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Partially Coherent Solitons on a Finite Background
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We have found a new class of exact solutions for multicomponent partially coherent solitons in
photorefractive media with a drift mechanism of nonlinear response. Their novel feature is that the
compositeM-component sech-shaped soliton is located on a constant-background plane wave. The
solutions are characterized by two free parameters and these are related to the maximum intensity of
the composite soliton and to the amplitude of the background. [S0031-9007(99)08778-5]

PACS numbers: 42.65.Tg, 05.45.Yv

The concept of incoherent solitons, both in time [1] andof nonlinear response, the nonlinearity can be taken as
in space [2,3], has recently attracted considerable atterkerr-like [13]. Clearly, the Kerr-like nonlinearity is an
tion [4], especially since the first experimental demonstraapproximation. Nevertheless, this approach provides us
tion of their existence [5]. Photorefractive media are thewith valuable insight into the problem. In this case, the
most appropriate for experimental observations, as thegxistence of exact solutions helps us to understand the
require only extremely low optical powers [6,7]. Theo- phenomenon. The general idea is valid for any particu-
retical descriptions of incoherent solitons have been prear nonlinearity, so that solutions of our equations give a
sented based on various principles. Approaches baseplalitative description of incoherent solitons in photore-
on multimode waveguides [8] and the geometric opticdractive media with more sophisticated nonlinearities.
limit [9,10] are useful tools for understanding the idea In this work we present an exact solution to the
of incoherent solitons. As a further conceptual step, ittoupled set ofM equations which describes symmetric
has been shown that these novel objects have variabRCS on a background. Evidently, the restriction of
shape and that they can be reshaped after collisions [11§ymmetry and requirement of a sech profile reduces the
On a descriptive level, the difference between a stanmultiparameter solutions to single parameter ones [13].
dard single soliton and an incoherent soliton could beHere, the amplitude of the background gives the second
compared to that between an elementary particle and parameter of the family, so that the solutions we are
complicated structure, such as an atom. Indeed, detailesbeking are two-parameter families. Indeed, we find two-
analysis has shown that partially coherent solitons (PCSparameter families of PCS on a background for arbitrary
are multiparameter families of solutions [11], as distinctinteger M. In each case, one of the components has a
from single-parameter families of nonlinear Schrédingemonzero asymptote, and this leads to a nonzero asymptotic
equation (NLSE) solitons [12]. Moreover, PCS behavevalue of the index change induced by the PCS. Note that
like multiparticle objects in collisions [11]. these solutions cannot be obtained using the formalism of

Previous theoretical publications on incoherent soliton§16—18] because one of the functions does not decay to
have dealt with stationary solutions [2,8], their internalzero at infinity.
dynamics [9,10], and their collisions [11,13]. The natural It can be shown [13] that, for photorefractive media
question now is how PCS interact with plane waves andwith a drift mechanism of nonlinear response, a good
more specifically, whether a PCS can exist as an additioapproximation describing the propagation #8f self-
to a plane wave. In the case of a single NLSE, it is knowrtrapped mutually incoherent wave packets is the set of
that single solitons [12] and higher-order two-soliton NLSE equations for a Kerr-type nonlinearity
solutions [14] can exist on a background. Interaction 9 1 0%y,
of the soliton with the plane wave causes nonlinear i—L 4+ — 2’
interference [15] and the net result is that the whole 9z 2 ox
solution is periodic or quasiperiodic. We have foundwherey; denotes thejth component of the beana is
that analogous solutions exist fa# coupled NLSEs. a coefficient representing the strength of nonlinearity,
However, in the latter case, these solutions are stationafg the transverse coordinatejs the coordinate along the
and do not change their shape on propagation, in contragirection of propagation, and
to the solutions of the single NLSE [12,14,15]. M

Incoherent self-trapping in a biased photorefractive dn = ly;I (2)
crystal is usually well described by a set &f coupled j=1
NLSE equations with saturable nonlinearities [3]. More-is the change in refractive index profile created by all the
over, in photorefractive media with a drift mechanismincoherent components in the light beam. Because the

+ adéniy; =0, Q)
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response time of the nonlinearity is assumed to be lonpased on the modes of the “sech-squared” waveguide [28].
compared to temporal variations of the relative phases ofhe additional requirement here is that the change of the
all the components, the medium responds to the averagefractive index must be of the form constsecR(/f x),
light intensity, and this is just a simple sum of modali.e., it should be similar to the function in Eq. (7). This
intensities [19], as expressed by relation (2). means that each component must satisfy

