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Statistical Mechanics of an Oscillator Associative Memory with Scattered Natural Frequencies
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Analytic treatment of a nonequilibrium random system with large degrees of freedom is one of the
most important problems of physics. However, little research has been done on this problem as far
as we know. In this paper, we propose a new mean field theory that can treat a general class of
nonequilibrium random system. We apply the present theory to an analysis of an associative memory
with oscillatory elements, which is a well-known typical random system with large degrees of freedom.
[S0031-9007(99)08816-X]
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The analytic treatment of a nonequilibrium random
system with large degrees of freedom is one of the mo
important problems of physics. However, little researc
has been done on this problem as far as we know. In t
paper, we propose a new mean field theory that can tr
a general class of a nonequilibrium random system. W
apply the present theory to an analysis of an associat
memory with oscillatory elements, which is a well-known
typical random system with large degrees of freedom.

Historically, there are two important studies regardin
the nonequilibrium systems with large degrees of freedo
that cannot be treated by conventional equilibrium statis
cal mechanics, since we cannot define the Lyapunov fun
tion with “bottoms.” Kuramoto [1] theoretically analyzed
the mutual entrainment of uniformly coupled oscillator
with scattered natural frequencies (Kuramoto theory). H
model corresponds to a mean field model of a ferromagn
in equilibrium statistical mechanics. Kuramoto utilized
the ideas of statistical mechanics, namely, a notion
macroscopic order parameters, to investigate his noneq
librium system with large degrees of freedom. Daido [2
numerically analyzed the quasientrainment of random
coupled oscillators with scattered natural frequencies. H
model corresponds to the Sherrington-Kirkpatrick (SK
model of a spin-glass [3] in equilibrium statistical me
chanics. A mean field theory should be developed f
nonequilibrium random systemswith frustration that fol-
lows the history of mean field theories in the equilibrium
statistical mechanics. However, this kind of nonequilib
rium random system has not yet been theoretically an
lyzed (see [4] for the random systemwithout frustration).
This is a famous “open problem” in physics [5]. That i
the reason why we have proposed the present theory.

On the other hand, the Lyapunov function cannot b
defined in spinlike systems with the nonmonotonic rea
tion function either. In the self-consistent signal-to-nois
analysis (SCSNA) [6], the notion of a macroscopic orde
parameter is also introduced to analyze these frustra
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spinlike systems, which cannot be treated by conventio
equilibrium statistical mechanics. Note that the results
applying the SCSNA to simple random spin systems [6,7
i.e., the SK model and the Hopfield model [8], coincid
with those of the replica theories [9,10].

In this paper, we propose a new theoretical framewo
for an oscillator associative memory model with scatter
natural frequencies in memory retrieval states. This sy
tem can be considered as a typical example of noneq
librium random systems with large degrees of freedo
The present theory makes a bridge between the SCS
and the Kuramoto theory. Using the same procedure,
can easily treat a glass oscillator system [2]. Our theo
is reduced to the Kuramoto theory in the finite loadin
case. When all oscillators have uniform natural freque
cies, our theory coincides with the previously propose
theories [11,12] in the equilibrium statistical mechanic
for anXY spin system.

The mutual entrainment is an important notion of
nonequilibrium system with large degrees of freedom.
uniformly coupled oscillators, there is a unique stab
state, the ferromagnetic phase in the phase space.
the other hand, in frustrated systems, there are ma
stable states in the phase space. We need to elucid
the properties of the mutual entrainment in each stab
phase (ferromagnetic phase and glass phase). Our
theory describes a phenomenon of the mutual entrainm
in the ferromagnetic phase (memory retrieval). Thus, w
numerically study a degree of the mutual entrainme
in the glass phase (spurious memory retrieval). It
numerically shown in this paper that almost all oscillato
synchronize under memory retrieval, but desynchroni
under spurious memory retrieval when setting optim
parameters. Thus, it is possible to determine whether
recalling process is successful or not using informatio
about the synchrony/asynchrony.

In general, when the coupling is sufficiently weak, th
high-dimensional dynamics of a coupled oscillator syste
© 1999 The American Physical Society
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can be reduced to the phase equation [1,13]. Let
consider the following simplified model:

dfi

dt
­ vi 1

NX
j­1

Jij sinsfj 2 fi 1 bijd , (1)

where N is the total number of oscillators,fi is the
phase of theith oscillator, andvi is the natural frequency
assumed to be randomly distributed over the who
population with a density denoted by the symmetr
distribution gsvd, i.e., gsvd ­ gs2vd. Note that the
average ofvi may be set to zero without a loss o
generality. The theory presented below can be eas
extended to treat the system with any other distributio
gsvd. Jij and bij denote an amplitude of a synaptic
weight and a synaptic delay, respectively. In ord
to investigate the nature of frustrated nonequilibriu
systems, we have selected the following generalized He
learning rule [11] to determineJij andbij :

Cij ­ Jij expsibijd ­
1
N

pX
m­1

j
m
i j

m

j ,

j
m
i ­ expsiu

m
i d ,

(2)

as their typical example.hum
i ji­1,...,N ,m­1,...,p are the phase

patterns to be stored in the network and are assigned
random numbers with a uniform probability inf0, 2pg.
Here, we define a parametera (loading rate) such that
a ­ pyN . In the equilibrium limit of this model, that
is, gsvd ­ dsvd, the storage capacity given byac ­
0.038 [12].

