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B Decay and theY Mass
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Theoretical predictions for inclusive semileptonicB decay rates are rewritten in terms of the
Ys1Sd meson mass instead of theb quark mass, using a modified perturbation expansion. This
method gives theoretically consistent and phenomenologically useful results. Perturbation theory is
well behaved, and the largest theoretical error in the predictions coming from the uncertainty in
the quark mass is eliminated. The results are applied to the determination ofjVcbj, jVub j, and l1.
[S0031-9007(98)08167-8]
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Inclusive decay rates of hadrons containing a hea
quark can be systematically expanded in powers ofassmQd
andLQCDymQ, wheremQ is the mass of the heavy quark
and LQCD is the nonperturbative scale parameter of th
strong interactions. In themQ ! ` limit, inclusive de-
cay rates are given by free quark decay and the ord
LQCDymQ corrections vanish [1]. The leading nonper
turbative corrections of orderL2

QCDym2
Q are parametrized

by two hadronic matrix elements [2–4]. These results a
now used to determine the Cabibbo-Kobayashi-Maskaw
(CKM) matrix elementsjVcbj andjVubj, using experimen-
tal data on inclusive semileptonicB meson decays.

At present, the largest theoretical uncertainties in th
B ! Xcen̄ and B ! Xuen̄ decay rates arise from poor
knowledge of theb quark mass. Theb quark pole mass
is an infrared sensitive quantity which is not well define
beyond perturbation theory [5]. This is related to the ba
behavior of perturbative corrections to the inclusive deca
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rate when it is written in terms of the pole mass [6,7]. T
decay rate has been rewritten, with the hope of redu
the theoretical uncertainties, in terms of other quant
such as theB meson mass and thēL parameter o
HQET, or in terms of the infrared safe modified minim
subtraction (MS) mass of theb quark. Nonetheless, th
uncertainties remain sizable and are a significant pa
the present theoretical errors onjVcbj andjVubj.

In this Letter the theoretical predictions for semil
tonic B decay rates are rewritten in terms of theYs1Sd
meson mass (which is known to better than 1 MeV) ra
than theb quark mass, using a modified perturbation
pansion explained below. This eliminates the uncerta
due to them5

b factor in the decay rates, and at the sa
time improves the behavior of the perturbation series
at low and high orders. Our formulas relate measur
quantities to one another and the resulting perturbatio
ries is free of renormalon ambiguities.

The inclusive decay rateB ! Xuen̄ is [6,7]
GsB ! Xuen̄d ­
G2

F jVubj2

192p3 m5
b

∑
1 2 2.41

as

p
e 2 3.22

a2
s

p2 b0e2 2 5.18
a3

s

p3 b2
0e3 2 · · · 2

9l2 2 l1

2m2
b

1 . . .

∏
. (1)
r,
rel

e

e

Heremb is theb quark pole mass,b0 ­ 11 2 2nfy3 is
the first coefficient of the QCDb function, andas is
the running coupling constant in theMS scheme at the
scale m ­ mb. The variablee ­ 1 denotes the order
in our modified expansion. There is a subtlety in th
power counting for theY mass, for which the difference
between powers ofas and e will be important. Only
the part of thea2,3

s corrections proportional tob
1,2
0 [the

Brodsky-Lepage-Mackenzie (BLM) piece [8] ] is known
It is the dominant part of the two-loop correction in
examples where the entire two-loop result is known [se
e.g., Eq. (2)]. The1ym2

b terms are a few percent, so
the asym2

b and 1ym3
b corrections are negligible. With

assmbd ­ 0.22 and nf ­ 4, the perturbative series in
Eq. (1) is1 2 0.17e 2 0.13BLMe2 2 0.12BLMe3 2 . . . ,
where the subscript BLM indicates that only the BLM
piece of thea2,3

s terms has been computed. It is difficult to
estimateGsB ! Xuen̄d reliably, since uncertainties inm5

b

e

.

e,

and in the perturbative expansion seem large. Moreove
the perturbation series at large orders contains a not Bo
summable contribution of orderan

s b
n21
0 n!, leading to a

renormalon ambiguity.
The pole massmb is an infrared sensitive quantity. It

can be related to an infrared safe mass such as theMS
massmb via (for nf ­ 4) [9]

mb

mbsmbd
­ 1 1

4as

3p
e 1 s1.56b0 2 1.07d

a2
s

p2 e2 1 . . . .

