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Interaction of Radiation and Fast Electrons with Clusters of Dielectrics:
A Multiple Scattering Approach
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A fast, accurate, and general technique for solving Maxwell’s equations in arbitrarily disposed clusters
of dielectric objects is presented, based upon multiple scattering of electromagnetic multipole fields.
Examples of application to the simulation of electron energy loss, radiation emission induced by fast
electrons, and light scattering are offered. Large rates of Smith-Purcell radiation are predicted in the
interaction of fast electrons with strings of Al and Si€pheres, suggesting its possible application in
tunable soft UV light generation. Mutual electromagnetic interaction among objects in the different
clusters under consideration is shown to be of primary importance. [S0031-9007(99)08761-X]

PACS numbers: 73.20.Mf, 41.20.Jb, 61.16.Bg, 61.46.+w

The electromagnetic field in composite dielectric mediapositionr,. Assuming that no external sources are lo-
has recently received growing attention in connectiorcated near the object, one can chogge= 0, so that
with the characterization of nanostructures [1] and thdongitudinal modes are explicitly left out (this is a natural
study of scattering, reflection, and absorption of radiatiorgauge due to the transversal nature of the electric field in
[2,3]. As small microstructures are becoming feasible inthis case). s, = (¥, 4£) satisfies the wave equation
the search for actual photonic materials [3], theoretical (V2 + kD), = 0 )
methods suited for the simulation of radiation scattering in )
large, arbitrarily disposed dielectric clusters are becoming? the vacuum region.
necessary in the analysis of fabrication misalignment The electromagnetic field created by some external
effects [4] and various other phenomena like the recentlyOurce must have zero net energy flux around the object,

discovered photonic molecules [5] and radiation tunnelingvhere the external scalar functions can thus be expanded
in photonic lattices [6]. In terms of spherical harmonids,, as

Numerical methods based upon the transfer matrix ext . | ext
approach have been recently developed by Pendry and ¥a () = 2 iLikle = ) Yin (e =Ta)g
co-workers for periodic dielectric composites [7-9]. ) l'fq ) ) )
Effective medium theories have been applied to randondNd,; is a spherical Bessel fungtlon‘.v Besides, the induced
distributions of dielectrics [10,11]. Also, electron en- Part of the electromagnetic fielg;’ results from the
ergy losses near arbitrarily shaped interfaces have bedingle scattering (ss) afg** by the object, so that it is
simulated making use of boundary charges and currenfdy Necessity a combination of spherical outgoing waves,
to reduce the three-dimensional Maxwell equations to g (+) — 58
two-dimensional surface integral equations [12]. P ) = X i (ke = xal)Yi (e =Ta)din . (3)

A general, computationally efficient technique is pre- ) m .
sented here to solve Maxwell’s equations in clusterdOr r outside a(f)phere centeredrat and containing the
of arbitrarily-distributed dielectrics. In a first step, the object. Hereh; ' is a spherical Hankel function [14].
external electromagnetic field is decomposed into multi-The relation betweens" and ¢;° is provided by the
poles around each object of the cluster. Then, the selfscattering matrix,,, implicitly defined by > = 1,43,
consistent field is expressed in terms of the complexvhered Y is a vector of componentﬁii(,z(t).
scattering matrices of the different dielectrics. Finally, Now, let us focus on a cluster of dielectric objects
multiple scattering is carried out until convergence islabeled by coordinate vectorg. The induced part of the
achieved. self-consistent scattered field is the sum of contributions

Let us first consider a dielectric body placed in vacuumcoming from the different components of the cluster, that
The electric field can be expressed in frequency space, "¢ = > id, Here, /" takes the same form as
o in terms of longitudinal, magnetic, and electric scalargq. (3), except that it is made up ¢f* (single scattering

functions,yf, w, andyf, as [13] of the external field atx) plus the result of the free
i propagation ofgb}?d from each objeciB # «, followed
E =Vy; + Loy — PR Lats (1) by scattering ate (self-consistent multiple scattering).
: : , That is,
wherek = w/c, L, = —i(r — r,) X V is the orbital
angular-momentum operator, and the subscuiptndi- AP = P 4y Y Hapihp, (4)
cates that all coordinates are given relative to a nearby Bra

