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We have found a new class of exact solutions for multicomponent partially coherent soliton
photorefractive media with a drift mechanism of nonlinear response. Their novel feature is that
compositeM-component sech-shaped soliton is located on a constant-background plane wave.
solutions are characterized by two free parameters and these are related to the maximum intens
the composite soliton and to the amplitude of the background. [S0031-9007(99)08778-5]
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The concept of incoherent solitons, both in time [1] an
in space [2,3], has recently attracted considerable att
tion [4], especially since the first experimental demonstr
tion of their existence [5]. Photorefractive media are th
most appropriate for experimental observations, as th
require only extremely low optical powers [6,7]. Theo
retical descriptions of incoherent solitons have been p
sented based on various principles. Approaches ba
on multimode waveguides [8] and the geometric opti
limit [9,10] are useful tools for understanding the ide
of incoherent solitons. As a further conceptual step,
has been shown that these novel objects have varia
shape and that they can be reshaped after collisions [1
On a descriptive level, the difference between a sta
dard single soliton and an incoherent soliton could
compared to that between an elementary particle an
complicated structure, such as an atom. Indeed, deta
analysis has shown that partially coherent solitons (PC
are multiparameter families of solutions [11], as distin
from single-parameter families of nonlinear Schröding
equation (NLSE) solitons [12]. Moreover, PCS beha
like multiparticle objects in collisions [11].

Previous theoretical publications on incoherent solito
have dealt with stationary solutions [2,8], their intern
dynamics [9,10], and their collisions [11,13]. The natur
question now is how PCS interact with plane waves an
more specifically, whether a PCS can exist as an addit
to a plane wave. In the case of a single NLSE, it is know
that single solitons [12] and higher-order two-solito
solutions [14] can exist on a background. Interactio
of the soliton with the plane wave causes nonline
interference [15] and the net result is that the who
solution is periodic or quasiperiodic. We have foun
that analogous solutions exist forM coupled NLSEs.
However, in the latter case, these solutions are station
and do not change their shape on propagation, in cont
to the solutions of the single NLSE [12,14,15].

Incoherent self-trapping in a biased photorefracti
crystal is usually well described by a set ofM coupled
NLSE equations with saturable nonlinearities [3]. More
over, in photorefractive media with a drift mechanism
0031-9007y99y82(13)y2661(4)$15.00
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of nonlinear response, the nonlinearity can be taken
Kerr-like [13]. Clearly, the Kerr-like nonlinearity is an
approximation. Nevertheless, this approach provides
with valuable insight into the problem. In this case, th
existence of exact solutions helps us to understand
phenomenon. The general idea is valid for any partic
lar nonlinearity, so that solutions of our equations give
qualitative description of incoherent solitons in photor
fractive media with more sophisticated nonlinearities.

In this work we present an exact solution to th
coupled set ofM equations which describes symmetr
PCS on a background. Evidently, the restriction
symmetry and requirement of a sech profile reduces
multiparameter solutions to single parameter ones [1
Here, the amplitude of the background gives the seco
parameter of the family, so that the solutions we a
seeking are two-parameter families. Indeed, we find tw
parameter families of PCS on a background for arbitra
integer M. In each case, one of the components has
nonzero asymptote, and this leads to a nonzero asympt
value of the index change induced by the PCS. Note t
these solutions cannot be obtained using the formalism
[16–18] because one of the functions does not decay
zero at infinity.

It can be shown [13] that, for photorefractive med
with a drift mechanism of nonlinear response, a go
approximation describing the propagation ofM self-
trapped mutually incoherent wave packets is the set
NLSE equations for a Kerr-type nonlinearity

i
≠cj

≠z
1

1
2

≠2cj

≠x2 1 adncj ­ 0 , (1)

wherecj denotes thejth component of the beam,a is
a coefficient representing the strength of nonlinearity,x
is the transverse coordinate,z is the coordinate along the
direction of propagation, and

dn ­
MX

j­1

jcjj
2 (2)

is the change in refractive index profile created by all t
incoherent components in the light beam. Because
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response time of the nonlinearity is assumed to be lo
compared to temporal variations of the relative phases
all the components, the medium responds to the avera
light intensity, and this is just a simple sum of moda
intensities [19], as expressed by relation (2).

