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A novel two-dimensional system of colloidal particles with absolutely calibrated magnetic interac
is used to investigate static and dynamic properties at the 2D crystal to liquid phase transition.
observe two successive transitions from the solid to the liquid phase with an intermediate hexatic p
in perfect agreement with the theory of Kosterlitz and Thouless. The absolute values of the tran
temperatures are given, and we demonstrate that they depend neither on the system size nor
cooling rate. [S0031-9007(99)08831-6]
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Since the work of Mermin [1] it is known that the
density-density correlation function in a two-dimensiona
(2D) crystal decays algebraically to zero with distance,
contrast to the 3D case where a finite value is attaine
Therefore, Kosterlitz and Thouless [2] pointed out tha
the nature of the melting transition in 2D is differen
from 3D and suggested crystal melting via a continuou
transition mediated by the dissociation of dislocatio
pairs. Later it was shown [3,4] that the resulting phas
is not an isotropic liquid, and a second transition induce
by the formation of disclinations is necessary to drive th
system from the so-called hexatic phase into the isotrop
liquid. This two-stage melting scenario is referred t
as the Kosterlitz-Thouless-Halperin-Nelson-Young theo
(KTHNY). This theory predicts the temperature wher
the system becomes unstable and topological defe
(dislocations or disclinations) are formed. Howeve
these transitions might be preempted by other proces
leading to a single first order transition as in 3D [5]
Several computer simulations and experiments have be
performed [6], leading to inconsistent results. So far
seems that the melting scenario in 2D is not universal b
depends on the specific properties of the systems, e.g.,
core energy of the dislocations [7].

In this Letter we use a novel 2D setup of colloida
particles with absolutely calibrated magnetic interactio
[8] to investigate statics and dynamics at the crystal
liquid phase transition with “atomic” resolution. The
results unambiguously demonstrate that a 2D system
interacting dipoles melts via a two-stage scenario
agreement with KTHNY. In addition, for the first time
absolute values of the transition temperatures are giv
Furthermore, we study the system size dependence of
transition and the question of thermal equilibrium.

Spherical colloids of diameterd ­ 4.7 mm and mass
density1.7 kgym3 are confined by gravity to a water/air
interface formed by a cylindrical drop suspended by su
face tension in a top-sealed ring. We control the flatne
of the entire interface (o.d.­ 8 mm) up to61 mm [8].
The particles are superparamagnetic due to Fe2O3 doping
[9], and a magnetic fieldB applied perpendicular to the
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interface induces magnetic dipole momentsM leading to
a repulsive interparticle potential. For the weak field in
tensities used we findM ­ xeffB with an effective mag-
netic susceptibility of the particlesxeff ­ s7.62 6 0.2d 3

1011 A m2yT [8]. This setup has considerable advantag
over colloidal model systems previously used [10–12]:
can be regarded an almost ideal 2D model system as
out-of-plane motion of the particles corresponds to le
than 1% of their diameter. The only relevant contribu
tion to the interaction potential is the magnetic dipol
repulsion which is conveniently and reversibly adjustab
by the external fieldB and absolutely calibrated by the
dimensionless interaction amplitude (or inverse tempe
ture) G ­ sm0y4pd sxeffBd2spnd3y2ykT (n denotes the
2D volume fraction of the particles). Finally, the syste
size and the equilibration time can easily be varied a
their influence on the transitions studied.

The experiments were carried out as follows: At hig
field B, i.e., in the crystalline phase, the system w
equilibrated for several days up to a week. In additio
small ac magnetic fields in the particle plane we
superimposed toB to anneal lattice defects. After this
procedure the entire sample [13] consisted of one sin
crystalline domain with a few (one per several thousa
particles) isolated dislocations left. The field of view
of size 520 3 440 mm2, which corresponds to typically
103 particles (the entire sample containsø105 particles),
was chosen without any defect to minimize influenc
on the phase transition. Finally, the temperatureT ­
1yG was increased by steps, each increase followed
an equilibration time of the order of an hour. Afte
equilibration the particle coordinates were determin
using digital video-microscopy and recorded for lat
evaluation on a PC.

For the analysis of the static properties the densi
density [Eq. (1)] and bond-angular [Eq. (2)] correlatio
functions have been calculated,

gGsjr 2 r0jd ­ kexpsssiG ? fusrd 2 usr0dgdddl , (1)

g6sjr 2 r0jd ­ kexpsssi6fusrd 2 usr0dgdddl . (2)
© 1999 The American Physical Society 2721
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FIG. 1. The behavior of the density-density (left) and bond-angular (middle) correlation functions and the Lindemann pa
(right) for different temperatures1yG are in agreement with KTHNY (see text).
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G denotes a reciprocal lattice vector,usrd is the particle
displacement field, andusrd represents the angle, with
respect to thex axis, of the bond centered at position
r. For a 2D crystal KTHNY predicts an algebraic
decay of gGsrd , 1yrhsT d while g6srd remains finite
at large r. At the melting temperatureTm one finds
hsTmd ­ sG2a2y64p2d s1 1 sRd s3 2 sRdjTm . Here a
is the lattice constant andsR the 2D Poisson’s ratio
(evaluated atTm) related to the Lamé elastic constant
by sR ­ lysl 1 2md [4]. In our system the interaction
potential is known precisely, and thusl, m at T ­ 0 can
be determined. We determined the renormalized valu
(at T ­ Tm) of l, m as described in [4] and obtained
hsTmd ­ 0.33. In fact, these values hardly differ from the
values atT ­ 0 [14]. In the hexatic phase an exponentia
decay is expected forgG and an algebraic decay for
g6srd , 1yrh6sT d. The exponenth6 tends towards1y4
as the system approaches the transition to the isotro
liquid. There both functions decay exponentially.

