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We consider a probabilistic reversing operation that returns the measured system to its or
state by means of a physical process, and derive a trade-off relation between the unsharpness
measurement and the best efficiency of the reversing operation. Such a reversing operation is sh
serve as a probabilistic quantum error correction, which will be useful when the numbers of qubit
gate operations are limited. [S0031-9007(99)08786-4]
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A striking difference between quantum and classical m
chanics is that, in quantum mechanics, one cannot fre
measure a system without disturbing its state. As a co
sequence, one cannot measure the wave function o
single system, or equivalently, an arbitrary unknown qua
tum state cannot be cloned [1,2]. With the growing in
terest in the field of quantum information theory, muc
effort has been devoted to characterizing this restricti
in more detail. One approach has been to identify tho
restrictions on the initial state that allow deterministi
cloning [1–5]. Very recently, the probabilistic cloning
condition was also discussed, and its best efficiencies w
derived [6]. Another approach is to start with an arb
trary initial state, and then to find those restrictions on t
measurement that allow the postmeasurement state to
reversed to its original state. For “measurements” th
allow deterministic reversal (namely, reversal with un
probability), general conditions have recently been d
rived by Nielsen and Caves [7]. Other cases have be
reported [8,9] in which the postmeasurement state c
be reversed only with a nonzero probability of succes
Since a sharp measurement (i.e., one with no measurem
error) allows no chance of reversal, it is natural to expe
a trade-off relation between the unsharpness of a m
surement and the degree of physical reversibility—th
maximum probability of the premeasurement state bei
reproduced from the postmeasurement state by means
physical process.

In this Letter, we generally characterize suchprobabilis-
tically reversible measurementsand show that among the
many indices characterizing the unsharpness of a meas
ment, the degree of physical reversibility is determine
by one particular index, the fraction of the backgroun
which is defined as the fraction of the outcomes that a
independent of the measured state. We also propose
such probabilistic reversal serves as a means of error c
rection in quantum computation, which would be particu
larly useful when the numbers of qubits and gate operatio
are limited.

Suppose that we perform measurementM ­ hÂnj on
a state represented by density operatorr̂ defined on
subspaceH of the entire Hilbert space and that outcom
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n is obtained. The postmeasurement stater̂n is given by

r̂n ­
Ânr̂Ây

n

TrfÂnr̂Â
y
ng

. (1)

On this postmeasurement state, we perform reversi
measurementRsnd ­ hR̂snd

m j such that if a particular out-
come, saym ­ 0, is obtained, the postmeasurement sta
of Rsnd is identical to initial statêr. We will call m ­ 0
the “successful outcome.” To put it mathematically,

R̂
snd
0 Ânr̂Ây

nR̂
sndy
0

TrfR̂snd
0 Ânr̂Â

y
nR̂

sndy
0 g

­ r̂ . (2)

We impose no constraints on initial stater̂ other than the
restriction that its support is included inH. We assume
that reversing measurementRsnd restores any initial state
when the outcomes of successive measurementsM and
Rsnd are n and 0, respectively. We call a measuremen
process described by operatorÂn physically reversibleif
it has a reversing measurement,Rsnd.

When Ân is physically reversible and the reversing
operator is given byR̂

snd
0 , Eq. (2) by definition should

hold for any pure statêr ­ jFl kFj. This means that
any state vectorjFl in H is an eigenvector of operator
R̂

snd
0 Ân, that is,

R̂
snd
0 ÂnP̂H ­ csndP̂H , (3)

whereP̂H is the projection operator ontoH, andcsnd is a
nonzero complex number. This implies that a necessa
(but not necessarily sufficient) condition for the physica
reversibility of Ân is thatÂn has left inversêAL

n such that

ÂL
n ÂnP̂H ­ P̂H . (4)

This condition is equivalent to requiringM to belogically
reversible,that is, initial stater̂ can be calculated (but
need not be restored by means of a physical process) fr
outcomen and from postmeasurement stater̂n [9,10].

Using Eq. (3), we obtain

jcsndj2 ­ TrfR̂snd
0 Ânr̂Ây

nR̂
sndy
0 g ; psnd

rev . (5)

This means thatcsnd introduced in Eq. (3) gives joint
probability p

snd
rev such that the first measurement yield

outcomen and the subsequent one gives rise to success
© 1999 The American Physical Society
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reversal. Note that this probability is independent
initial state r̂. We are interested in an upper bound fo
p

snd
rev , which is obtained as follows. Because sethR̂snd

m j
represents a measurement, the following closure relat
must hold: X

m

R̂sndy
m R̂snd

m ­ 1̂ . (6)

This requires that̂1 2 R̂
sndy
0 R̂

snd
0 be a positive semidefinite

operator, or equivalently,

sup
jCl

kCjR̂
sndy
0 R̂

snd
0 jCl

kC j Cl
# 1 . (7)

On the other hand, for arbitrary state vectorsjFl in H,

sup
jCl

kCjR̂
sndy
0 R̂

snd
0 jCl

kC j Cl
$ sup

jCl­Ân jFl

kCjR̂
sndy
0 R̂

snd
0 jCl

kC j Cl

­ sup
jFl[H

kFjÂy
nR̂

sndy
0 R̂

snd
0 ÂnjFl

kFjÂ
y
nÂn jFl

­ jcsndj2

"
inf

jFl[H

kFjÂy
nÂnjFl

kF j Fl

#21

,

(8)

where we used Eq. (5) to derive the last equality. Com
bining Eqs. (5), (7), and (8), we find that an upper boun
for p

snd
rev is given by

psnd
rev # inf

jFl[H

kFjÂy
nÂnjFl

kF j Fl
; Bsnd . (9)

For measurement processÂn to be physically reversible,
p

snd
rev . 0 so thatBsnd . 0 is necessary. This is equiv-

alent to requiringÂn to have a bounded left inverse be
cause the norm of the left inverse is given by

p
Bsnd21.