The set of equations (1) belongs to the class
integrable systems [20] and its solutions can be written
explicit forms. However, the inverse scattering techniqu
in its standard formulation [17,20] and its equivalents [18
cannot be used here because of the nonzero bound
conditions. We use a direct method which gives th
exact solution for arbitraryM and illustrate its application
for M ­ 3 and M ­ 4. We are interested in stationary
solutions of Eq. (1) which are given by

cjsx, zd ­
1

p
a

ujsxd expsik2
j zy2d , (3)

with real functionsujsxd, so that the set of Eqs. (1)
reduces to the set of ordinary differential equation
(ODEs):

d2uj

dx2 1 2

"
MX

i­1

u2
i

#
uj ­ k2

j uj , j ­ 1, 2, . . . , M ,

(4)

which is also completely integrable for an arbitrary
set of real ki . Various solutions to these equations
including soliton solutions [21–23] and periodic solution
[24,25] have been found, especially forM ­ 2 [26,27].
Examples of explicit solutions forM . 2 are still rare
[13,24].

In particular, it is known [24] that for arbitraryk1 and
k2, the set

u00
1 sxd 1 2su2

1 1 u2
2du1 ­ k2

1u1 ,

u00
2 sxd 1 2su2

1 1 u2
2du2 ­ k2

2u2 ,
(5)

has a solution consisting of bright and dark solito
components. In fact, they are

u1 ­
p

a2 sechs
p

f xd,

u2 ­ k2 tanhs
p

f xdy
p

2 ,
(6)

wheref ­ k2
1 2 k2

2 anda2 ­
1
2 s2k2

1 2 k2
2d are constants.

Interestingly enough, the total index change for thi
solution is

dn ­ u2
1 1 u2

2 ­ k2
2y2 1 f sech2s

p
f xd , (7)

where both the background and the central part of th
solution are changed self-consistently by the componen
uj . Hence this solution is a “soliton on a background.
This simple example suggests that there could be high
order solutions which have the same property. Below
we present these solutions in general form, for arbitra
integerM s.1d.

Without loss of generality, we can arrange the eigenva
ues in decreasing orderk1 . k2 . k3 . · · · . kM . Fur-
thermore, we suppose that two of them,kM21 andkM , are
arbitrary. We use a technique for obtaining the solution s
2662
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based on the modes of the “sech-squared” waveguide [
The additional requirement here is that the change of
refractive index must be of the form const1 sech2s

p
f xd,

i.e., it should be similar to the function in Eq. (7). Thi
means that each component must satisfy

d2uj

dx2 1 fg1 1 g2 sech2s
p

f xdgujsxd ­ k2
j ujsxd , (8)

where j ­ 1, 2, · · · M, and g1, g2, and f are constants
related to thekj . We find that the solutions of (8) can
be expressed as associated Legendre polynomials
starting from order 0; this distinguishes them from th
solutions considered in [13] and [28] which were in term
of associated Legendre polynomials starting with order
We note that the well-known Legendre polynomials [2
P0 ­ 1, P1 ­ j, P2 ­

1
2 s3j2 2 1d, etc., can be used to

define the associated Legendre functions:

Pm
n sjd ­ s21dms1 2 j2dmy2 dm

djm
Pnsjd . (9)

We can rewrite (8) in the form

d2uj

dx2 1 2 dn ujsxd ­ k2
j ujsxd, j ­ 1, 2, · · · M .