To analyze the dynamics we refer to the 2D Lindeman
melting criterion introduced by Bedanov and Gadiya
n
the
FIG. 2. The analysis of the defect structure (codes ofn-fold coordinated sites: small black dotsn ­ 6; open circlesn ­ 7; filled
circlesn ­ 5) reveals for the solid, just before melting (1yG ­ 0.0164), the occurrence of weakly bound pairs of dislocations. I
the hexatic phase (1yG ­ 0.0177) free dislocations appear (left) and disclinations start to be weakly bound (right). Finally,
isotropic liquid phase (1yG ­ 0.0189) can be characterized by the existence of free disclinations.
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[15]. As the mean square displacementku2l diverges in a
2D crystal they suggested the Lindemann parameter

gM ­ ksuj 2 uj11d2lya2, (3)

where the indicesj and j 1 1 refer to neighboring
particles. At the melting point these authors found
critical value g

c
M ­ 0.033 [16]. We generalize their

definition to be time dependent as

gLstd ­ kfDujstd 2 Duj11stdg2ly2a2, (4)

where Dustd ­ ustd 2 us0d. In the crystal gLstd is
bound at long times, its limit value being equal togM

[17]. On the other hand, in the liquid phase the displace
mentsDustd of particlesj andj 1 1 are uncorrelated at
long times andgLstd is proportional to the mean square
displacementkDu2stdl.

Figures 1–3 summarize the behavior of the system
four different temperatures1yG around the melting tran-
sition. They show, respectively, the functions as define
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FIG. 3. Trajectories of particles integrated for a timet ­ 300 s taken at three different temperatures1yG. These correspond
(from left to right) to the solid phase close to melting, the hexatic, and the isotropic liquid phase.
s

s

ll
on
d

s
c-

er

us
t

re

nce
in Eqs. (1), (2), and (4) (from left to right), the defec
structure determined by the Voronoi construction, and t
trajectories of the particles integrated over300 s. In the
following these figures will be discussed simultaneous
for the different1yG values.

At the lowest temperature1yG ­ 0.0151 an algebraic
decay is found forgGsrd while g6srd is finite for large
r. gLstd is bound at large times and no defects at a
are present (not represented in Figs. 2 and 3). All th
indicates a crystalline phase. At the higher temperatu
0.0164 the behavior of gGsrd, i.e., the exponent of
the algebraic decay, is close to the predicted val
h ­ 0.33 at the melting transition. Similarly,gLstd
approaches the transition valueg

c
M ­ 0.033 but remains

finite at long times. The analysis of the defects revea
the appearance of pairs of dislocations, which start
unbind (one example in Fig. 2, left). However, thes
pairs always annihilate after a few seconds and no f
dislocation is present. Thus the overall analysis indica
a crystalline phase very close to the melting transitio
Next, the temperature was increased to0.0177. As the
long time behavior ofgLstd and the trajectories (Fig. 3)
demonstrate, the particles now leave their positions
the lattice, their mean square displacement diverging a
function of time. In addition, free dislocations are prese
(Fig. 2) which were observed to move freely through th
sample. All this is strong evidence for a liquidlike phas
However, contrary togGsrd which is of short range,g6srd
remains quasi long range, its behavior being compati
with an algebraic decay. In addition, Fig. 2 (1yG ­
0.0177, right part) demonstrates that disclinations a
created by a dissociation process similar to the creation
dislocations. An isolated particle having seven neighbo
is created leaving a particle with five neighbors plu
an adjacent dislocation in its neighborhood. Howeve
these defects are always found to annihilate after a f
seconds and only at a higher temperature0.0189 are free
disclinations stable (Fig. 2, right). Therefore we claim
that the phase corresponding to1yG ­ 0.0177 is hexatic
and a second transition drives the system into the isotro
liquid (1yG ­ 0.0189), which is characterized by the
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exponential decrease of bothgGsrd and g6srd. Thus
the melting scenario proposed by KTHNY correspond
perfectly to the measurements presented.

In addition, we are able to give the absolute value
of the transition temperatures1yGm, 1yGi: As a melting
criterion to determine1yGm we claimed that the long
time limit gM of the Lindemann parametergLstd should
be equal to the critical valuegc

M ­ 0.033. In Fig. 4
(main part) gM is plotted as a function of1yG for
various lattice constantsa. Intersection of these curves
with g

c
M gives 1yGm ­ 0.0167. Even if the values of

gM above the melting temperature are no longer we
defined, this should not have a considerable influence
the point where the curves intersect. This value is in goo
agreement with the simulations [15] cited earlier [18]. A
a criterion to determine the temperature of the hexati
liquid transition we used the point whereg6srd started to
decrease faster than1yr s1y4d and found1yGi ­ 0.0179.

