PHYSICAL REVIEW
LETTERS

VOLUME 82 5 APRIL 1999 NUMBER 14

Resonance with Noise and Delay
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We propose here a stochastic binary element whose transition rate depends on its state at a fixed
interval in the past. With this delayed stochastic transition this is one of the simplest dynamical models
under the influence of “noise” and “delay.” We demonstrate numerically and analytically that we
can observe resonant phenomena between the oscillatory behavior due to noise and that due to delay.
[S0031-9007(99)08909-7]
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Resonant behavior is one of the most studied and utildriving force. Our model is a two state system whose
ized fundamental physical phenomena. As well as bedynamics is governed by combinations of its state at some
ing of interest in a variety of fields of physics, ranging fixed interval in the past and noise with a certain width.
from elementary particle experiments, such as resonanda the probability space, this model can be described as
analyzed with the Breit-Wigner formula [1], to resonanta stochastic binary element whose transition probability
electrical circuits [2], it has recently been actively inves-depends on its state at some fixed interval in the past.
tigated in the context of biological information processingThus, in this description the model can be considered as
as an application of stochastic resonance (see, e.g., [3p. previously studied “delayed random walk” [6] except
In these studies, noise, which is normally treated as athat it can only take two states. With a fixed delay,
obstacle to information processing, is considered as playwe show analytically and numerically that such a model
ing a positive role in biological information processing. has a residence time histogram which shows a peak
It is known that delay, which is another element presenbf maximum height with appropriately chosen transition
and studied in biological phenomena and information proprobability, i.e., noise and delay “tuned” together exhibit
cessing (see, e.g., [4]), can cause a complex oscillatorg resonance. From the point of view of stochastic
behavior in an otherwise simple, stable dynamical sysresonance, this is a new type and one of the simplest
tem. Analogous resonant phenomena with respect to denodels which is analytically tractable. We conclude the
lay have also been noted and investigated. In [5], foreport with a discussion of a possible utilization of such a
example, the effect of delay in a lateral inhibition in aresonant behavior with noise and delay.
neural network is investigated both experimentally and Before presenting our model, we briefly discuss a nu-
theoretically. It is found that delayed lateral inhibition merical study on a simple one dimensional system to il-
can cause amplification of neural responses to sinusoidalstrate the physics motivating the proposal of the model.
stimuli in spite of the fact that, without delay, this inhibi- Let us consider a simple one dimensional map dynamics
tion generally attenuates such responses. with delayr and noisef;, which is given by

The main theme of this paper is the presentation of a _
simple model which shows that delay and noise can have e+ ) =taniple(c = 7) = 0L + & (1)
a resonance by themselves without an external periodi® and 6 are parameters and,; has the following

0031-900799/82(14)/2811(5)$15.00 © 1999 The American Physical Society 2811



VOLUME 82, NUMBER 14 PHYSICAL REVIEW LETTERS 5 ARIL 1999

probability distribution: A V(@

P&, = u) = i(—LSuSL),

=0w<-Lu>1L). (2) 2 1 ~17 P
In other words,&; is a time uncorrelated uniformly dis- 0.2
tributed noise taking the rande-L, L). This map can be ®
considered as a discrete time correspondence of the fol- V0]

lowing differential equation model:

dz
dt

=—%vw+§b

V(@) = 5 20 — g log(cosHBL(r — ) ~ 01).
@

The shape of the asymmetric potentigl;) with no delay

is shown in Fig. 1(A). We have numerically simulated
the map (1) with various noise width and delay and
found that we can have a regular spiking behavior as
shown in Fig. 1(C) for tuned noise width and delay. Also,
we have observed that the signal to noise ratio of the
corresponding peak in the Fourier spectrum goes through
a maximum with varying noise width as is generally
found in a system showing a stochastic resonance. We
can qualitatively argue that the delay alters the effective
potential into an oscillatory one just like that due to an i L
external oscillating force leading to a stochastic resonance i \*‘%‘h\ ” JH‘H”i‘H"W
with tuned noise width. The analysis of the dynamics 1 1 . f il
given by (1) or (3), however, is a nontrivial task. Our il

model is an approximate abstraction of this dynamics 2

retaining asymmetric stochastic transition and delay irFIG. 1. (A) The shape of the asymmetric potential f®r=
order to gain insight into the resonant behavior with nois€.0 and# = 0.1. Also the typical dynamics of(z) from the
and delay. map model as we change noise width The values ofL

. . . are (B)L = 0.2, (C)L =04, and (D)L = 0.8. The data are
Let us now descnb_e our model in deta_|l. The Stat€aken withr = 20, B = 2.0, # = 0.1, and the initial condition
of the systemX(z) at time stepr can take either-1 or  z(;) = 0.0 for + € [-7,0]. The plots are shown between

1. With the same nois€;, we can define our model ¢ = 1000 to 2000.

1
‘ |

W

“H;\”“\'\:‘]"‘:T

formally.
X(t+1)=0[f(X(t — 7)) + &1, P(Lt+1)=p, Xt-—-1)=-1,
1 =1 - - =
fn) = Sl + b) + nla = b)], t=q Xt-m=1.
P(—1,t +1)=gq, Xt —1)=1,
0[}’1] = l(n = O), _l(l’l < O), (4) — 1 _ p, X(t _ T) — _1’
where ¢ and b are parameters such thhi| = L and 1 b 1 a
|| = L, and 7 is the delay. In relation to the map (1), P=7 1+ ) 9= 5 1 - )
this model is an approximate discretization of space into
two states withu and b controlling the bias of transition ()

