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Ideal Shear Strengths of fcc Aluminum and Copper
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The ideal shear strength is the minimum stress needed to plastically deform an infinite dislocation-free
crystal and is an upper bound to the strength of a real crystal. We calculate the ideal shear strengths of
Al and Cu at zero temperature using pseudopotential density functional theory within the local density
approximation. These calculations allow for structural relaxation of all five strain components other
than the imposed shear strain and result in strengths onh111j planes of 1.85 and 2.65 GPa for Al and Cu,
respectively (8%–9% of the shear moduli). In both Al and Cu, the structural relaxations reduce the ideal
shear strengths by 35% to 45%, but the directions of relaxation strain in each are qualitatively different.
[S0031-9007(99)08769-4]
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The mechanical strength of a typical structural mater
is a complex, microstructure-sensitive property that h
not been successfully attacked withab initio models.
The reason is that any realistic model must treat a la
number of interacting dislocations for long periods
time, which requires calculations of a size and durat
well beyond even the projected capabilities of know
computing machines. However, the mechanical stren
of a material is bounded from both above and below. T
upper limit is the lesser of two critical stresses: the ide
shear strength, at which the material becomes unst
with respect to spontaneous plastic deformation in she
and the cleavage stress, at which the material beco
unstable with respect to fracture by the spontane
separation of atomic planes.

The upper limit of strength is of obvious interest
the science of strong solids, and theorists have attem
to compute it from atomic models since at least t
1920s [1,2]. Relevant work through the mid-1980s
summarized by Kelly and Macmillan [3]. The bulk of thi
work relies on the use of semiempirical bonding functio
that have simple mathematical form. More sophistica
bonding models have been used in recent years [4–
some of which employ first-principles methods. Muc
of the recent work [5,8] on the shear strength follow
Frenkel [2] in confining the shear to a displaceme
between two adjacent atomic planes. Other researc
permit uniform shear but constrain the deformation to
rigid in the shear plane [4,6,7]. These constraints
often unphysical, will always increase the predicted sh
strength, and may produce significant overestimates [5
To our knowledge, the work presented here is the fi
to accurately explore the very significant effects of fu
atomic relaxation.

Recent advances in theory and computational capa
ity have made it possible to doab initio calculations of
the ideal shear and cleavage strength by deforming unc
strained crystals to failure. This paper specifically co
0031-9007y99y82(13)y2713(4)$15.00
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putes the ideal shear strengths of Al and Cu in the ful
unconstrained case. The shear strength is calculated
the stress required to induce instability in a homogeneou
quasistatic shear in ak112l direction in a h111j plane,
which is the weak direction for shear in these fcc crys
tals. Both constrained and fully unconstrained shears a
treated. Since the calculation is quasistatic, it does m
possible phonon-induced instabilities near the critical sta
and may, therefore, overestimate the ideal shear streng
The influence of lattice vibrations is currently under study

The total energies of Al and Cu are computed as a fun
tion of strain using the local density approximation pseu
dopotential total-energy scheme with a plane-wave ba
set [9–12]. The pseudopotential for Cu was generat
including semirelativistic corrections [13], while the pseu
dopotential for Al was constructed without relativistic cor
rections [14]. We used a cutoff energy of 40 Ry for A
and 70 Ry for Cu. These choices ensure convergence
less than 1 mRy (0.013 eV) per atom.

A large number of wave vectors (k points) is needed to
sample the Brillouin zone in these calculations. This is tru
for two reasons. First, shearing reduces the symmetry
the crystal and, hence, increases the size of the irreduci
wedge of the Brillouin zone. Second, the shape of th
Brillouin zone changes under shear. The grid ofk points
deforms along with it, so the individualk points move
relative to the Fermi surface. This causes spurious chang
in the energy if thek-point grid is too coarse. We
determined the number ofk points needed by increasing
the number until the results did not change. A grid o
2400k points was needed in the irreducible wedge of th
Brillouin zone to adequately describe the energy of A
under shear. A grid of 1300k points was needed for Cu.