In addition, Fig. 4 enables us to investigate anoth
aspect of the transition. In the inset the values ofgM are
represented as a function of the magnetic field, for vario
lattice constantsa. As the size of the sample was kep

FIG. 4. The long time limitgM of the Lindemann parameter
as a function of the magnetic field (inset) and the temperatu
1yG for different lattice constantsa. gM scales only with1yG
and no dependence on the number of particles (a conseque
of the fixed system size for variousa) is observed.
2723



VOLUME 82, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 29 MARCH 1999

.

.

n

n
s

t
s

t

g

t-
ll
FIG. 5. The inverse of lengthsjG , j6 (see text) vs1yG (main
part) for two melting transitions at different heating rate
(inset). No considerable change in the transition temperatur
is seen.

constant, increasinga from 13.8 to 25.4 mm corresponds
to reducing the number of the particles—i.e., the size
the system—by more than a factor of 3. However, in th
main part of Fig. 4 all curves collapse to a single mast
curve when plotted as a function of1yG. This shows that
within the range of system sizes considered there is
size dependence of the transition.

Finally the question of thermal equilibrium during the
melting transition is investigated. In Fig. 5 the inverse o
the lengthsjG , j6 (given by the1ye value of gG , g6) vs
1yG are compared for two melting experiments performe
at different heating rates (inset). No considerable chan
in the transition temperatures were observed betwe
experiment (a) and (b). Thus we conclude that we a
working close to thermal equilibrium. The reason for thi
lies in the high diffusion constant of the dislocationsDdis

0
close to melting (Fig. 2, left) which is about 100 times
faster than the diffusion of the individual particles (D0 ­
0.1 mm2ys). As the dissociation of dislocation is the
driving mechanismDdis

0 determines the time scale for
thermal equilibrium.

In summary, analyzing the static and dynamic prop
erties of a 2D system of colloidal particles with ab
solutely calibrated (dipole-dipole) interaction potential
two-stage melting transition in perfect agreement wit
theory (KTHNY) and simulations was observed. Abso
lute values of the transition temperature were determin
and additional investigations show no system-size
heating-rate dependence of the transitions in the param
ter range studied.
2724
s
es

of
e
er

no

f

d
ge
en
re
s

-
-
a
h
-
ed
or

e-

We acknowledge fruitful discussions with N. Rivier.

[1] N. D. Mermin, Phys. Rev.176, 250 (1968).
[2] J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181

(1973).
[3] A. P. Young, Phys. Rev. B19, 1855 (1979).
[4] D. R. Nelson and B. I. Halperin, Phys. Rev. B19, 2457

(1979).
[5] S. T. Chui, Phys. Rev. B28, 178 (1983).
[6] For a review, see K. J. Strandburg, Rev. Mod. Phys

60, 161 (1988); Bond-Orientational Order in Condensed
Matter Systems,edited by K. J. Strandburg (Springer, New
York, 1992).

[7] Y. Saito, Phys. Rev. Lett.48, 1114 (1982).
[8] K. Zahn, J. M. Méndez-Alcaraz, and G. Maret, Phys. Rev

Lett. 79, 175 (1997).
[9] Dynabeads M-450, uncoated; DYNAL FRANCE S. A., 66

Avenue de Landshut, 60200 Compiègne, France.
[10] C. A. Murray and D. H. Van Winkle, Phys. Rev. Lett.58,

1200 (1987).
[11] R. E. Kusneret al., Phys. Rev. Lett.73, 3113 (1994).
[12] A. H. Marcus and S. A. Rice, Phys. Rev. Lett.77, 2577

(1996).
[13] Boundary effects are detectable only within a few te

lattice constants.
[14] We used the elastic constantsl, m at T ­ 0 as input for

the renormalization calculations; i.e., we neglected phono
contributions. As the system is overdamped this seem
to be justified. The core energyEc of the dislocation,
which is an additional input, was determined such tha
the transition temperature resulting from the calculation
is consistent with the measured valueTm ­ 0.0167.

[15] V. M. Bedanov and G. V. Gadiyak, Phys. Lett109A, 289
(1985).

[16] In their paper, Bedanov and Gadiyak used a differen
convention for the lattice constanta and found the
transition value to begc

M ­ 0.12.
[17] This follows if Eq. (4) is rewritten as

gLstd ­ hkfujstd 2 uj11stdg2l 1 kfujs0d 2 uj11s0dg2l

2 2kfujstd 2 uj11stdg ? fujs0d 2 uj11s0dgljy2a2.

(5)

As the motion of the particles is not correlated over lon
times the last term in Eq. (5) vanishes fort ! `.

[18] The fact that Bedanov and Gadiyak find a single firs
order transition is not too surprising regarding their sma
system size (about 500 particles).