(10)

such that

2dn ­ k2
M 1 fMsM 2 1d sech2s

p
f xd , (11)

where dn is the total change of refractive index [se
Eq. (2)]. By usingy ­

p
f x and settingf ­ k2

M21 2

k2
M , where the eigenvalueskM21 and kM are arbitrary,

each equation is transformed into

d2uj

dy2 1 MsM 2 1duj sech2syd ­ ljuj , (12)

wherelj ­ sk2
j 2 k2

Mdysk2
M21 2 k2

Md.
It is clear from Eq. (12) thatlM ­ 0 and lM21 ­ 1.

Hence, the two final components,uM and uM21, have
solutions in terms of the associated Legendre functio
P0

M21stanhyd and P1
M21stanhyd, respectively. To make

other equations solvable in terms of the same functio
the coefficientlj on the right-hand side must be set
sM 2 jd2. This means that we specify

k2
j ­ sM 2 jd2sk2

M21 2 k2
Md 1 k2

M , (13)

so that, given the two eigenvalues, we can find the oth
directly from this relation, i.e., we can write down th
whole set ofkj from the given values ofkM21 and kM .
Now, the componentuj appearing in Eq. (12) can be
written in general form

ujsyd ­ 6cj,M P
M2j
M21stanhyd, j ­ 1, 2, . . . , M . (14)

Hence the componentuj is an odd function ofx if j
is even, and is even ifj is odd; it hasj 2 1 zeros.
The constant amplitudescj,M must be chosen so thaP

u2
i ­ dn always holds.
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The following normalization can assist in finding thes
amplitudes:Z 1

21
fPj

Msjdg2 dj ­
2

2M 1 1
sM 1 jd!
sM 2 jd!

. (15)

An important observation is that theMth component
uM has a nonzero asymptote. This latter function can a
be expressed in a different form. For a givenM, it is clear
that the final component,uM , is proportional toP0

M21
and that this function has a nonzero value wheny ! `,
i.e., whenj ­ tanhsyd ! 1. All other componentsdo
approach zero in this limit. It is also obvious that, fo
a given M, each intensity,u2

j , is a polynomial with
terms in j0, j2, . . . , j2M22, while the total intensity is
a polynomial with constant andj2 terms only. Setting
j ­ 1 directly shows that
e

lso

r

2u2
Msj ­ 1d ­ k2

M (16)

sinceujsj ­ 1d ­ 0 if j fi M. Hence the final ampli-
tude constant can be found immediately.

Using the fact thatPns1d ­ 1 for all n, we can further
simplify the final componentuM in each case and write it
in terms of a Legendre polynomial:

uMsyd ­ 6
kMp

2
PM21sjd , (17)

with j ­ tanhy, as above. Clearly, the solution compo-
nentu2 in Eq. (6) belongs to this class.

Now we can write down the coefficients explicitly. By
using j ­ tanhsyd in Eq. (11), integrating overs21, 1d,
and using Eqs. (14)–(17), we obtain
M21X
j­1

s2M 2 j 2 1d!
sj 2 1d!

scj,Md2 ­
sM 2 1d

3
fMs2M 2 1dk2

M21 2 s2M 2 3d sM 1 1dk2
Mg . (18)
d

o-

e

We can satisfy this by choosing

cj,M ­

s
sj 2 1d! f2sM 2 jd2sk2

M21 2 k2
Md 1 k2

Mg
s2M 2 j 2 1d!

,

(19)

where j ­ 1, 2, . . . , M 2 1. We recall also from
Eqs. (14) and (17) thatcM,M ­ kMy

p
2. With these

values of the coefficients, Eq. (11) is satisfied exactl
Hence, the set of equations (13), (14), and (19) define t
solution we are seeking for arbitraryM.

Let us present in explicit form two higher-order
examples. ForM ­ 3, we takek2 and k3 as arbitrary.
Thenk2

1 ­ 4k2
2 2 3k2

3 andf ­ k2
2 2 k2

3 , and we obtain

u1sxd ­
p

a3 sech2s
p

f xd ,

u2sxd ­
p

b3 sechs
p

f xd tanhs
p

f xd ,

u3sxd ­
p

c3 f1 2 3 tanh2s
p

f xdg .

