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Statistical Mechanics of an Oscillator Associative Memory with Scattered Natural Frequencies
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Analytic treatment of a nonequilibrium random system with large degrees of freedom is one of the
most important problems of physics. However, little research has been done on this problem as far
as we know. In this paper, we propose a new mean field theory that can treat a general class of
nonequilibrium random system. We apply the present theory to an analysis of an associative memory
with oscillatory elements, which is a well-known typical random system with large degrees of freedom.
[S0031-9007(99)08816-X]
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The analytic treatment of a nonequilibrium randomspinlike systems, which cannot be treated by conventional
system with large degrees of freedom is one of the mostquilibrium statistical mechanics. Note that the results of
important problems of physics. However, little researchapplying the SCSNA to simple random spin systems [6,7],
has been done on this problem as far as we know. In thise., the SK model and the Hopfield model [8], coincide
paper, we propose a new mean field theory that can treatith those of the replica theories [9,10].

a general class of a nonequilibrium random system. We In this paper, we propose a new theoretical framework
apply the present theory to an analysis of an associativior an oscillator associative memory model with scattered
memory with oscillatory elements, which is a well-known natural frequencies in memory retrieval states. This sys-
typical random system with large degrees of freedom. tem can be considered as a typical example of nonequi-

Historically, there are two important studies regardinglibrium random systems with large degrees of freedom.
the nonequilibrium systems with large degrees of freedonThe present theory makes a bridge between the SCSNA
that cannot be treated by conventional equilibrium statistiand the Kuramoto theory. Using the same procedure, we
cal mechanics, since we cannot define the Lyapunov funcan easily treat a glass oscillator system [2]. Our theory
tion with “bottoms.” Kuramoto [1] theoretically analyzed is reduced to the Kuramoto theory in the finite loading
the mutual entrainment of uniformly coupled oscillatorscase. When all oscillators have uniform natural frequen-
with scattered natural frequencies (Kuramoto theory). Higies, our theory coincides with the previously proposed
model corresponds to a mean field model of a ferromagneheories [11,12] in the equilibrium statistical mechanics
in equilibrium statistical mechanics. Kuramoto utilized for an XY spin system.
the ideas of statistical mechanics, namely, a notion of The mutual entrainment is an important notion of a
macroscopic order parameters, to investigate his nonequionequilibrium system with large degrees of freedom. In
librium system with large degrees of freedom. Daido [2]uniformly coupled oscillators, there is a unique stable
numerically analyzed the quasientrainment of randomlstate, the ferromagnetic phase in the phase space. On
coupled oscillators with scattered natural frequencies. Highe other hand, in frustrated systems, there are many
model corresponds to the Sherrington-Kirkpatrick (SK)stable states in the phase space. We need to elucidate
model of a spin-glass [3] in equilibrium statistical me- the properties of the mutual entrainment in each stable
chanics. A mean field theory should be developed fophase (ferromagnetic phase and glass phase). Our new
nonequilibrium random systensith frustration that fol- theory describes a phenomenon of the mutual entrainment
lows the history of mean field theories in the equilibriumin the ferromagnetic phase (memory retrieval). Thus, we
statistical mechanics. However, this kind of nonequilib-numerically study a degree of the mutual entrainment
rium random system has not yet been theoretically anan the glass phase (spurious memory retrieval). It is
lyzed (see [4] for the random systemithout frustration).  numerically shown in this paper that almost all oscillators
This is a famous “open problem” in physics [5]. That is synchronize under memory retrieval, but desynchronize
the reason why we have proposed the present theory. under spurious memory retrieval when setting optimal

On the other hand, the Lyapunov function cannot beparameters. Thus, it is possible to determine whether the
defined in spinlike systems with the nonmonotonic reactecalling process is successful or not using information
tion function either. In the self-consistent signal-to-noiseabout the synchrony/asynchrony.
analysis (SCSNA) [6], the notion of a macroscopic order In general, when the coupling is sufficiently weak, the
parameter is also introduced to analyze these frustratdugh-dimensional dynamics of a coupled oscillator system
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can be reduced to the phase equation [1,13]. Let uemitted for brevity. The self-consistent mean fiélgX,

consider the following simplified model: F, and the Gaussian measube;Dx, are expressed as
de: N _ follows:
O + Z Jij sing; — & + Bij), (1) dxdxs 2+ 3
j=1 Dx1Dx, = ) 2 ex _T , (6)
. . . o
where N is the total number of oscillatorsp; is the p p
phase of theth oscillator, andw; is the natural frequency ’ @

