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Ideal Shear Strengths of fcc Aluminum and Copper
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The ideal shear strength is the minimum stress needed to plastically deform an infinite dislocation-free
crystal and is an upper bound to the strength of a real crystal. We calculate the ideal shear strengths of
Al and Cu at zero temperature using pseudopotential density functional theory within the local density
approximation. These calculations allow for structural relaxation of all five strain components other
than the imposed shear strain and result in strengt{$1dn} planes of 1.85 and 2.65 GPa for Al and Cu,
respectively (8% —9% of the shear moduli). In both Al and Cu, the structural relaxations reduce the ideal
shear strengths by 35% to 45%, but the directions of relaxation strain in each are qualitatively different.
[S0031-9007(99)08769-4]

PACS numbers: 62.20.Fe, 62.20.Dc

The mechanical strength of a typical structural materiaputes the ideal shear strengths of Al and Cu in the fully
is a complex, microstructure-sensitive property that hasinconstrained case. The shear strength is calculated as
not been successfully attacked widb initio models. the stress required to induce instability in a homogeneous,
The reason is that any realistic model must treat a larggquasistatic shear in &l12) direction in a{l111} plane,
number of interacting dislocations for long periods ofwhich is the weak direction for shear in these fcc crys-
time, which requires calculations of a size and duratiortals. Both constrained and fully unconstrained shears are
well beyond even the projected capabilities of knowntreated. Since the calculation is quasistatic, it does miss
computing machines. However, the mechanical strengthpossible phonon-induced instabilities near the critical state
of a material is bounded from both above and below. Theand may, therefore, overestimate the ideal shear strength.
upper limit is the lesser of two critical stresses: the idealThe influence of lattice vibrations is currently under study.
shear strength, at which the material becomes unstable The total energies of Al and Cu are computed as a func-
with respect to spontaneous plastic deformation in sheatjon of strain using the local density approximation pseu-
and the cleavage stress, at which the material become®potential total-energy scheme with a plane-wave basis
unstable with respect to fracture by the spontaneouset [9-12]. The pseudopotential for Cu was generated
separation of atomic planes. including semirelativistic corrections [13], while the pseu-

The upper limit of strength is of obvious interest in dopotential for Al was constructed without relativistic cor-
the science of strong solids, and theorists have attempteadctions [14]. We used a cutoff energy of 40 Ry for Al
to compute it from atomic models since at least theand 70 Ry for Cu. These choices ensure convergence to
1920s [1,2]. Relevant work through the mid-1980s isless than 1 mRy (0.013 eV) per atom.
summarized by Kelly and Macmillan [3]. The bulk of this A large number of wave vectorg foints) is needed to
work relies on the use of semiempirical bonding functionssample the Brillouin zone in these calculations. Thisistrue
that have simple mathematical form. More sophisticatedor two reasons. First, shearing reduces the symmetry of
bonding models have been used in recent years [4—8fhe crystal and, hence, increases the size of the irreducible
some of which employ first-principles methods. Muchwedge of the Brillouin zone. Second, the shape of the
of the recent work [5,8] on the shear strength followsBrillouin zone changes under shear. The grickgfoints
Frenkel [2] in confining the shear to a displacementdeforms along with it, so the individua points move
between two adjacent atomic planes. Other researcherslative to the Fermi surface. This causes spurious changes
permit uniform shear but constrain the deformation to ben the energy if thek-point grid is too coarse. We
rigid in the shear plane [4,6,7]. These constraints areletermined the number df points needed by increasing
often unphysical, will always increase the predicted sheathe number until the results did not change. A grid of
strength, and may produce significant overestimates [5,8R400% points was needed in the irreducible wedge of the
To our knowledge, the work presented here is the firsBrillouin zone to adequately describe the energy of Al
to accurately explore the very significant effects of fullunder shear. A grid of 1300 points was needed for Cu.
atomic relaxation. The shear stress is found by straining the crystal in a

Recent advances in theory and computational capabikeries of incremental simple shears, calculating the energy
ity have made it possible to dab initio calculations of E and relaxed volumé as a function of the strain, and
the ideal shear and cleavage strength by deforming uncotiaking the derivative of the energy with respect to the
strained crystals to failure. This paper specifically com-strain; the ideal shear strength is the maximum value of
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this derivative. Using a Cartesian coordinate system witlwhere G, governs the unrelaxed case;;(= 0, unless
unit vectorses perpendicular to the plane of shear andij = 13 or 31), G, governs the relaxed case;{ = 0,
e in the direction of displacement, the associated straimnlessij = 13 or 31), and theC;; are the Voigt elastic
increment is, in dyadic form, constants for the cubic crystal.

