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Magnetic Dipole Equilibrium Solution at Finite Plasma Pressure
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A realistic equilibrium with finite plasma pressure is derived for a plasma confined by the magnetic
field of a point dipole. The low and high pressure forms of the solution are explicitly displayed. The
energy principle is used to demonstrate the interchange stability of the equilibrium solution for arbitrary
pressures and shows that it remains stable as the plasma pressure increases. [S0031-9007(99)08794-3]

PACS numbers: 52.55.Hc, 52.35.B;j

Dipole confinement devices are axisymmetric toroidalas an expansion in the distance from the point dipole to
systems in which the dipolar magnetic field is created bythe fourth power. Interestingly, however, their weak pres-
a current ring [1,2]. All other equilibrium currents are sure solution contradicts earlier claims that the leading
plasma currents in the toroidal direction—there are ndinite 8 = (plasma pressuyé&(magnetic pressuyemodi-
parallel currents. All magnetic field lines are closed sdfication to the vacuum dipole magnetic field is a change
that “flux” surfaces are defined as surfaces of rotatiorin the magnitude of the field, but not its direction [8].
about the axis of the current ring by the closed field To obtain an equilibrium dipole solution with a finite
lines. These surfaces are also the surfaces on which thetal plasma current, that is, a current density that de-
pressure is constant. Because of the dipole’s geometricateases faster than the third power of the distance from
simplicity, charged particles remain on flux surfaces inthe dipole, we consider separable solutions of the Grad-
their guiding center motion: There are no banana orbitsShafranov equation,
and no neoclassical enhancements to classical transport 1 dp
[3]. Moreover, the diamagnetic toroidal flows have a V- (ﬁ Vz,//> = —47 w (1)
vanishing divergence so no Pfirsch-Schiilter flows are
generated [3]. Of course, dipolar features are observeghere p = p(y) is the plasma pressure, and is the
in planetary magnetospheres [4], so the interest in dipolglux function associated with the dipole magnetic field
confinement is not limited to the laboratory. B = V¢ X V¢, with the ¢ toroidal angle with respect to

Remarkably, however, physically interesting andthe dipole axis and&k the cylindrical radial distance from
mathematically simple equilibrium solutions for a plasmathe axis of the dipole. Equation (1) is obtained as usual
confined by the magnetic field of a point dipole—thatfrom the steady state toroidal component of Ampére’s
is, solutions of the relevant Grad-Shafranov equationaw, v x B = 473, and force balancé, x B = ¢Vp.

[5] in the absence of inertial and gravitational effectsThe flux functiony is related to the toroidal component of
[6]—are not available in the literature and have not beefnhe vector potentiald, by y = RA. We employ spherical
shown to exist. Recent work by Tur, Maurice, Blanc, coordinatesr, 9, and ¢ with » = cosé, R = r sin 6,
and Yanovsky [7] attempts to remedy this situation byang seek separable solutions of the form,

considering the limit of a point dipole and a pressure

profile that is proportional to the flux squared so that the W = M 2)
Grad-Shafranov equation reduces to a linear differential re

equation. Aside from the mathematical complexity of thewhereH is an unknown function of. alone that becomes
resulting solution, the quadratic pressure profile assumpa constant timeg1 — x?) in the vacuum limit. The
tion yields a toroidal plasma current density that does noparametera plays the role of an eigenvalue of the
decrease with the radial distance from the dipole. Evemonlinear Grad-Shafranov equation and is equal to unity
when their solution is matched to an external vacuum rein the vacuum limit to recover the vacuum dipole solution
gion, the resulting equilibrium is not physically appealing, ¢ = sir’ 8/r. Plasma currents will cause the parameter
because the small pressure limit of the solution is obtained to depart from unity, and, since the plasma current
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must be in the same direction as the dipole current fop o« 24/« Employing a pressure profile of the form
equilibrium, the finite plasma pressure acts to reduce b= polth /i)t (4)

from unity as the plasma pressure increases, as will be.
shown shortly. with po the pressure at some reference surfgge and

