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Two-Stage Melting of Paramagnetic Colloidal Crystals in Two Dimensions
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A novel two-dimensional system of colloidal particles with absolutely calibrated magnetic interaction
is used to investigate static and dynamic properties at the 2D crystal to liquid phase transition. We
observe two successive transitions from the solid to the liquid phase with an intermediate hexatic phase,
in perfect agreement with the theory of Kosterlitz and Thouless. The absolute values of the transition
temperatures are given, and we demonstrate that they depend neither on the system size nor on the
cooling rate. [S0031-9007(99)08831-6]

PACS numbers: 64.70.Dv, 61.72.Lk, 82.70.Dd

Since the work of Mermin [1] it is known that the interface induces magnetic dipole momemfsleading to
density-density correlation function in a two-dimensionala repulsive interparticle potential. For the weak field in-
(2D) crystal decays algebraically to zero with distance, irtensities used we finff = y.;B with an effective mag-
contrast to the 3D case where a finite value is attainechetic susceptibility of the particleg.ss = (7.62 = 0.2) X
Therefore, Kosterlitz and Thouless [2] pointed out that10'' Am?/T [8]. This setup has considerable advantages
the nature of the melting transition in 2D is different over colloidal model systems previously used [10—-12]: It
from 3D and suggested crystal melting via a continuousan be regarded an almost ideal 2D model system as the
transition mediated by the dissociation of dislocationout-of-plane motion of the particles corresponds to less
pairs. Later it was shown [3,4] that the resulting phasehan 1% of their diameter. The only relevant contribu-
is not an isotropic liquid, and a second transition inducedion to the interaction potential is the magnetic dipolar
by the formation of disclinations is necessary to drive therepulsion which is conveniently and reversibly adjustable
system from the so-called hexatic phase into the isotropiby the external fieldB and absolutely calibrated by the
liquid. This two-stage melting scenario is referred todimensionless interaction amplitude (or inverse tempera-
as the Kosterlitz-Thouless-Halperin-Nelson-Young theoryture) T' = (uo/47) (xettB)2(7n)>/2/kT (n denotes the
(KTHNY). This theory predicts the temperature where2D volume fraction of the particles). Finally, the system
the system becomes unstable and topological defectze and the equilibration time can easily be varied and
(dislocations or disclinations) are formed. However,their influence on the transitions studied.
these transitions might be preempted by other processesThe experiments were carried out as follows: At high
leading to a single first order transition as in 3D [5]. field B, i.e., in the crystalline phase, the system was
Several computer simulations and experiments have beesguilibrated for several days up to a week. In addition,
performed [6], leading to inconsistent results. So far itsmall ac magnetic fields in the particle plane were
seems that the melting scenario in 2D is not universal busuperimposed t® to anneal lattice defects. After this
depends on the specific properties of the systems, e.g., tipeocedure the entire sample [13] consisted of one single
core energy of the dislocations [7]. crystalline domain with a few (one per several thousand

In this Letter we use a novel 2D setup of colloidal particles) isolated dislocations left. The field of view
particles with absolutely calibrated magnetic interactionof size 520 X 440 wm?, which corresponds to typically
[8] to investigate statics and dynamics at the crystal tol0* particles (the entire sample contaisd 0’ particles),
liquid phase transition with “atomic” resolution. The was chosen without any defect to minimize influences
results unambiguously demonstrate that a 2D system afn the phase transition. Finally, the temperat@ire=
interacting dipoles melts via a two-stage scenario inl/T" was increased by steps, each increase followed by
agreement with KTHNY. In addition, for the first time an equilibration time of the order of an hour. After
absolute values of the transition temperatures are givemquilibration the particle coordinates were determined
Furthermore, we study the system size dependence of thising digital video-microscopy and recorded for later
transition and the question of thermal equilibrium. evaluation on a PC.