2776 0031-900799/82(13)/2776(4)$15.00 © 1999 The American Physical Society



VOLUME 82, NUMBER 13 PHYSICAL REVIEW LETTERS 29 MRcH 1999

where the operatoH, g describes the noted propagationr, are not in the geometrical centers of the objects
andA = 1 has been introduced for conveniendé. g can  that they label), so that the total number of inequivalent
be constructed in four steps: matricesR. g, Gop, andT,z is substantially smaller than
(i) First, the bond vectod,z = r, — rg is rotated the number of different/,z’s; thus, a large reduction in
onto thez axis by using a rotation matrik, g [14], which ~ computational effort is achieved by calculating each of
acts on the spherical harmonics of Eq. (3). those matrices only the first time that it is encountered
(ii) The resulting rotated scalar functionjsg“d are then along the full calculation. Further decomposition of
propagated a distandd,g| along the positive direction rotation matrices into azimuthal and polar rotations helps
of the z axis; this is accomplished by multiplying by the in this respect.
Green function of Eq. (2)iG .z, appropriately written in A fully automated implementation of these ideas has
the basis set of spherical harmonics attachea,taand been performed [16], resulting in a new code that provides
rg [15]. the solution of Eq. (4) investing a computation time
(iii) The scalar functions are not invariant under trans-~AN?(Iyax + 1)°, where N is the number of dielectric
lations of the multipole origin, but their variation when objects in the cluster and is a constant{ ~ 10~* sec
the latter is displaced from tor, can be described by a on a Pentium at 333 MHz).

linear translation operatdt, z [16]. Next, the present formalism is applied to the simulation
(iv) Finally, the z axis is rotated back onto thé,z  of electron energy loss, radiation emission induced by fast
direction, and one has electrons, and radiation scattering in different clusters of

Hon =R\ G2 R 5) SiO, and Al spheres. The dielectric function of Si®
ap aplapapitap taken from optical data [21] and a Drude expression is
The analogy with electron diffraction in solids [15,17] used for Al with a plasma energy of 15 eV and a damping

is complete, except for the lack of translational invarianceof 1.06 eV.

of the scalar functions just noted [16]. The coefficientsy,, take analytical forms when the
For simplicity, we shall focus on clusters formed by external field is produced by an electron moving with

spherically symmetric objects, for which, becomes constant velocity [19]. The energy loss probability has

diagonal and its elements can be expressed in terms bken derived from the retarding force produced by the

the phase shifts of magnetic and electric componentsduced electric field acting back on the electron [12],

as [talimim = Sudmm sin 8;"" explid;”"), where v which is in turn calculated analytically from Eq. (1) and

stands forM andE, respectively. 8,"” takes particularly the coefficientsb},ﬂ?m obtained from Eq. (4). Probabilities
simple forms for homogeneous spheres [18,19] describeftbr photon emission induced by fast electrons have been

by local dielectric functions, as those considered belowobtained by integrating the Poynting vector normal to a

Nevertheless, the present formalism can be applied to arblarge sphere centered at the cluster.

trarily shaped scatterers, for which the scattering matrices Figure 1 illustrates the energy loss and induced photon

are generally dense, and can be obtained numerically [12¢mission probabilities for fast electrons moving with
The operators under consideration are approximated bgonstant velocity parallel to an infinite periodic string

finite matrices of dimensiof{/max + 1)2]>. Convergence of aligned spheres, as shown in Fig. 1(a). Smith-Purcell
has been obtained in most of the calculations presente@ddiation [22,23] is emitted under these conditions along
below forlmax = 8. angles# with respect to the string direction such that
The direct inversion of Eg. (4) is computationally the phase of the far fields originating in contiguous
prohibitive for large clusters. Here, it has been solvedspheres differs in a multiple @fr, that is,wd/c(cos6 —

by using the recursion method, whekeplays the same c¢/v) = 27n, where d is the string period,v is the

role as the energy in former electronic band-structureelectron velocity,w is the radiation frequency, and is

calculations [20]. The recursion method, unlike thea negative integer. Figures 1(b)—1(c) show the emission

Taylor expansion ofy"®’s in powers oft,’s, is fully  probability per sphere and energy range for= —1

convergent in the present context. and n = —2 in the cases of SiQ and Al spheres
The matrices on the right hand side of Eq. (5) are(solid curves), respectively. For each there is an

all sparse. Actually, this factorization reduces both theemission threshold energy whethh= 7. The energy

storage demand and the computation time by a factor dbss probability per sphere (dashed curves) follows the

