, we could possibly seek a
application of this delayed stochastic binary element fo
information processing, such as coding [10]. Exploratio
of such applications as well as extension of the model int
many body systems is the focus of our current research.
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