Spherical colloids of diameted = 4.7 um and mass For the analysis of the static properties the density-
density 1.7 kg/m? are confined by gravity to a water/air density [Eq. (1)] and bond-angular [Eq. (2)] correlation
interface formed by a cylindrical drop suspended by surfunctions have been calculated,
face tension in a top-sealed ring. We control the flatness

of the entire interface (0.d= 8 mm) up to*1 um [8]. go(Ir — r') =<(exp(iG - [u(r) — u@"])), (1)
The particles are superparamagnetic due t@keloping
[9], and a magnetic field applied perpendicular to the gs(Ir — r']) = (exp(i6[6(r) — 6(r")])). 2
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FIG. 1. The behavior of the density-density (left) and bond-angular (middle) correlation functions and the Lindemann parameter
(right) for different temperaturek/I" are in agreement with KTHNY (see text).

G denotes a reciprocal lattice vectar(r) is the particle [15]. As the mean square displacemént) diverges in a

displacement field, and(r) represents the angle, with 2D crystal they suggested the Lindemann parameter

respect to thex axis, of the bond centered at position

r. For a 2D crystal KTHNY predicts an algebraic yu = {(u; — u;1)?/a?, (3)

decay of gg(r) ~ 1/r"™ while g4¢(r) remains finite

at large r. At the melting temperaturd,, one finds where the indices; and j + 1 refer to neighboring

n(T,) = (G?a?/6472) (1 + og) 3 — or)lr,. Here a  particles. At the melting point these authors found a

is the lattice constant and; the 2D Poisson’s ratio critical value y;; = 0.033 [16]. We generalize their

(evaluated atT,,) related to the Lamé elastic constantsdefinition to be time dependent as

by or = A/(A + 2u) [4]. In our system the interaction

potential is known precisely, and thusu at 7 = 0 can yo(t) = (Au;(t) — Au,+1(1)]?)/24%, (4)

be determined. We determined the renormalized values

(at T =T,) of A, u as described in [4] and obtained where Au(z) = u(z) — u(0). In the crystal y.(¢) is

n(T,,) = 0.33. In fact, these values hardly differ from the bound at long times, its limit value being equal 4q,

values afl’ = 0 [14]. In the hexatic phase an exponential[17]. On the other hand, in the liquid phase the displace-

decay is expected fogs and an algebraic decay for mentsAu(z) of particlesj and; + 1 are uncorrelated at

gs(r) ~ 1/r1M_ The exponentys tends towardsl/4  long times andy,(r) is proportional to the mean square

as the system approaches the transition to the isotropitisplacementAu?(z)).

liquid. There both functions decay exponentially. Figures 1-3 summarize the behavior of the system at
To analyze the dynamics we refer to the 2D Lindemanrfour different temperatures/I" around the melting tran-

melting criterion introduced by Bedanov and Gadiyaksition. They show, respectively, the functions as defined

—— time ) time
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FIG. 2. The analysis of the defect structure (codeg-fbld coordinated sites: small black dois= 6; open circles: = 7; filled
circlesn = 5) reveals for the solid, just before melting/T" = 0.0164), the occurrence of weakly bound pairs of dislocations. In
the hexatic phasel(I" = 0.0177) free dislocations appear (left) and disclinations start to be weakly bound (right). Finally, the
isotropic liquid phasel(/T" = 0.0189) can be characterized by the existence of free disclinations.
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FIG. 3. Trajectories of particles integrated for a time= 300 s taken at three different temperatured’. These correspond
(from left to right) to the solid phase close to melting, the hexatic, and the isotropic liquid phase.

in Egs. (1), (2), and (4) (from left to right), the defect exponential decrease of boté;(r) and g¢(r). Thus
structure determined by the Voronoi construction, and théhe melting scenario proposed by KTHNY corresponds
trajectories of the particles integrated o0 s. In the perfectly to the measurements presented.
following these figures will be discussed simultaneously In addition, we are able to give the absolute values
for the differentl /I" values. of the transition temperaturdsg'I',,,1/I';: As a melting