(2)

This relation also has terms of the forman
s b

n21
0 n!

at high orders. There is a cancellation between th
an

s b
n21
0 n! terms in Eqs. (1) and (2) when the inclusive

decay rate is rewritten in terms of theMS mass [10].
While this cancellation is present at high orders, th
perturbation series in Eq. (1) withmb ! mb is 1 1

0.30e 1 0.19BLMe2 1 0.05BLMe3 [7], so there are still
© 1999 The American Physical Society 277



VOLUME 82, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 11 JANUARY 1999

y
e

-

b

large corrections at low orders. Furthermore, using th
MS mass does not remove the quark mass uncertainty
the decay rate.

A simple method of avoiding problems with the quark
mass is to use instead the hadron mass. Unfortunately,
B meson andb quark masses differ by orderLQCD, and
so this reintroduces aLQCDymb correction to the inclusive
decay rate. A better method is to rewrite expressions lik
Eq. (1) in terms of theY mass to obtain well defined
formulas forB decay rates in terms ofmY. The resulting
i
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expressions are free of renormalon ambiguities, and the
express one measurable quantity in terms of another. W
will also see numerically that theas corrections are small
when theB decay rate is written in terms of theY mass.

There is an interesting theoretical subtlety in the be
havior of the perturbation series for theY mass in terms
of the b quark pole mass. This is simplest to illustrate
in the largeb0 (i.e., bubble summation) approximation.
Schematically, the perturbative expansion of theY mass
in terms ofm is
f the

r orders.

n

mYys2mbd , 1 2 fsasCFd2y8g f1 1 sasb0ypd s, 1 1d 1 sasb0ypd2s,2 1 , 1 1d 1 · · ·

1 sasb0ypdns,n 1 ,n21 1 · · · 1 1d 1 . . .g , (3)

where, ­ lnfmysmbasCFdg, CF ­ 4y3, and the precise coefficients are not shown. At low orders this series is o
form ha2

s , a3
s b0, a4

s b
2
0 , . . .j, whereas the corrections in Eqs. (1) and (2) are of orderhas, a2

s b0, a3
s b

2
0 , . . .j. An explicit

calculation using the Borel transform of the static quark potential [11] shows that this mismatch disappears at highe
The terms in Eq. (3) of the forms,n 1 ,n21 1 · · · 1 1d exponentiate to give exps,d ­ mysmbasCFd and correct the
mismatch between the powers ofas and b0. This has to happen sincemY is a physical quantity, so the renormalo
ambiguities must cancel in Eq. (3) between2mb and the potential plus kinetic energies [12].

The expression for theY mass in terms ofmb is [13]

mY

2mb
­ 1 2

sasCFd2

8

Ω
1e 1

as

p

∑µ
, 1

11
6

∂
b0 2 4

∏
e2 1

µ
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∂2µ
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6
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æ
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The ellipses denote terms of ordera4
s with at most one

power of b0 or b1 (which are known), as well as terms
of order a5

s . The arguments following Eq. (3) show
that to ensure the cancellation of renormalon ambiguit
when we combine Eqs. (1) and (4), terms of orderan

s
in Eq. (4) should be viewed as if they were only o
order an21

s . For this reason, the power ofe in Eq. (4)
is one less than the power ofas. One should also
choose the same renormalization scale,m, in Eqs. (1) and
(4). With this prescription, it is also expected that th
infrared sensitivity present separately in Eqs. (1) and
will cancel to all orders in perturbation theory ine. For
m of ordermb, Eq. (4) shows no sign of convergence; fo
m ­ mb it yields mY ­ 2mbs1 2 0.011e 2 0.016e2 2

0.024BLMe3 2 . . .d. The bad behavior of this series i
unimportant, since the only physical question is wh
happens when we use Eq. (4) to predictB decay rates in
terms ofmY .