A homogeneous shear in(@12) direction on a{l111}
plane of fcc regenerates the fcc structure when the relative

To accomplish this strain under fully relaxed conditions,displacement of atoms in adjacent planes /s/3, where

we fix €13 (= €3;) and adjust the other five independent? 1S the nearest neighbor distance. It is sufficient to
components of the strain tensor until their associateg@lculate the energy to the midpoint of this shear. The
stresses vanish. This is done with a quasi-Newton metho@nergy is calculated at a sequence of values in this

[15] that increments the free strains to relax the calculatef@Nge and then fit to a cosine series to facilitate the
stresses to less than 0.05 GPa. computation of the derivatives that determine the stresses

There is no unique definition of finite strain [16]. @nd shear moduli. ‘As a rough check, we also calculate
However, the three lattice parameters, are defined the stresses directly from the Hellman-Feynman theorem
at each step of the deformation and can be describeld7]; however, these stresses are significantly less accurate
by the three functionsg®(n), wheren is the number of ~than those determined from the energy, provided that the
incremental strain steps in the simulation. LRtm,n) fit o the energy curve is good. S
be the Cartesian tensor that describes the deformation The essential results are summarized in Figs. 1-3 and

6e = e3(e1ez + ezeq). ()

between steps: andn. Then Tables I-lIl. Figures 1 and 2 show the energy of Al and
Cu as a function of the shear straif\;y), computed both
ai*(n) = ai'(m) + D;j(n,m)aj (m). (2)  with and without relaxation, and Fig. 3 plots the stress-

strain curves(y), for the two materials studied in the
fully relaxed case. Table I lists the calculated values of
the lattice constants and the elastic moduli and compares
— Djjim,m — 1) + Djj(m,m — 1) them to experiment, Table Il includes the calculated
Z ) » (3 values of the ideal shear strength, and Table Il includes
the strain components at the point of instability in the
and the engineering strain as fully relaxed case, where,, and 33 are the elongations
- B perpendicular to the direction of shear, ah®f /V is the
Dy(n.0) + D"’(n’o). (4) dilation. (The sheary > and y,; are zero because the
2 (112) shear direction lies in a mirror plane.)
The derivatives of the energy with respect to the true Table | shows that the equilibrium value of the lattice
strain are the stresses that drive incremental deformatiogpnstant is calculated to within a few percent in this paper.
and therefore the true strain is used to calculate the stresshe elastic moduli are calculated to an accuracy of about
The engineering strains are more convenient to directly-10%; the experimental values fall within this range.
describe lattice distortions at instability. The imprecision in the shear moduli is due largely to the
The energy density is a unique function of the straindifficulty of calculating the curvature (second derivative)
€13, when either (1) the crystal is unrelaxed, so tagtis
the only nonzero strain or (2) the crystal is fully relaxed,
so that there is only one nonzero stress, and the value of

We use the deformation tensd@(m, n), to define the true
strain as

Gij(”) =
m=2

€;(n) =

€13 fixes all other strains. In either case, the conjugate 0.10 =
shear stress is
0.08
1 0E 1 0E =
T=013~= 5, = = P (5) %
V des  V dvyi3 < 0.06
Whereyij = €jj + €ji = 26,']' is the shear. g
The relevant shear modulug;, is determined by the S 0.04
second derivative)’E/dy?, evaluated at zero strain. For
shear on 4111} plane of a cubic crystal, 0.02
1
«= 53 (Cn+ Gy = C) ©) 0 0.1 0.2 0.3 0.4
and engineering shear strain
3Cu(Cyy — Cpa) FIG. 1. Aluminum energy vs engineering strain for both the
G = , (7 unrelaxed A’s and smooth fit) and relaxed(s and dashed fit)
4Cyq + C11 + Cy2 cases.
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0.10 — TABLE I. Calculated and experimental lattice parameters and
elastic moduli.
0.08 [~ Al Cu
< calc expt. calc. expt.
3’; 0.06 Lattice constantA)? 4.12 405 357 3.61
o G! (GPap 2+3 245 30x4 305
% 0.04 G! (GPap 27+3 248 40=*4 408

aExperimental values from Ref. [19].
bShear moduli are defined by Eqgs. (6) and (7). Experimental
Voigt elastic constants are from Ref. [20].