Inserting Eqg. (2) into Eq. (1) and using spherical vari-inserting

ables gives

2 " 1+4/a

e D a2 (1)
o (1 — p?) dy \ ¢

Therefore, for H = H(u) only, we must assumﬁ

d
m[“‘

whereh — 1 — u? asBy — 0 and

H(p) = $oRGh(p), ®)
with Ry the cylindrical radius at which the surface
Yo intersects the symmetry plan® = 7 /2), yields
the nonlinear Grad-Shafranov equation for the unknown
function (), which we write in a form particularly
convenient at low plasma pressure,

(6)

/ﬂ)z% (1 _hﬂzﬂ (1= a)2+ a)h = —Boa + a)(1 — p’)h'*¥e,

| Becauseh > 0, to satisfy Eq. (9)a should either be in

8mpo 8w poR§ the range0 < a =1 or a = =2 [for & = =2, p =
Bo = B2 = 2.2 - (7)  const, and the solution to Eq. (6) is simply the vacuum
0 a*o solutionz = 1 — w2, which corresponds to the solution

To define the plasma beta at the equatorial or symmetrjiear the symmetry axis on the interior of a finite current
plane, By, we useB =V X (¢V{¢) to find the magni- ring generating a vacuum dipole magnetic field [9]].

tude of the magnetic field &, (the intersection of the Notice that for0 < @« = 1 the pressure peaks at the

symmetry plane and the reference surfdggto beBy =  innermost flux surface, that is, at the location of the point
ao/RE assumingh(u = 0) = 1. Notice for the pres- dipole. However, for a finite current ring the pressure
sure profile and flux function considered here, the locapeaks at some distance from the ring before falling off.
plasma beta = 87 p/B?, is independent of the spheri- Consequently, our model is expected to be appropriate

cal radial variabler, so B8 is simply By times a function
of angled. )

Using the boundary conditions th& be finite and
parallel to the axis of symmetry @&t= 0 andf = = /2,

integration of Eq. (6) fromu = 0to u = 1 gives
2+ a)[(1 — )Py — BaPr] =0, 9)
with
1 1
P =[ duh, P, =f du (1 — p?)h! e,
0 0

(10)
|

_ 34
2(1 — nl/2

1928,

1001 6 48

[(1—@[0[

5 35,

beyond a couple ring diameters.

Equation (9) indicates that the departure @ffrom
unity is due to the finite3, of the plasma (which in turn
modifies the pressure profile). Inserting Bg— 0 result
h =1 — u?into Eq. (9) and assuming — 1 gives the
departure ofx from unity to be of the order 0B,

512

i Bo-

I = 1001

(11)

As a result, an analytic solution to Eq. (6) can be found
for small B¢ by using the replacement— 1 — u? in the
two terms in whichk appears undifferentiated. Using the
boundary condition (8) aiz = 1 to integrate the resulting
equation fromu to 1 and lettingg = 1 — w? gives [10]

T dx x®
_,80/0 (1—x)1/2:|

77

dx x

(1 — x)1/2

21

32 128

= |:1+—t+—t +—z3+—z4]

Integrating again, using(ux = 0) = 1, results in the following lowB, solution valid at all distances from a point

dipole:
ho 19280 | 5o 35
[T [[1 T R vt U
+ %[1 - =@+ %[1 - (1 - ,u?)s]}, (12)

where, of course] — u? = sir? 6.
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The plasma current densidyis found from where theu — 1 form is valid for u > 30‘1/2_ To
d satisfyh(u = 1) = 0 requires
S s _ 5 pdp
IT IRy, a =1/ + 0(1/Bo). (19)
L cBo(2 + a)BoRG? N1/24 144 a Notice that for largeBy, h = 1 — u everywhere except
—¢ 4qrrat3 (L= w)h - (13 in a small regior) = u = ,8(;1/2 < 1, whereh remains

close to unity, but with a large second derivative of the

1/2
order of By'~.