An important theoretical uncertainty in applying th
above approach is the size of nonperturbative correctio
to Eq. (4). The dynamics of theY system can be de-
es

f

e
4)

r
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scribed using NRQCD [14]. The leading nonperturbativ
corrections tomY arise from matrix elements in theY of
Hlight, the Hamiltonian of the light degrees of freedom. I
B mesons, the leading nonperturbative correction to theB
meson mass is due to the matrix element ofHlight, which
is the L̄ parameter of orderLQCD . The LQCD depen-
dence is different for theY. Hlight is the integral of a
local Hamiltonian density,Hlight ­

R
d3xHlightsxd. The

radius of theY is a , 1ysmbasd, so the matrix element
of Hlight is of order a3L

4
QCD, by dimensional analysis.

(Note that the matrix element ofHlight is of orderL4
QCD ,

not m4
b . Terms that grow withmb can be treated using

NRQCD perturbation theory.) Using1ya , 1 GeV, and
LQCD , 350 MeV, of order a constituent quark mass
gives a nonperturbative correction of 15 MeV. Using in
steadLQCD , 500 MeV gives a correction of 60 MeV.
We will use 100 MeV as a conservative estimate of t
nonperturbative contribution tomY .

Substituting Eq. (4) into Eq. (1) and collecting terms o
a given order ine gives theB ! Xuen̄ decay rate in the
largeb0 approximation in terms of theY mass,
GsB ! Xuen̄d ­
G2

F jVubj2

192p3

µ
mY

2

∂5∑
1 2 0.115e 2 0.035BLMe2 2 0.005BLMe3 2

9l2 2 l1

2smYy2d2 1 . . .

∏
, (5)
f
to
usingm ­ mb andassmbd ­ 0.22. The non-BLM parts
of the e2,3 terms have been neglected. The perturbati
series,1 2 0.115e 2 0.035BLMe2 2 0.005BLMe3, is far
better behaved than the series in Eq. (1),1 2 0.17e 2

0.13BLMe2 2 0.12BLMe3, or the series expressed in term
of theMS mass,1 1 0.30e 1 0.19BLMe2 1 0.05BLMe3.
The uncertainty in theB decay rate using Eq. (5) is much
smaller than that in Eq. (1), both because the perturbat
on

s

ion

series is better behaved, and because theY mass is better
known (and better defined) than theb quark mass.

The non-BLM ordera2
s corrections tob decay have

been calculated only forb ! c decay, at three values o
the invariant mass of the lepton pair [15]. Extrapolating
mc ! 0 gives the estimate that the completea2

s correction
to b ! u decay is abouts90 6 10d% of the ordera2

s b0
result [6]. With this estimate, and including the entiree2
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term in Eq. (4) gives at ordere2

GsB ! Xuen̄d ­
G2

F jVubj2

192p3

µ
mY

2

∂5

f1 2 0.115e

2 s0.045 6 0.013de2 2 s0.20l2 2 0.02l1dyGeV2g , (6)

where the error on thee2 term is due to the610%
uncertainty in thea2

s term inb ! u decay. Equation (6)
yields a relation betweenjVubj and the total semileptonic
B ! Xuen̄ decay rate with very small uncertainty,

jVubj ­ s3.06 6 0.08 6 0.08d 3 1023

3

µ
BsB ! Xuen̄d

0.001
1.6 ps

tB

∂1y2

, (7)

where we have usedl2 ­ 0.12 GeV2 andl1 ­ s20.25 6

0.25d GeV2. The first error is obtained by assigning a
uncertainty in Eq. (6) equal to the value of thee2 term
and the second is from assuming a 100 MeV uncertain
in Eq. (4). The scale dependence ofjVubj due to vary-
ing m in the rangemby2 , m , 2mb is less than 1%.
The uncertainty inl1 makes a negligible contribution to
the total error. It is unlikely thatBsB ! Xuen̄d will be
measured without significant experimental cuts, for e
ample, on the hadronic invariant mass [16]. Our meth
should reduce the uncertainties in such analyses as we