|
0 0.1 0.2 0.3 0.4
engineering shear strain

of 3% in the slip plane in both Al and Cu, and a volume
change of 1.4% in Al. Structural relaxation also affects
FIG. 2. Copper energy vs engineering strain for both thethe critical strain at shear instability, which is signifi-
unrelaxed A’s and smooth fit) and relaxed®(s and dashed cantly smaller than the valuey. = 17.8%, that classi-

fit) cases. cal models would suggest. Third, Al and Cu respond
quite differently at large strains, as shown by the val-

of the energy function, since the differences in energ)}JeS of the critical strains. In Al, the relaxation strain is

at small applied strains are at the limits of our current?” €XPansion Iperpendlcular ':jo gl{ﬂall} planedpf Ishear
numerical resolution. The local density approximation is €3 = 0): partly compensated by a perpendicular con-

a second source of imprecision. traction in the plande;;, < 0), but causing a significant

Figures 1 and 2 show the importance of stress relaxa\fomme increase. In Cugss is small, the relaxation strain

tion to the energy function. The remaining results (Fig. 3"° in the plang(ex; > 0, €1 < 0), and the volume change

and Tables Il and Ill) have several other features thafgs S&n%”' tFolgrth,fdeﬁpittez ;hlzf%q th?t Al (.joﬁ lnotlform ex-
are physically interesting. First, while the calculated val- ended stacking fautts, H ) directions 'n{. } planes
ues ofr, /G’ ~ 0.085 are significantly lower than other remain the weak directions. The calculations show that

recent estimates which range from 0.12 to 0.17 [4 6]when a shear strain is applied in a different direction lat-

the critical shear strengths remain closer to the originaliC€ rélaxation rotates the shear intgla2) direction.

estimate of Frenkel [2]7, = 0.11G/, than to more re- Finally, how accurate are the calculated values of the
- Tualt ideal shear strength? This is a difficult question to an-

cent and more widely accepted values [8],~ 0.033G.. ! h directl bl : |
Second, full structural relaxation is obviously important, SWer Since there are no directly comparable experimenta

The reason these calculated values are significantly Iowﬁéal known to us. The calculations relate, strictly, to per-

than other recent estimates is because previous research { dcrystkals in the limit o;_ zlero t.em[]gerat%eb Trl13ere are
have neglected the possibility of any uniform volume"@ data known to us on dislocation-free Al, but Brenner

change or relaxation within the slip plane. We find strains[18] did measure the strength of ”O_mi”?‘”y dislocation-
9 PP free Cu whiskers. He found a tensile yield strength of

2.9 GPa for tension alon@l11), which translates into a
critical resolved shear stress,, of 0.82 GPa(0.027G")

3.00 = for slip on the{111} plane in the(112) direction. Bren-
= N ner's measurements were done at room temperature, so
% the strength must be corrected to 0 K. While there is no
5, 2.00 - .® exact way to do this, a crude model described by Kelly
3 P e e and Macmillan [3] suggests that.(0) = 2.57.(273) is
® e *. not a bad estimate. Using this approximation, we project
§ 100 ' 7. = 1.1 GPa at 273 K, which is not unreasonable in
< = K AN light of the Brenner result. A better test can be made
o
0.00 ' ' L 4 o! TABLE II. Ideal shear strengths with and without structural
0 0.1 0.2 0.3 0.4 relaxations.
engineering shear strain Failure stress
FIG. 3. Stress vs engineering strain for CA'f and smooth 7. (GPa) /G, 7. (GPa)
fit) and Al (@'s and dashed fit). The data points are the p| 1.85 + 0.1 0.084 34 + 0.1
calculated Hellman-Feynman stresses, and the smooth curves, 265 + 02 0.088 4.0 + 0.1

are the derivatives of the smooth fits to the energies.
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