The preceding demonstrates that separable dipolar solu-
tions to the Grad-Shafranov equation exist for arbitrarily
large Byo. The distance between adjacent flux surfaces at
the symmetry plang. = 0 increases a@, increases as
can be seen by realizing that asdecreases the spacing
must adjust to keegy « (Ry/r)® fixed. As a result, the
constant) surfaces become more extended and localized
about the symmetry plane @ increases. The resulting
large By equilibrium resembles the accretion disk associ-

may also be evaluated, whefe= Vr and & = rvg  ated with star formation [11]. _
are unit vectors. As in the solution of Tur, Maurice, EN€rgy principle arguments are normally invoked to
Blanc, and Yanovsky, a finite plasma pressure changes €€ that interchange (or flute) stability for an adia-
direction of the magnetic field as well as its magnitude Patic plasma in a vacuum dipole magnetic field requires
contradicting the work of Chaet al. [8]. 20/3 > —(r/p)(dp/dr) [%2]' For our pressure profile
Next, we consider the case of largg (8o > 1) to N the vacuum limitp o §° =« r=°, and we see that this
demonstrate that solutions to the Grad-Shafranov equatiot@Pility condition is satisfied. More interestingly, we can
exist for arbitrary beta equilibrium. The low pressure so-demonstrate that finite beta effects enhance this inter-

lution and the lower limit on the allowed range suggest change stability. We start with the necessary condition

with £ = RV/ the toroidal unit vector. Notice that at the
midplaneJ « 1/r3*® so the total current in the plasma,
[drdérJ « [dr/r**®, is always well behaved as—
©if 0 < a = 1. Fordp/dy « ¢, the case considered by
Tur, Maurice, Blanc, and Yanovsky [7], « Ry « const,
so the total plasma current increasesas

The magnetic field associated with the flux functien

ah ., dh
N
(1 — u?)!/? du|’

(14)

that « decreases toward zero @& increases to infinity.
Consequently, we assume tHatBy < a(Bp) < 1. We
will verify this assumption by showing that our solution

. —-1/2
requiresa = By /

We begin by considering the Grad-Shafranov equation

(6) in the form

d*h ala +1)
J’_
du? 1 — u?

where we need only considér= x = 1, since we are
interested in a solution even in. When By > 1, the
term a(a + 1)h/(1 — u?) is small everywhere [recall
Eq. (8)]. The termBoa(a + 2)h'**/“ s large atu = 0
and rapidly decreases to zero/aslecreases from(u =
0) = 1towardh(u = 1) = 0 sincea < 1. As a result,
to lowest order we need only solve

d*h
du?

h

Boa(2 + a)h't¥e,

(15)

= —2Bgah' TV, (16)

Multiplying by dh/du and integrating fromu = 0,
wheredh/du = 0 by symmetry, we find

dh

; —aﬁé/z(l _ h2+4/a)1/2 + 0(a).
m

(17)

Integrating fromu = 0, whereh(u = 0) = 1, to u gives

1/2

1
aBy pu = fh dx (1 — x>H4/ey=1/2 e 1—h, (18)

for finite beta interchange stability which can be written

in the form
1 dv 1 dv
- + -
v dl,b) (V dy

Tl

wherewv is the volume per unit flux at fixeg, which for
our solution becomes

v = fd(f/B = ?{dﬁr/é - B

5

2
3 ) >0, (20)

1
— (Rg/a¢1+3/a)f thl+3/a‘ (21)
0
Using the preceding we see that: ~!73/« while from
Eq. (4) we havep « 2*4/«  As aresult, Eq. (20) gives
the finite beta modified interchange stability condition for
our solution to be

5 202+ a)
3 3+

Becausea decreases from unity towards zero #g
increases from zero toward infinity, we see that the
interchange stability is maintained at all plasma pressures.
To verify that Eqg. (20) is valid for arbitrary beta, the

energy principle for interchange modes in the absence
of the parallel current is varied with respect to the par-
allel displacement to obtain the plasma compressibility
term that arises because of the closed field lines [13].
Next, variations with respect to the two perpendicular dis-
placements are performed to obtain the general finite beta

(22)
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interchange stability condition for arbitrary axisymmetric No. DE-FG05-80ET-53088 at the Institute for Fusion
closed field line geometries: Studies at the University of Texas at Austin.
2yp(k - Viy/R?B%) _ dp
1 + 47yp(B~2) dy’
5

(23)
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