assumed to be randomly distributed over the whole P = > — ) h=¢m+x+in,  (7)

population with a density denoted by the symmetric |

distribution g(w), i.e., g(w) = g(—w). Note that the o = —
average ofw; may be set to zero without a loss of X(xy, x2,£) = h[_ldx g(hl)V = 22, (8)
generality. The theory presented below can be easily

extended to treat the system with any other distribution Fi(x),x, &) = f
g(w). J;; and B;; denote an amplitude of a synaptic -
weight and a synaptic delay, respectively. In order 5

to investigate the nature of frustrated nonequilibrium XVL =X ©)
systems, we have selected the following generalized HebHere,U corresponds to the susceptibility, which measures

1 N
dx (g(lmx) + 'Z—' xg’(lizlx))
1

learning rule [11] to determing;; and 3;;: the sensitivity to external fields. A distribution of resul-
. 1 & tant frequencie® in the memory retrieval state, which is
Cij = Jij expliBij) = N > e, . denoted ag (@), becomes
we _ IR
2 oM Ll
é‘:i - equai )’ p(a) — r5(5) + <f Dx1 DXQ M> ,
as their typical example{d;'}i—1___v..—1..., are the phase 14+ B/
patterns to be stored in the network and are assigned to ¢ (10)
random numbers with a uniform probability [0, 27 ].
Here, we define a parameter (loading rate) such that 1
a = p/N. In the equilibrium limit of this model, that r= </ Dx, szlﬁlj dx g(IﬁIx)> , (11)
is, g(w) = 6(w), the storage capacity given by, = -1 é

0.038 [12]. o where r measures the ratio between the number of
We puts; = expli¢;) for the sake of simplicity. The synchronous oscillators and the system size We now

order parameten*, which measures the overlap betweenconsider the relationships between the present theory and

the system state; and the embedded patted¥, IS the previously proposed theories. For the equilibrium

defined as v limit, g(x) = 8(x), we obtain
1 — -
mt= — 3 s, 3) _ N _ L @) = 5@
N 7 ! X i F, DIk p(@) =8(@), (12)

We obtain order parameter equations of the present sysvhich coincide with the replica theory [12] and the
tem by applying the following manipulations: First, SCSNA [11]. On the other hand, regarding the uniform-
assuming a self-consistent local field for each of the ossystem limit,a = 0, our theory reproduces the Kuramoto
cillators, a distribution ofs; underg(w;) is formally de- theory as

rived by the Kuramoto theory. Second, we estimate the 1

contribution of randomness, that is, the uncondensed pat- m = m/ dx g(|mlx) V1 — x2, (13)
terns in the present case by the SCSNA and determine the ! .

local field in a self-consistent manner. Finally, the order g(@y/1 + 'g—lz)
parameter equations are obtained using the self-consistent p(@) = ré@) + — =, (14)
local field. A detailed derivation of the present theory will L+ =

be discussed elsewhere. Here, we assume= O(1) !

andm* = 0(1/+/N) for u > 1 (uncondensed patterns). r= Imljl dx g(|mlx). (15)

Then, the following two dimensional equations for the or-

der parameters are obtained: As mentioned before, our theory has made a bridge

between the equilibrium-frustrated system and the

m = (X1, %2, )y s (4)  non-equilibrium-uniform system. In addition, we have
presented a systematic way of analytical treatments for
U = {F1(o 02, E)hxn » G the nonequilibrium random systems. df; is assigned
where - --),, r,.¢ IS taken to mean the Gaussian aver-to random numbers with a Gaussian in a complex plane,
age overxj,x; and condensed patte@t, {-- -V, = REC;]~ N(1/N,a/2N), Im[C;;]~ N(0,a/2N),