~Imax/2. Notice that multiplication by scattering matrices emission probability in the case of SiQFig. 1(b)] within
does not affect significantly the total computational costghe region below 8.5 eV, where the imaginary part of the
for relatively large clusters (e.g., above ten objects), sincéielectric function is very small and most of the energy
it takes place just outside the summation over clusteloss is converted into Smith-Purcell radiation, leading
objects in Eq. (4). Furthermore, for any arbitrary cluster,to an absolute threshold for energy lossesraty =

one can choose the points in such a way that they form a(2wc/d)/(c/v + 1) (=4.24 eV under the conditions

a highly symmetrical mesh, where many bond distancesf the figure). For Al spheres [Fig. 1(c)], part of the

and angles are repeated (this might require that the poinenergy loss goes always into absorption. In particular,
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FIG. 1. Energy loss probability and Smith-Purcell radiation FIG. 2
emission for an electron moving parallel to an infinite periodic o
string of aligned spheres, as shown in (a). Two different

Electron energy loss probability per energy range for
an electron passing by the center of an octahedral cluster of Al
spheres. Single scattering results (dashed curves, noninteracting

mhat;erials have beerl; (t:)(_)l_r;sidered:h(b) ZSi%nd (€ Al. The  ghhares) and full multiple scattering results (solid curves) are
photon emission probability per sphere and energy rah@es o,y for clusters of touching spheres with bond distanices

represented by solid curves for the first and second harmonl\? 40, 60, 80, and 100 nm iraf—(e), respectively. Curves

(n = —1,~2). Energy loss spectra are represented by dashegly_ . -orrespond to clusters with constant bond distafice
curves. Energy loss spectra for an isolated sphere are sho 0 nm and sphere radius = 40, 30, and 20 nm, respectively.

by dotted curves for the same velocity and impact parameter. The electron trajectory is chosen to intersect the centers of

. . two opposite edges of the imaginary octahedrum that defines
this happens in the energy loss peak at 3.8 eV (belowhe geometry. Some of the curves have been multiplied by a
the emission threshold), which can be ascribed to théactor, as shown in the figure, and consecutive curves have been

excitation of an intrinsic mode of the string. However, shifted 5% eV' upwards to improve readability.

the radiation emission probability is higher in the Al

case forn = —1 as compared to silica. The energy loss(solid curves) in the case of touching spheres [see

probability for an isolated sphere (dotted curves) followsFigs. 2(a)—2(e) for clusters of increasing size]. Notice

the loss probability in the string at high emission energiesin particular the extinction of losses below 9 eV. As

where coupling between spheres plays a minor role. the distance between sphere surfaces is increased, the
The interaction among the objects of a cluster can prointeraction among spheres becomes less important as

duce dramatic effects in the energy loss spectra of fagthown in Figs. 2(e)—2(h) for clusters with the same bond

electrons passing nearby, as shown in Fig. 2 for octahadistance and decreasing sphere radii.

dral clusters of Al spheres. The spectra calculated with- The effect of multiple scattering of external radiation

out taking into account this interaction (broken curves)in a cluster of dielectric objects is illustrated in Fig. 3,

are very different from the full multiple-scattering results where the radiation scattering cross section is represented
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25 of dielectric spheres, large Smith-Purcell radiation emis-
' : sion probabilities have been predicted, raising the possi-

bility of using this effect to produce tunable UV light.

20 . isolated 7 The theory presented here can help to extract geometrical
i ;. spheres and chemical information on complex dielectric clusters

L5t ' 1 by analyzing radiation scattering and electron energy loss
[ spectra.

1ol 1 The author wants to thank A. Howie, P. M. Echenique,
i total cross and R. Fuchs for helpful and enjoyable discussions,

section and M.A. Van Hove and C.S. Fadley for their kind

hospitality. Help and support from the University of the

. S Basque Country, the Spanish Ministerio de Educacion y
elastic cross section

0.5

— ; Cultura under Fulbright Grant No. FU-98-22726216, and
(b) Al the U.S. DOE under Contract No. DE-AC03-76SF00098
ol ] are gratefully acknowledged.
sk isolated/v"..‘ 1
spheres 1

: *Permanent address: Departamento de CCIA (Facultad de
Lok ; ] Informéatica), Donostia International Physics Center

) (DIPC), and Centro Mixto CSIC-UPXEHU, San
Sebastian, Spain.