The shear stress is found by straining the crystal in
series of incremental simple shears, calculating the ener
E and relaxed volumeV as a function of the strain, and
taking the derivative of the energy with respect to th
strain; the ideal shear strength is the maximum value
© 1999 The American Physical Society 2713
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this derivative. Using a Cartesian coordinate system w
unit vectorse3 perpendicular to the plane of shear an
e1 in the direction of displacement, the associated stra
increment is, in dyadic form,

de ­ e13se1e3 1 e3e1d . (1)

To accomplish this strain under fully relaxed condition
we fix e13 s­ e31d and adjust the other five independen
components of the strain tensor until their associat
stresses vanish. This is done with a quasi-Newton meth
[15] that increments the free strains to relax the calculat
stresses to less than 0.05 GPa.

There is no unique definition of finite strain [16]
However, the three lattice parameters,aa, are defined
at each step of the deformation and can be describ
by the three functions,aasnd, wheren is the number of
incremental strain steps in the simulation. LetDsm, nd
be the Cartesian tensor that describes the deformat
between stepsm andn. Then

aa
i snd ­ aa

i smd 1 Dijsn, mdaa
j smd . (2)

We use the deformation tensor,Dsm, nd, to define the true
strain as

eijsnd ­
nX

m­2

Dijsm, m 2 1d 1 Djism, m 2 1d
2

, (3)

and the engineering strain as

eE
ijsnd ­

Dijsn, 0d 1 Djisn, 0d
2

. (4)

The derivatives of the energy with respect to the tru
strain are the stresses that drive incremental deformati
and therefore the true strain is used to calculate the stre
The engineering strains are more convenient to direc
describe lattice distortions at instability.

The energy density is a unique function of the strai
e13, when either (1) the crystal is unrelaxed, so thate13 is
the only nonzero strain or (2) the crystal is fully relaxed
so that there is only one nonzero stress, and the value
e13 fixes all other strains. In either case, the conjuga
shear stress is

t ­ s13 ­
1
V

≠E
≠e13

­
1
V

≠E
≠g13

, (5)

wheregij ­ eij 1 eji ­ 2eij is the shear.
The relevant shear modulus,G0, is determined by the

second derivative,≠2Ey≠g2, evaluated at zero strain. Fo
shear on ah111j plane of a cubic crystal,

G0
u ­

1
3

sC11 1 C44 2 C12d , (6)

and

G0
r ­

3C44sC11 2 C12d
4C44 1 C11 1 C12

, (7)
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where G0
u governs the unrelaxed case (eij ­ 0, unless

ij ­ 13 or 31), G0
r governs the relaxed case (sij ­ 0,

unlessij ­ 13 or 31), and theCij are the Voigt elastic
constants for the cubic crystal.

A homogeneous shear in ak112l direction on ah111j
plane of fcc regenerates the fcc structure when the relat
displacement of atoms in adjacent planes isby

p
3, where

b is the nearest neighbor distance. It is sufficient t
calculate the energy to the midpoint of this shear. Th
energy is calculated at a sequence of values in th
range and then fit to a cosine series to facilitate th
computation of the derivatives that determine the stress
and shear moduli. As a rough check, we also calcula
the stresses directly from the Hellman-Feynman theore
[17]; however, these stresses are significantly less accur
than those determined from the energy, provided that t
fit to the energy curve is good.

The essential results are summarized in Figs. 1–3 a
Tables I–III. Figures 1 and 2 show the energy of Al an
Cu as a function of the shear strain,Esgd, computed both
with and without relaxation, and Fig. 3 plots the stress
strain curves,tsgd, for the two materials studied in the
fully relaxed case. Table I lists the calculated values o
the lattice constants and the elastic moduli and compa
them to experiment, Table II includes the calculate
values of the ideal shear strength, and Table III include
the strain components at the point of instability in th
fully relaxed case, wheree22 ande33 are the elongations
perpendicular to the direction of shear, andDVyV is the
dilation. (The shearsg12 and g23 are zero because the
k112l shear direction lies in a mirror plane.)

Table I shows that the equilibrium value of the lattice
constant is calculated to within a few percent in this pape
The elastic moduli are calculated to an accuracy of abo
610%; the experimental values fall within this range
The imprecision in the shear moduli is due largely to th
difficulty of calculating the curvature (second derivative
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FIG. 1. Aluminum energy vs engineering strain for both th
unrelaxed (m’s and smooth fit) and relaxed (d’s and dashed fit)
cases.
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FIG. 2. Copper energy vs engineering strain for both th
unrelaxed (m’s and smooth fit) and relaxed (d’s and dashed
fit) cases.

of the energy function, since the differences in ener
at small applied strains are at the limits of our curre
numerical resolution. The local density approximation
a second source of imprecision.