([ | Dx1Dxy---)¢. The pattern superscripts 1 of are  the order parameter equation consists with Eq. (4) under
2801
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Next, we examined the distributions of the resultant
glass state frequenciesw; over the whole population of oscillators
in the memory retrieval state and the spurious memory
state. Here, the resultant frequencies were calcu-
lated by using the long time average @th;/dt. The
plots in Figs. 3(a) and 3(b) show the values of resultant
frequencies{@;};—1__n VS o, that is, a bifurcation dia-
01 0203 040506 07 gram. Figure 3(a) denotes; distributions in memory
retrieval states, and Fig. 3(b) represents those in spurious
memory states. These results show that there exists a
region o that satisfies the two conditions: all oscillators
mutually synchronize in memory retrieval, and oscillators
b desynchronize in spurious memory retrieval. Thus, it
e . . ; . )
&8 possible to determ!ne whether the recal!lng process is
successful or not using only the information about the
synchrony/asynchrony, when proper is given. In
hFigs. 3(a) and 3(b), all phase valugs continued drifting
toward negative directions due to an offset of scattesrgd

g(w) = Qma?)~12 exp(—w?/20?). Figure 1(a) shows _ ) - '
a phase diagram in thém|, o, a) space, which was ob- :jr;rgg;ie(z)rnssamples, alp; continued drifting toward positive

tained by numerically solving these order parameter equa- X .
tions. A cross section of this curved surfacerat= 0 co- _W? m_ves_tlgated the ef_fect of the_ system s_Ma_)n the
; distribution. The solid curves in Fig. 4 indicate the

incides with the results of the SCSNA [11] and the replica .’ "~ . . |
theory [12]. Furthermore, a cross seE:tio]n of this cuprve istributions of the resultant frequencietw) in Eq. (10).

surface ata = 0 is equal to a result of the Kuramoto he histograms in Fig. 4 show the results from the nu-

theory [1]. Thus, our theory bridges the gap betwee merical simulation. As shown in Figs. 4(a)—4)athe

these theories. Figure 1(b) shows the values of criticaoﬁeigr%%ﬁe;aﬁil nghsrgwimug“gn &iﬁgﬁ;&?}erpeem'
memory capacitya,. for various values ofo. «. de- y : gs. '

creases monotonically as increases. The critical value g;(';tsla? geltg %T;Toahff 'gg';ﬁl;fosr;hien r&i;ﬂrenrzzligr\?;m
of o at a. = 0 is given byo,. = 0.62, which coincides g€ pop y

with that of the Kuramoto theory. Figures 2(a)-2(d) dis—ztli%gf]' o?(t)r\:é e\;?/gr;: esF}lrjgoljjesn?egor}é;ﬁiti%nghzrggt:g
play |m| values vso for various values ofr, where the 9 q y1sg P

solid curves are obtained theoretically, and the plots sho%g?eg'?;rébuﬂzgie'ztgﬁ rrr:gr)l/t ﬁ‘tgi\éﬁ:a?é?;e[sz’] ngzolrg?r:
results obtained by numerical simulation. According to 4 ' 9

these figures, the theory is in good agreement with th 0 these flgurgs, we believe the phenomena mentioned be-
simulation results. ore are invariant to the system siaé The reason why

all oscillators mutually synchronize in memory retrieval
states, but desynchronize in spurious states, is because ef-
fective interactions among oscillators in memory states (as
in ferromagnetic states [1]) are different from interactions
in spurious memory states (as in spin-glass states [2]), in
which the system is strongly frustrated.

The phase description proposed here can be consid-
ered as a minimum model of neural networks based on

memory state

.....

FIG. 1. (a) Phase diagram ifim|, o,«) space. (b)o vs
critical memory capacity..

the constraintU = 0. The detailed results will
presented elsewhere. We can also treat Daido’s gla
oscillator system (with real number interaction) [2] using
the same procedure.

In the following analyses, we choose a system wit
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FIG. 2. Values of|m| vs o (solid curves theoretically ob-
tained, and plots obtained by numerical simulation). daj FIG. 3. Values of resultant frequencig®;};—

00 (p=1, N =1000). (b) a =0.01 (N = 2000). N = 2000, and @ = 0.0315. (a) Memory pattern retrieval.
(c) @ = 0.02 (N = 2000). (d) @ = 0.03 (N = 2000). (b) Spurious memory pattern retrieval.
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FIG. 4. Distribution of resultant frequencies statec = 0.01; o = 0.32. Solid curves show theoretical results pfw) in
Eqg. (10), but delta peaks at = 0 are not indicated. (b),(p and (b') display detailed distributions of (a);jaand (&) atw = 0,
respectively. (a),(bN = 2000. 20 trials. (§,(b) N = 4000. 12 trials. (&),(b") N = 8000. 12 trials.
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