(reflecting the two different barrier heights from the two where P(s, r) is a probability thatX(z) = s. Hence, the

stationary points of the potential), depending on the stat&ransition probability of the model depends on its state

of X at 7 steps before. at 7 steps past and is a special case of delayed random
This model can be described in the probability spacevalks [6].

more concisely as shown in Fig. 2. The formal definition We first investigate the model numerically and observe

is given as follows: that a qualitatively similar feature to those shown in Fig. 1
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1q observe less regular transitions and the peak height is again
small. With appropriate as in Fig. 3(B), spikes tend to
appear at intervatr more frequently, resulting in higher
peaks in the histogram. This change of peak height in
histograms which reaches a maximum at an appropriate
9 P noise level is one way to characterize stochastic resonance.
Choosing an appropriate is equivalent to “tuning” noise
width L with other parameters appropriately fixed. In
this sense, our model shares a feature of the stochastic
resonance. It can be classified among models of stochastic
1p resonance without an external signal [7]. The difference
FIG. 2. Schematic view of the stochastic model dynamics. and the new point is the use of delay as a source of its
oscillatory dynamics. With this characteristic, it could be
termed as stochastic resonance with delayed dynamics or,
equwalently, a resonance with noise and delay.

In order to make this point clearer, let us treat the model
analytically. The first observation to make with the model
is that givenr, it consists of statistically independent

Aot 1 Markov chains. Each Markov chain has its state
%pearlng at every + 1 interval. With this property of
the model, we label time stepby the two integers and
k as follows:

appears. We randomly generaté) for the intervalr =
(—7,0). Simulations are performed in which parameters
are varied an(¢) is recorded up td0° steps. From the
trajectory X (¢), we construct a residence time histogram:

h(u) for the system to be in the statel for u consecutive
steps. Some examples of histograms and correspondir
X(r) are shown in Fig.3d=1—- g =0.5; 7 = 10).
We note that withp < 0.5, as in Fig. 3(A), the model
has a tendency to switch or spike ¥ = 1 state after
the time step interval of. But the spike trains do not r=s(r+1)+k 0O=s0=k=r1). (6)
last long and result in a small peak in the histogram.
For the case of Fig. 3(C) wherg is closer t00.5, we Let P+(t) = P+(s,k) be the probability for the state to
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FIG. 3. Residence time histogram and dynamicX @ as we change. The values ofp are (A) p = 0.005, (B) p = 0.05, and
(C) p = 0.2. The solid line in the histogram is from Egs. (8)—(10).
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be in the=*1 state at time or (s, k). Then, it can be de- In the steady state, we hawe (s — «,k) = P. = «

rived that and P_(s — »,k) = P_ = 8. The steady state resi-
_ s s _ dence time histogram can be obtained by computing the
P k) = a(l — + v'P =0,k i . ot
+5.0) = all =) + ¥'P+(s = 0,b), following quantity: () = P(+; —,u; +), which is the
P_(s,k) = B(1 — y*) + ¥y'P_(s = 0,k), probability that the system takes consecutivé state
D g u times between twot1 states. With the definition of
a = Pt g’ B = P y=1—-(p+aq. the model and the property of statistical independence

between Markov chains in the sequence, the following
(7) | expression can be derived:

P(+;—,u;+) = P (P)'Py = (B)(a)* (=u<r), (8)
=P (P-)"(1 —¢q)=(PB)(a)(1 — q) (u=r), 9
=P(P)()(1 = p)"(p) = (B)“(p)* (u>1). (10)

With appropriate normalization, this expression can refl|ect We have proposed here a very simple model which
the shape of the histogram obtained by numerical simularonetheless illustrates resonance behavior between noise
tions as shown in Fig. 3. Also, by differentiating Eq. (9) and delay both numerically and analytically. To our
with respect top, we can derive the resonant condition knowledge, this is a new phenomena not discussed
for the peak to reach a maximum height as previously. By relatinga and » to the membrane
qg=pr (11) threshold, the model could be used as a very simplified

; o ; and abstracted model of spiking neuron with delayed
ﬁgvscmgarlﬁgfi}r/nﬁjm ﬁeigrgtL c;aliw)gésF\;\%;:ZﬁéAz S(ZOLVS self-feedback [8], and could be developed for a model
0.5). We see that the peak maximum is reached b f pulse coupled neurons with delay [9]. Also, with
choosing parameters according to Eq. (11). Also, b he analytically tractable resonant characteristics of the

' ' *_c’model described in this paper, we could possibly seek an

changing g, we can control the width and height of A ) S
graphs. An example is shown in Fig. 4(B). We note thatappllcatlon of this delayed stochastic binary element for
: ) ' nformation processing, such as coding [10]. Exploration

this analysis for the histogram is exact in the stationar)}f h licati I tensi F1h del int
limit, which is another feature of the model. ot Such applications as Wew as extension ot the modet Into

many body systems is the focus of our current research.
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