Scattering cross section (Wm?)

total cross section

SE e - aemmmemmsmoomooooeoos . . Howie and C. Walsh, Microsc. Microanal. Microstruct.
0.5 , . 1] A H d C. Walsh, M M Y
' elastic cross section ] 2, 171 (1991).
ool v vy ] [2] P.M. Hui and N.F. Johnson, Solid State Phy$, 151
2 4 6 8 10 12 (1995).
[3] J.D. Joannopoulos, P.R. Villeneuve, and S. Fan, Nature
Photon energy (eV) (London) 386, 143 (1997).

FIG. 3. (a) Radiation scattering cross section for a cluster [4] |(_|1'9|§"7)B' Cheng, and D. Zhang, Phys. Rev.58, 10734

formed by 60 Si@ spheres with the same structure as carbons
in a Gy, molecule. The radius of the spheres is 49.5 nm. The [9] M. Bayeret al., Phys. Rev. Lett81, 2582 (1998).

nearest neighbors bond distance is 100 nm. The elastic cros$6] S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and H.A.
section (dashed curve) is compared with the total cross section  Haus, Phys. Rev. Let80, 960 (1998).

(solid curve) and 60 times the total cross section of an isolated[7] J.B. Pendry and A. MacKinnon, Phys. Rev. L&, 2772
sphere (dotted curve). (b) The same as (a) for Al spheres. (1992).

[8] J.B. Pendry and L. MamrMoreno, Phys. Rev. B0, 5062
for a cluster of 60 spheres with the same structure as car-  (1994).
bons in a G molecule. For Si@spheres [Fig. 3(a)], the [9] F.J. Garca-Vidal, J. M. Pitarke, and J.B. Pendry, Phys.
total scattering cross section (solid curve, including pho- 0 fel‘:’ij';ier:gi& sggga(lgﬁg- Rev.4, 16194 (1993)
ton absorption processes), calculated by using the optic ‘ : ' ' T :
theorem fpor Iig%t [13], fczllows quite c?é)selyggthe elgs- 11 R.G. Barrera and R. Fuchs, Phys. Re\H 3256 (1995).

. . . g . [12] F.J. Garta de Abajo and A. Howie, Phys. Rev. Le80,
tic scattering cross section (dashed curve) in the regloh ] 5180 (1998). J y

below ~8.5 eV, where absorption is negligible. Elas- [13] F.E. Low, Classical Field Theory: Electromagnetism and
tic scattering cross sections have been obtained by inte- * Gravitation (John Wiley & Sons, New York, 1997).

grating the scattered radiation over angles of scatteringi4] A. Messiah, Quantum Mechanic§North-Holland, New
For Al spheres [Fig. 3(b)], both cross sections are rela-  York, 1966).

tively featureless. In silica, the prominent feature obtained15] J. B. PendryLow Energy Electron DiffractiofAcademic
for single scattering at around 9 eV (dotted curve, rep-  Press, London, 1974).

resenting 60 times the total cross section of an isolatetké] F-J. Garta de Abajo (to be published).

sphere) is converted into a dip when multiple scattering i%ﬂ] J.J. Rehr and R. C. Albers, Phys. Rev4B 8139 (1990).
switched on. 18] K. Ohtaka and M. Inoue, Phys. Rev.25, 677 (1982).

. .. [19] F.J. Garta de Abajo, Phys. Rev. B9, 3095 (1999).
In summary, a general and computationally efficient 20] R. Haydock, Solid State Phy85, 215 (1980).

t_echn_ique has been pre_sen_ted for SOlvmg_ Maxvyell’s_equ 1] E.D. Palik, Handbook of Optical Constants of Solids
tions in a cluster of arbitrarily disposed dielectric objects. (Academic Press, New York, 1985).

Examples of application to the simulation of electron en{22] s.J. Smith and E.M. Purcell, Phys. Re92, 1069
ergy loss and radiation scattering have been considered. (1953).
For an electron moving parallel to a periodic infinite chain[23] J. Urataet al., Phys. Rev. Lett80, 516 (1998).

2779