We putsi ­ expsifid for the sake of simplicity. The
order parametermm, which measures the overlap betwee
the system statesi and the embedded patternjm, is
defined as

mm ­
1
N

NX
j­1

j
m

j sj . (3)

We obtain order parameter equations of the present s
tem by applying the following manipulations: First
assuming a self-consistent local field for each of the o
cillators, a distribution ofsi undergsvid is formally de-
rived by the Kuramoto theory. Second, we estimate t
contribution of randomness, that is, the uncondensed p
terns in the present case by the SCSNA and determine
local field in a self-consistent manner. Finally, the ord
parameter equations are obtained using the self-consis
local field. A detailed derivation of the present theory wi
be discussed elsewhere. Here, we assumem1 ­ Os1d
andmm ­ Os1y

p
N d for m . 1 (uncondensed patterns)

Then, the following two dimensional equations for the o
der parameters are obtained:

m ­ kkXsx1, x2, jdllx1,x2,j , (4)

U ­ kkF1sx1, x2, jdllx1,x2,j , (5)

where kk· · ·llx1,x2,j is taken to mean the Gaussian ave
age overx1, x2 and condensed patternj1, kk· · ·llx1,x2,j ­
k
R R

Dx1 Dx2 · · ·lj . The pattern superscripts 1 ofm are
us
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omitted for brevity. The self-consistent mean fieldh̃, X,
F1 and the Gaussian measureDx1Dx2 are expressed as
follows:

Dx1Dx2 ­
dx1dx2

2pr2 exp

√
2

x2
1 1 x2

2

2r2

!
, (6)

r2 ­
a

2s1 2 Ud2 , h̃ ­ jm 1 x1 1 ix2 , (7)

Xsx1, x2, jd ­ h̃
Z 1

21
dx gsjh̃jxd

p
1 2 x2 , (8)

F1sx1, x2, jd ­
Z 1

21
dx

√
gsjh̃jxd 1

jh̃j

2
xg0sjh̃jxd

!
3

p
1 2 x2 . (9)

Here,U corresponds to the susceptibility, which measur
the sensitivity to external fields. A distribution of resul
tant frequenciesv in the memory retrieval state, which is
denoted aspsvd, becomes

psvd ­ rdsvd 1

*Z
Dx1 Dx2

gsv
q

1 1
jhj2

v2 dq
1 1

jhj2

v2

+
j

,

(10)

r ­

*Z
Dx1 Dx2jh̃j

Z 1

21
dx gsjh̃jxd

+
j

, (11)

where r measures the ratio between the number
synchronous oscillators and the system sizeN. We now
consider the relationships between the present theory
the previously proposed theories. For the equilibriu
limit, gsxd ­ dsxd, we obtain

X ­
h̃
jh̃j

, F1 ­
1

2jh̃j
, psvd ­ dsvd , (12)

which coincide with the replica theory [12] and the
SCSNA [11]. On the other hand, regarding the uniform
system limit,a ­ 0, our theory reproduces the Kuramot
theory as

m ­ m
Z 1

21
dx gsjmjxd

p
1 2 x2 , (13)

psvd ­ rdsvd 1
gsv

q
1 1

jmj2

v2 dq
1 1

jmj2

v2

, (14)

r ­ jmj
Z 1

21
dx gsjmjxd . (15)

As mentioned before, our theory has made a brid
between the equilibrium-frustrated system and th
non-equilibrium-uniform system. In addition, we hav
presented a systematic way of analytical treatments
the nonequilibrium random systems. IfCij is assigned
to random numbers with a Gaussian in a complex plan
RefCijg , N s1yN , ay2Nd, ImfCijg , N s0, ay2Nd,
the order parameter equation consists with Eq. (4) und
2801
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FIG. 1. (a) Phase diagram insjmj, s, ad space. (b)s vs
critical memory capacityac.

the constraint U ­ 0. The detailed results will be
presented elsewhere. We can also treat Daido’s gl
oscillator system (with real number interaction) [2] usin
the same procedure.