The set of equations (1) belongs to the class of d2u
integrable systems [20] and its solutions can be written in  —— + [g; + g2 secR(/f x)]u;(x) = kfuj(x), (8)
explicit forms. However, the inverse scattering technique
in its standard formulation [17,20] and its equivalents [18]where j = 1,2,---M, and g, g», and f are constants
cannot be used here because of the nonzero boundamlated to thek;. We find that the solutions of (8) can
conditions. We use a direct method which gives thebe expressed as associated Legendre polynomials [29]
exact solution for arbitrary/ and illustrate its application starting from order O; this distinguishes them from the
for M = 3 andM = 4. We are interested in stationary solutions considered in [13] and [28] which were in terms

solutions of Eq. (1) which are given by of associated Legendre polynomials starting with order 1.

1 We note that the well-known Legendre polynomials [29]
Pi(x,z) = ﬁuj(X) expik;z/2), () Py=1,P = ¢£,P, = 35(382 — 1), etc., can be used to
define the associated Legendre functions:

with real functionsu;(x), so that the set of Egs. (1)

reduces to the set of ordinary differential equations PM(&) = (—1)"(1 — 2)m/2 P,(£). Q)

(ODES)' aem

2u We can rewrite (8) in the form
dxzj - 2|:Zu } = Ku,  j=12...M, i, ®

@) T + 26nu;(x )=k12»uj(x), j=12,---M.
which is also completely integrable for an arbitrary (20)
set of realk;. Various solutions to these equations,

including soliton solutions [21—-23] and periodic solutionsSUCh that

[24,25] have been found, especially ff = 2 [26,27]. 26n = ki + fM(M — 1)secR\/fx), (11)
I[Examﬁles of explicit solutions fod > 2 are still rare \\here 5, is the total change of refractive index [see
13,24]. . . >
' . . ) Eqg. (2)]. By usingy = x and settingf = kjy -1 —
In particular, it is known [24] that for arbitrary, and k;%j, (W%]ere ¥he eiggnvalxl/stMﬂ and kMggre a%)itlrary,
k2, the set each equation is transformed into
ul(x) + 203 + w)u, = kiuy, ©) 2
//(x) + 2(1/{% + M%)Mz _ k%u2, dy - 1)14] SeCH(y) = /\juj s (12)
has a solution consisting of bright and dark solltonwhereA = (k — k) (kiy—y — k).
components. In fact, they are It is clear from Eq. (12) thaly, = 0 and Ay—; = 1.
uy = Jaz sechty/f x), Hence, the two final components,, and uy—;, have
N (6) solutions in terms of the associated Legendre functions
uy = ky tanhy/f x)/v2, PY,_ (tanhy) and P),_,(tanhy), respectively. To make

wheref = k} — k3 anda, = 2(2k1 — k3) are constants. other equations solvable in terms of the same functions,

Interestingly enough, the total index change for thisthe coefficientA; on the right-hand side must be set to
solution is (M — j)* ThIS means that we specify

Sn =1+ ud = k2 + f secRFx), (7) k=M = jP(ky—y — ki) + ki, (13)

where both the background and the central part of thgo that, given the two eigenvalues, we can find the others

solution are changed self-consistently by the componentdirectly from this relation, i.e., we can write down the

u;. Hence this solution is a “soliton on a background.”whole set ofk; from the given values ok —; and k.

This simple example suggests that there could be higheNow, the componeni; appearing in Eq. (12) can be

order solutions which have the same property. Belowritten in general form

m?eg;?]s‘fr(];tlrl)t.ese solutions in general form, for arbitrary () = *cim PY i tanhy), j=1.2....M. (14)
Without loss of generality, we can arrange the eigenvalHence the component; is an odd function ofx if j

ues in decreasing ordé§ > k, > k3 > --- > ky. Fur- is even, and is even if is odd; it hasj — 1 zeros.