The B ! Xcen̄ decay depends on bothmb andmc. It
is convenient to express the decay rate in terms ofmY and
l1 instead ofmb andmc, using Eq. (4) and

mb 2 mc ­ mB 2 mD 1

µ
l1

2mB
2

l1

2mD

∂
1 . . . , (8)

where mB ­ s3mBp 1 mBdy4 ­ 5.313 GeV and mD ­
s3mDp 1 mDdy4 ­ 1.973 GeV. Theas correction to free
quark decay is known analytically [17], and the full orde
a2

s result [15] can be estimated numerically (at the sca
m ­ mb) by multiplying the ordera2

s b0 correction [6] by
0.9 6 0.05. We then find

GsB !Xcen̄d ­
G2

F jVcbj2

192p3

µ
mY

2

∂5

0.533f1 2 0.096e

2 0.031e2 2 s0.28l2 1 0.12l1dyGeV2g , (9)

where the phase space has also been expanded ine.
For comparison, the perturbation series in this relati
when written in terms of the pole mass is1 2 0.12e 2

0.06e2 2 . . . . Equation (9) implies

jVcbj ­ s41.6 6 0.8 6 0.7 6 0.5d 3 1023

3 hQED

µ
B sB ! Xcen̄d

0.105
1.6 ps

tB

∂1y2

, (10)

wherehQED , 1.007 is the electromagnetic radiative cor
rection. The uncertainties come from assuming an er
in Eq. (9) equal to thee2 term, the0.25 GeV2 error inl1,
and a 100 MeV error in Eq. (4), respectively. The se
ond uncertainty is reduced to60.3 by extractingl1 from
the electron spectrum inB ! Xcen̄; see Eq. (11). The
agreement ofjVcb j with other determinations (such as ex
clusive decays) is a check that nonperturbative correctio
to Eq. (4) are indeed small.
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In Ref. [18] L̄ and l1 were extracted from the lepton
spectrum inB ! Xcen̄ decay. With our approach, there
is no dependence on̄L, so we can determinel1 directly
with small uncertainty. Considering the observableR1 ­R

1.5 GeV EesdGydEed dEey
R

1.5 GeV sdGydEed dEe, a fit to
the same data yields

l1 ­ s20.27 6 0.10 6 0.04d GeV2. (11)

The central value includes corrections of ordera2
s b0 [19].

The first error is dominated by1ym3
b corrections [20].

We varied the dimension-six matrix elements betwee
6s0.5 GeVd3, and combined their coefficients in quadra
ture in the error estimate. The second error is from assu
ing a 100 MeV uncertainty in Eq. (4). The central valu
of l1 at tree level or at orderas is within 0.03 GeV2 of
the one in Eq. (11).

We can attempt to apply the above results toD !
Xen decay, usingassmcd ­ 0.35 and nf ­ 3. Nonper-
turbative effects are clearly much larger in theJyc than
in the Y, so one might expect the entire analysis t
break down completely. It is remarkable that this doe
not occur. UsingmJyc ­ 2mcs1 2 0.027e 2 0.059e2 2

0.130e3 2 . . .d, neglectingms, and following the same
procedure as forb ! u decay, we find

GsD ! Xend ­
G2

FsjVcsj
2 1 jVcdj2d

192p3

µ
mJyc

2

∂5

3 f1 2 0.13e 2 0.03e2 2 s1.9l2 2 0.2l1dyGeV2g . (12)

The e3 contribution to Eq. (12) is larger than the or-
der e2 term. The perturbation series expressed in term
of the pole mass has a much worse behavior, rough
1 2 0.27e 2 0.32e2. Usingl2smcd ­ 0.14 GeV2 andl1
from Eq. (11), we obtain

jVcsj
2 1 jVcdj2 ­ s1.00 6 0.06 6 0.04d

3

µ
B sD6 ! Xend

0.17
1.06 ps

tD6

∂
, (13)

where the uncertainties come from assuming an err
in Eq. (12) equal to thee2 term and the error inl1,
respectively. We have not included an estimate o
nonperturbative corrections to theJyc mass, or of scale
dependence. The LEP measurements of the hadro
W width yield jVcsj ­ 0.99 6 0.11 [21]. The un-
certainty in Eq. (13) is comparable to this, since th
experimental error ofB sD6 ! Xend is about 10%.
Equation (13) has theoretical uncertainties which we ca
not estimate. The validity of quark-hadron duality ma
be questionable since the final states are almost satura
by K andKp. In addition, an estimate similar to that for
theY suggests that the nonperturbative contribution to th
Jyc mass is of order 500 MeV (using1ya , 0.5 GeV
andLQCD , 500 MeV). This gives an uncertainty of or-
der 100% injVcsj