In the following analyses, we choose a system wi
gsvd ­ s2ps2d21y2 exps2v2y2s2d. Figure 1(a) shows
a phase diagram in thesjmj, s, ad space, which was ob-
tained by numerically solving these order parameter eq
tions. A cross section of this curved surface ats ­ 0 co-
incides with the results of the SCSNA [11] and the replic
theory [12]. Furthermore, a cross section of this curv
surface ata ­ 0 is equal to a result of the Kuramoto
theory [1]. Thus, our theory bridges the gap betwe
these theories. Figure 1(b) shows the values of critic
memory capacityac for various values ofs. ac de-
creases monotonically ass increases. The critical value
of s at ac ­ 0 is given bysc ­ 0.62, which coincides
with that of the Kuramoto theory. Figures 2(a)–2(d) di
play jmj values vss for various values ofa, where the
solid curves are obtained theoretically, and the plots sh
results obtained by numerical simulation. According
these figures, the theory is in good agreement with t
simulation results.

FIG. 2. Values ofjmj vs s (solid curves theoretically ob-
tained, and plots obtained by numerical simulation). (a)a ­
0.0 ( p ­ 1, N ­ 1000). (b) a ­ 0.01 sN ­ 2000d.
(c) a ­ 0.02 sN ­ 2000d. (d) a ­ 0.03 sN ­ 2000d.
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Next, we examined the distributions of the resultan
frequenciesvi over the whole population of oscillators
in the memory retrieval state and the spurious memor
state. Here, the resultant frequenciesvi were calcu-
lated by using the long time average ofdfiydt. The
plots in Figs. 3(a) and 3(b) show the values of resultan
frequencieshviji­1,...,N vs s, that is, a bifurcation dia-
gram. Figure 3(a) denotesvi distributions in memory
retrieval states, and Fig. 3(b) represents those in spurio
memory states. These results show that there exists
region s that satisfies the two conditions: all oscillators
mutually synchronize in memory retrieval, and oscillators
desynchronize in spurious memory retrieval. Thus, i
is possible to determine whether the recalling process
successful or not using only the information about the
synchrony/asynchrony, when propers is given. In
Figs. 3(a) and 3(b), all phase valuesfi continued drifting
toward negative directions due to an offset of scatteredvi.
In other samples, allfi continued drifting toward positive
directions.

We investigated the effect of the system sizeN on the
vi distribution. The solid curves in Fig. 4 indicate the
distributions of the resultant frequenciespsvd in Eq. (10).
The histograms in Fig. 4 show the results from the nu
merical simulation. As shown in Figs. 4(a)–4(a′′), the
theory agrees well with the simulation results in mem
ory retrieval states. As shown in Figs. 4(b)–4(b′′), there
exists a delta peak that indicates the mutual entrainme
of a large population of oscillators in memory retrieval
states. However, in spurious memory states, the distr
bution of the average frequency is gentle compared t
the distribution in memory retrieval states, which indi-
cates the quasientrainment of oscillators [2]. According
to these figures, we believe the phenomena mentioned b
fore are invariant to the system sizeN . The reason why
all oscillators mutually synchronize in memory retrieval
states, but desynchronize in spurious states, is because
fective interactions among oscillators in memory states (a
in ferromagnetic states [1]) are different from interactions
in spurious memory states (as in spin-glass states [2]),
which the system is strongly frustrated.

The phase description proposed here can be cons
ered as a minimum model of neural networks based o

FIG. 3. Values of resultant frequencieshviji­1,...,N vs s,
N ­ 2000, and a ­ 0.0315. (a) Memory pattern retrieval.
(b) Spurious memory pattern retrieval.
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FIG. 4. Distribution of resultant frequencies state.a ­ 0.01; s ­ 0.32. Solid curves show theoretical results ofpsvd in
Eq. (10), but delta peaks atv ­ 0 are not indicated. (b),(b′), and (b′′) display detailed distributions of (a),(a′), and (a′′) at v ­ 0,
respectively. (a),(b)N ­ 2000. 20 trials. (a′),(b′) N ­ 4000. 12 trials. (a′′),(b′′) N ­ 8000. 12 trials.
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oscillatory activities that is mathematically solvable
Chaos neural networks yield rich phenomena as discus
here, but cannot be easily analyzed, except with sim
lations. Since the present analysis corresponds to
replica symmetric approximation, we have noted th
it should be extended to the replica symmetry breaki
in order to properly treat the spurious states (spin-gla
states), and this remains for a future paper.

In the field of neuroscience, a growing number of re
searchers have been interested in the synchrony of os
latory neural activities because physiological evidence
their existence has been obtained in the visual cortex o
cat [14,15]. Much experimental and theoretical resear
exists regarding the functional role of synchronizatio
One of the more interesting hypotheses is calledsynchro-
nized population coding,which was proposed by Phillips
and Singer. However, its validity is highly controversia
[16]. In this paper, we numerically showed the possib
ity of determining if the recalling process is successful
not using information about the synchrony/asynchron
If we consider information processing in brain system
the solvabletoy model presented in this paper may be
good candidate for showing the validity of a synchronize
population coding in the brain, and we believe the prese
analysis may strongly influence a debate on the function
role of synchrony.
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