thermore, we suppose that two of them , andky,, are The constant amplitudes; ,; must be chosen so that

arbitrary. We use a technique for obtaining the solution se} u7 = &n always holds.
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The following normalization can assist in finding these 2ui (¢ = 1) = ki, (16)

amplitudes: ) ) ) )
ro ) ) M + j)! sinceu;j(¢ =1)=0if j # M. He_nce the final ampli-
[Pu(€)])"dé = —. (15) tude constant can be found immediately.
An important observation is that thefth component _. US|_ng the fact thap, (1) = 1 for all n, we can furt.her.
. . simplify the final component,, in each case and write it

uy has a nonzero asymptote. This latter function can als% terms of a Legendre polvnomial:
be expressed in a different form. For a giveh it is clear 9 poly '
that the final componenty,,, is proportional toPy_, Ky
and that this function has a nonzero value whes> o, up(y) = * 5 Py-1(é), 17)
i.e., when¢ = taniy) — 1. All other componentsio
approach zero in this limit. It is also obvious that, for with ¢ = tanhy, as above. Clearly, the solution compo-
a given M, each intensity,uf, is a polynomial with nentu, in Eqg. (6) belongs to this class.
terms in &9, &2, ..., &2M72 while the total intensity is Now we can write down the coefficients explicitly. By
a polynomial with constant and? terms only. Setting using & = tanHy) in Eq. (11), integrating ovet—1, 1),

¢ = 1 directly shows that | and using Egs. (14)—-(17), we obtain

Mrom - - 1) M — 1)
> W(Cj,zu)z = f[M(ZM — Dkjy—y — @M = 3)(M + D] (18)
j=1 '

We can satisfy this by choosing | f=1k —ki. The components:; given by (22) are

> > > plotted in Fig. 2. The total index chan@a: is
A \/(j — DIRM = (k-1 — ki) + k3] 4
M oM —j — 1) ’ > ud(x) = k3/2 + 6fsecR(/f x). (23)
(19) i=1

where j=1,2,...,M — 1. We recall also from The index change given by Eq. (23) has been omitted

- i from Fig. 2 for clarity.
Egs. (14) and (17) thaiya = ky/~/2. With these _ _
values of the coefficients, Eq. (11) is satisfied exactly, NOW We show that the class of solutions with zero

Hence, the set of equations (13), (14), and (19) define thgckground given in [13] are special cases of the so-
solution we are seeking for arbitrafy. lutions which we have found here. If we specify the

Let us present in explicit form two higher-order number of componentd/, then we may choose the back-

examples. FomM = 3, we takek, and k; as arbitrary. ground'intensityzl(/ﬁ/Z) and the intensity at the _point
Thenk? = 4k2 — 3k% andf = k2 — k2, and we obtain of maximum, [ky, + fM(M — 1)]/2, arbitrarily, since

_ f = kiyy—1 — ki;, and bothk, and ky_, are arbitrary.
u(x) = Jas sech(y/f %), Let us chooseky, = 0. Then we get zero background
ur(x) = +/bz sechty/f x) tanh(\/f x), (20) intensity, and one of the functions disappears, since

. _ uy = 0. Hence, we obtaid — 1 nonzero components.
”33(x) = Jesll 3tar:r?(\/fx)]. In this casek;/ky—1 = M — j,j = 1,2,...,M — 2, s0
Here a; = 5(8k3 — 7k3), by = 5(2k3 — k3), and c3 =
%k% are constants. The total index refractive chaonge
is given as

. 2 intensity
> ud(x) = k3/2 + 3f secR(/f x). (21) 15
i=1

The three functions:; given by (20) and the refractive _ 1

index profile (21) (i.e., intensity), are shown in Fig. 1. 2 05
For M = 4, we take k3 and k, as arbitrary. The ’

solution set foM = 4 is 0 p===rzm - 5
uy(x) = Jag sech(J/f x), 0.5 S
ur(x) = /bs secR(/f x) tanH/f x) 2 - ” > ~= 5 2‘ ; .
us(x) = ez sechi(y7 x) (5 tanf(/F x) — 11, x
us(x) = /ds taniy/f x) [5tantt(/f x) — 3]. FIG. 1. The intensity profile of the soliton (solid line) and the

_ 5 2 2 _ amplitude profiles of all three linear modes u,, andu; in the
Here the constants ares = 16(18k3 17k3), by = caseM = 3. Parameters chosen in calculations &ye= 1.0

B8k — 7k3), cs = 1x(2k3 — k3), anddy = ki, while  andk; = 0.5.
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