2 1 jVcd j2. The agreement of Eq. (13)
with the experimental results may be a coincidence,
may signal that nonperturbative corrections in the ma
relation are much smaller than naive expectations.
279
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We have chosen to write ourB decay results in terms
of the Ys1Sd mass. One could equally well write them
in terms of the mass of excited states, such as theYs2Sd.
The perturbation series is expected to be worse behav
than for theYs1Sd. The main difference is in the estimate
of nonperturbative corrections to theYs2Sd mass. The
radius of the2S state is about 4 times that of the1S, so
the nonperturbative corrections, which grow asa3, are
approximately 64 times larger. This implies a simila
increase in the error on the CKM angles. Ignoring nonpe
turbative corrections for the moment, the analog of Eq. (
for theYs2Sd evaluated at the scalem ­ mb is mYs2Sd ­
2mbs1 2 0.0027e 2 0.0059e2 2 0.0117BLMe3 2 . . .d.
Numerically, the first few corrections are smaller than fo
the Ys1Sd, but the convergence of the series is wors
The B ! Xuen̄ decay rate in the largeb0 approximation
in terms of theYs2Sd mass is then

GsB !Xuen̄d ­
G2

F jVubj2

192p3

µ
mYs2Sd

2

∂5

f1 2 0.155e

2 0.098BLMe2 2 0.065BLMe3 2 . . .g . (14)

Compared to Eq. (5), the convergence is worse, as e
pected. Nevertheless, even this formula gives a reaso
able extraction ofjVubj. The ratio of jVubj2 extracted
using the2S and 1S masses is [Eq. (14)]y[Eq. (5)] ­
h1.34, 1.27, 1.17, 1.08j, where thenth number is obtained
by truncating both equations at orderen21, and neglecting
the l1,2 corrections. The large difference at “tree level,
smYs2SdymYd5 ­ 1.34 is reduced by the series of pertur-
bative corrections. Expressing theB ! Xcen̄ decay rate
in terms of theYs2Sd mass, the perturbative corrections in
Eq. (9) become

GsB ! Xcen̄d ­
G2

F jVcbj2

192p3

µ
mYs2Sd

2

∂5

0.447

3 f1 2 0.107e 2 0.046e2 1 . . .g . (15)

Again, the convergence of the series becomes wor
However, the ratio ofjVcbj2 extracted using the2S and1S
masses is consistent with our estimates of the uncerta
ties, [Eq. (15)]y[Eq. (9)] ­ h1.12, 1.10, 1.08j, where the
nth number is obtained by truncating both expressions
orderen21. The difference between theYs2Sd andYs1Sd
results provides an estimate of nonperturbative contrib
tions to theY mass. They suggest that nonperturbativ
effects are smaller than the conservative estimate we ha
used; they are certainly much smaller than the naive es
mate above of a64 3 100 MeV ­ 6.4 GeV nonperturba-
tive contribution to theYs2Sd mass.

We have shown that inclusive semileptonicB decay
rates can be predicted in terms of theYs1Sd mass instead
of theb quark mass. It is crucial to our analysis to use th
modified expansion ine rather than the conventional ex-
pansion in powers ofas. Our formulas relate only physical
quantities to one another. They result in smaller theore
cal uncertainties than existing numerical predictions, an
the behavior of the perturbation series is improved. Mor
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over, the uncertainties can be estimated without resort
to cumbersome arguments, and they can be checked u
the experimental data.

Our main results are Eqs. (10) and (7), which relate t
total semileptonicB ! Xc,uen̄ decay rates tojVcbj and
jVubj. The uncertainties are below 5% at present, and
may be possible to reduce them further. Our determinat
of l1 is given in Eq. (11). We hope that applications o
the method introduced in this paper will prove useful—
besides reducing the uncertainties ofjVcbj and jVub j—in
analyzing a large class of data emerging from present a
futureB decay experiments. Details of our method, as we
as other applications, such as to nonleptonic and exclus
semileptonicB decays, will be discussed elsewhere [22]
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