At the lowest temperaturé/I" = 0.0151 an algebraic criterion to determinel/I’,, we claimed that the long
decay is found forgs(r) while ge(r) is finite for large time limit y,, of the Lindemann parameter; (r) should
r. y.(¢t) is bound at large times and no defects at allbe equal to the critical value/y;, = 0.033. In Fig. 4
are present (not represented in Figs. 2 and 3). All thigmain part) y,, is plotted as a function ofl/T" for
indicates a crystalline phase. At the higher temperaturgarious lattice constants. Intersection of these curves
0.0164 the behavior ofgs(r), i.e., the exponent of with vy, gives 1/T',, = 0.0167. Even if the values of
the algebraic decay, is close to the predicted value/, above the melting temperature are no longer well
n = 0.33 at the melting transition. Similarly,y;.(tr) defined, this should not have a considerable influence on
approaches the transition valgg, = 0.033 but remains the point where the curves intersect. This value is in good
finite at long times. The analysis of the defects revealagreement with the simulations [15] cited earlier [18]. As
the appearance of pairs of dislocations, which start t@ criterion to determine the temperature of the hexatic-
unbind (one example in Fig. 2, left). However, theseliquid transition we used the point whepg(r) started to
pairs always annihilate after a few seconds and no fredecrease faster thayr(!/4 and foundl/T; = 0.0179.
dislocation is present. Thus the overall analysis indicates In addition, Fig. 4 enables us to investigate another
a crystalline phase very close to the melting transitionaspect of the transition. In the inset the valueygfare
Next, the temperature was increased0td177. As the represented as a function of the magnetic field, for various
long time behavior ofy, (r) and the trajectories (Fig. 3) lattice constants:.. As the size of the sample was kept
demonstrate, the particles now leave their positions in

the lattice, their mean square displacement diverging as a 10 : : i
function of time. In addition, free dislocations are present " 10

(Fig. 2) which were observed to move freely through the 5 o

sample. All this is strong evidence for a liquidlike phase. 12

However, contrary t@q(r) which is of short rangegq(r) . =

remains quasi long range, its behavior being compatible "’g 2y 0.1

with an algebraic decay. In addition, Fig. 2/{ = = 1_0-2 0512 5 = |
0.0177, right part) demonstrates that disclinations are 1B (MT™) 4
created by a dissociation process similar to the creation of 051 g L ac197m|
dislocations. An isolated particle having seven neighbors e—aa=156pm |
is created leaving a particle with five neighbors plus o—e a=138m |
an adjacent dislocation in its neighborhood. However, 0-&001 0.002 0005 001 002

these defects are always found to annihilate after a few AT

seconds and only at a higher temperatufd 89 are free

icnlinati i ; i FIG. 4. The long time limity,, of the Lindemann parameter
disclinations stable (Fig. 2, right). Therefore we CIaImas a function of the magnetic field (inset) and the temperature

that the phase corr'e'spon('jing tr = 0'017,7 is he’@“‘? 1/T for different lattice constants. 7y, scales only withl /T’
and a second transition drives the system into the isotropignd no dependence on the number of particles (a consequence
liguid (1/T = 0.0189), which is characterized by the of the fixed system size for various is observed.
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the lengthste, £ (given by thel /e value of ) Vs the rgnor.mahzatmn calculatlonsl, i.e., we neglecteq phonon

9SG, 66 . > 918G, 86 contributions. As the system is overdamped this seems
l/F.are compargd for two _meltlng experlm_ents performed to be justified. The core energl. of the dislocation,
at different heating rates (inset). No considerable change  yhich is an additional input, was determined such that
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thermal equilibrium. B ) ’
In summary, analyzing the static and dynamic prop- Y2 = L@ = w(OF) + (u;(0) = ;4 O)F)
erties of a 2D system of colloidal particles with ab- = 2[u;(t) — uj1 (0] - [w;(0) — w41 (0)]}/2a>
solutely calibrated (dipole-dipole) interaction potential a 5)
two-stage melting transition in perfect agreement with
theory (KTHNY) and simulations was observed. AbSO-  Aq the motion of the particles is not correlated over long
lute values of the transition temperature were determined  {imes the last term in Eq. (5) vanishes for =.
and additional investigations show no system-size O[1g] The fact that Bedanov and Gadiyak find a single first-
heating-rate dependence of the transitions in the parame- order transition is not too surprising regarding their small
ter range studied. system size (about 500 particles).
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