(20)

Here a3 ­
3
8 s8k2

2 2 7k2
3d, b3 ­

3
2 s2k2

2 2 k2
3d, and c3 ­

1
8 k2

3 are constants. The total index refractive changedn
is given as

3X
i­1

u2
i sxd ­ k2

3y2 1 3f sech2s
p

f xd . (21)

The three functionsuj given by (20) and the refractive
index profile (21) (i.e., intensity), are shown in Fig. 1.

For M ­ 4, we take k3 and k4 as arbitrary. The
solution set forM ­ 4 is

u1sxd ­
p

a4 sech3s
p

f xd ,

u2sxd ­
p

b4 sech2s
p

f xd tanhs
p

f xd ,

u3sxd ­
p

c4 sechfs
p

f xd s5 tanh2s
p

f xd 2 1g ,

u4sxd ­
p

d4 tanhs
p

f xd f5 tanh2s
p

f xd 2 3g .

(22)

Here the constants area4 ­ 5
16 s18k2

3 2 17k2
4d, b4 ­

15
8 s8k2

3 2 7k2
4d, c4 ­

3
16 s2k2

3 2 k2
4d, andd4 ­

1
8 k2

4 , while
y.
he

f ­ k2
3 2 k2

4 . The componentsuj given by (22) are
plotted in Fig. 2. The total index changedn is

4X
i­1

u2
i sxd ­ k2

4y2 1 6fsech2s
p

f xd . (23)

The index change given by Eq. (23) has been omitte
from Fig. 2 for clarity.

Now we show that the class of solutions with zero
background given in [13] are special cases of the s
lutions which we have found here. If we specify the
number of components,M, then we may choose the back-
ground intensity (k2

My2) and the intensity at the point
of maximum, fk2

M 1 fMsM 2 1dgy2, arbitrarily, since
f ­ k2

M21 2 k2
M , and bothkM and kM21 are arbitrary.

Let us choosekM ­ 0. Then we get zero background
intensity, and one of the functions disappears, sinc
uM ­ 0. Hence, we obtainM 2 1 nonzero components.
In this case,kjykM21 ­ M 2 j, j ­ 1, 2, . . . , M 2 2, so

FIG. 1. The intensity profile of the soliton (solid line) and the
amplitude profiles of all three linear modesu1, u2, andu3 in the
caseM ­ 3. Parameters chosen in calculations arek2 ­ 1.0
andk3 ­ 0.5.
2663
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t.

.

d

s.
FIG. 2. The amplitude profiles of all four linear modesu1,
u2, u3, and u4 in the caseM ­ 4. Parameters chosen in
calculations arek3 ­ 1.0 andk4 ­ 0.5.

the eigenvalues are all equally spaced. This correspo
to the special set (withN ­ M 2 1) found in [13]. This
explains why the solution set for equally spaced eigenv
ues contains only one parameter, while our new solutio
have 2 free parameters. For example, whenM ­ 4, if
we setk4 ­ 0, then we haved4 ­ 0, c4 ­ 3k2

3y8, etc., so
u4 ­ 0 while

u3 ­
3k3

2
p

6
sechsk3xd f5 tanh2sk3xd 2 1g ,

and similarly for other components. As a result, we obta
the set of zero background solutions with 3 component

As the equations we are solving are integrable, it
clear that each of our solutions is a nonlinear superpo
tion of a number of fundamental solitons with one finit
amplitude plane wave. The first part of this superpositi
is neutrally stable, as for any other integrable system. T
second part (the plane wave) is modulationally unsta
[12]. This latter instability may cause the total solutio
to distort after some propagation distance. The instab
ity growth rate depends on the plane wave amplitude a
can be low. Then, significant changes will occur only o
scales longer than the photorefractive crystal itself.

In conclusion, we have found the exact solution s
for the symmetric sech-shaped PCS on a finite ba
ground. It can exist in photorefractive media with a dri
mechanism of nonlinear response. The solution has t
free parameters which are related to the maximum inte
sity of the soliton and the amplitude of the background.
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