Figures 1 and 2 show the importance of stress relax
tion to the energy function. The remaining results (Fig.
and Tables II and III) have several other features th
are physically interesting. First, while the calculated va
ues oftryG0

r ø 0.085 are significantly lower than other
recent estimates which range from 0.12 to 0.17 [4,6
the critical shear strengths remain closer to the origin
estimate of Frenkel [2],tr ø 0.11G0

r , than to more re-
cent and more widely accepted values [3],tr ø 0.033G0

r .
Second, full structural relaxation is obviously importan
The reason these calculated values are significantly low
than other recent estimates is because previous researc
have neglected the possibility of any uniform volum
change or relaxation within the slip plane. We find strain
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FIG. 3. Stress vs engineering strain for Cu (m’s and smooth
fit) and Al (d’s and dashed fit). The data points are th
calculated Hellman-Feynman stresses, and the smooth cu
are the derivatives of the smooth fits to the energies.
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TABLE I. Calculated and experimental lattice parameters an
elastic moduli.

Al Cu
calc expt. calc. expt.

Lattice constantsÅda 4.12 4.05 3.57 3.61
G0

r (GPa)b 22 6 3 24.5 30 6 4 30.5
G0

u (GPa)b 27 6 3 24.8 40 6 4 40.8

aExperimental values from Ref. [19].
bShear moduli are defined by Eqs. (6) and (7). Experiment
Voigt elastic constants are from Ref. [20].

of 3% in the slip plane in both Al and Cu, and a volume
change of 1.4% in Al. Structural relaxation also affect
the critical strain at shear instability, which is signifi-
cantly smaller than the value,gc ­ 17.8%, that classi-
cal models would suggest. Third, Al and Cu respon
quite differently at large strains, as shown by the va
ues of the critical strains. In Al, the relaxation strain i
an expansion perpendicular to theh111j plane of shear
se33 . 0d, partly compensated by a perpendicular con
traction in the planese22 , 0d, but causing a significant
volume increase. In Cu,e33 is small, the relaxation strain
is in the planese22 . 0, e11 , 0d, and the volume change
is small. Fourth, despite the fact that Al does not form ex
tended stacking faults, thek112l directions inh111j planes
remain the weak directions. The calculations show th
when a shear strain is applied in a different direction la
tice relaxation rotates the shear into ak112l direction.

Finally, how accurate are the calculated values of th
ideal shear strength? This is a difficult question to an
swer since there are no directly comparable experimen
data known to us. The calculations relate, strictly, to pe
fect crystals in the limit of zero temperature. There ar
no data known to us on dislocation-free Al, but Brenne
[18] did measure the strength of nominally dislocation
free Cu whiskers. He found a tensile yield strength o
2.9 GPa for tension alongk111l, which translates into a
critical resolved shear stress,tc, of 0.82 GPas0.027G0

rd
for slip on theh111j plane in thek112l direction. Bren-
ner’s measurements were done at room temperature,
the strength must be corrected to 0 K. While there is n
exact way to do this, a crude model described by Kel
and Macmillan [3] suggests thattcs0d ø 2.5tcs273d is
not a bad estimate. Using this approximation, we proje
tc ø 1.1 GPa at 273 K, which is not unreasonable in
light of the Brenner result. A better test can be mad

TABLE II. Ideal shear strengths with and without structura
relaxations.

Failure stress
tr (GPa) tryG0

r tu (GPa)

Al 1.85 6 0.1 0.084 3.4 6 0.1
Cu 2.65 6 0.2 0.088 4.0 6 0.1
2715
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TABLE III. Engineering strains at shear instability.

Failure strain (%)
g

E
13 e

E
11 e

E
22 e

E
33 DVyV

Al 14.5 1 23 3 1.4
Cu 13 23 3 0.2 0.4

by computing the strength of high-melting-point mater
als, which should show a much smaller thermal effec
Studies of W and Ti(C,N) are now underway.
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