When subspaceH has a finite dimension, the condition
Bsnd . 0 is equivalent to the logical reversibility of̂An

because a linear operator in a Hilbert subspace with a
nite dimension is always bounded. When the dimensi
is infinite, the conditionBsnd . 0 is more stringent than
that of logical reversibility.

The quantity kFjÂy
nÂnjFlykF j Fl gives the proba-

bility that measurementM yields outcomen for state
jFly

p
kF j Fl. The definition ofBsnd in Eq. (9) there-

fore implies that in measurementM, outcomen is ob-
tained with a probability not less thanBsnd for any state.
We thus find that fractionBsnd of the outcome provides
no information on the measured system. This is the pr
we have to pay to make the measurement process ofÂn

physically reversible. To gain further insight into quan
tity Bsnd, suppose that we have a source that producesN
identical quantum states represented by the same den
operator,r̂, and that we conduct measurementMs­ hÂnjd
on each state. HistogramHsnd for the outcome will, on
average, be given by the sum of two nonnegative parts
of
r
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-
d

-
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:

Hsnd ­ NBsnd 1 NfTrfÂnr̂Ây
ng 2 Bsndg

; NBsnd 1 NDsn, r̂d , (10)

where the first term,NBsnd, is independent of measured
state r̂. Definition (9) ensures that among the decom
positions of Hsnd into r̂-independent and̂r-dependent
nonnegative terms, i.e.,Hsnd ­ NB0snd 1 ND0sn, r̂d,
choice B0snd ­ Bsnd gives the largestB0snd. This
implies that the signal componentNDsn, r̂d containing
the information on the measured state is formed on to
of fixed componentNBsnd. Because of this property, we
call Bsnd thebackgroundof measurementM.

The necessary condition for the physical reversibilit
of Ân we have derived so far, i.e.,Bsnd . 0, is also
a sufficient condition. This can be seen by explicitly
constructing reversing measurementRsnd:

Rsnd ­h
p

Bsnd ÂL
nP̂ns­ R̂

snd
0 d,q

P̂n 2 BsndPn̂Â
Ly
n ÂL

n P̂n , 1̂ 2 P̂nj , (11)

wherePn̂ is the projection onto the image ofÂnP̂H . Since
p

snd
rev is equal toBsnd in this example,Bsnd is actually the

least upper bound forp
snd
rev , namely,

maxpsnd
rev ­ Bsnd . (12)

Let Prevjn be the maximum conditional probability that
the second measurement,Rsnd, yields a successful rever-
sal, on condition that the outcome of first measurementM
wasn. This probability depends on initial statêr and is
written as

Prevjn ­
maxp

snd
rev

TrfÂnr̂Â
y
ng

­

"
1 1

Dsn, r̂d
Bsnd

#21

. (13)

We can say thatPrevjn decreases as the signal-to-nois
ratio sDyBd improves.

Taking the summation ofp
snd
rev over n, we find that the

total probability of successful reversal is given by

Prev ;
X
n

maxpsnd
rev ­

X
n

Bsnd . (14)

This is the primary result of this Letter. Note that this
result still holds even ifBsnd ­ 0 for some values of
n. The left-hand side of Eq. (14),Prev , represents the
maximum probability of successfully reversing the pos
measurement state ofM back to its initial state, regardless
of the outcome of the measurement. We can interpret th
quantity as the degree of physical reversibility of mea
surementM. Unlike conditional reversibilityPrevjn, total
reversibility Prev is independent of initial statêr. The
right-hand side of Eq. (14) represents the total fractio
of the background ofM. We thus conclude that back-
action, or disturbance, caused by a measurement on
measured state can be canceled with a probability eq
to (and never larger than) the fraction of the backgroun
of the measurement. We can say that an unknown init
quantum state can be restored with a probability equal
the degree of our in-principle ignorance of that state.
2599
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If Prev or Prevjn is unity, the postmeasurement state o
M can be returned to its original state by means of
unitary process, hence with unit probability. Such a me
surement process is called a unitarily reversible qua
tum operation [7]. SubstitutingPrev ­ 1 into Eq. (14)
gives an equivalent condition for a measurement to
unitarily reversible in terms of the background, that iP

n Bsnd ­ 1. This means that all outcomes belong to th
background, which is independent of the measured sta
An alternative but equivalent condition for a measureme
process to be unitarily reversible was derived by Niels
and Caves [7].

As an illustration of our general result, Eq. (14)
we now consider a quantum nondemolition (QND
photon-number measurement using the optical Ke
effect [9,11,12]. Here, a signal light (the system to b
measured) is coupled to a probe light (the measuri
apparatus) via the unitary evolution of the Kerr effect:

Û ; eikn̂s n̂p , (15)

wherek is the strength of the optical Kerr effect, which
is proportional to the third nonlinear susceptibility an
to the interaction length,̂ns is the signal photon-number
operator, andn̂p is the probe photon-number operato
After this interaction, a quadrature amplitude of th
probe light is measured using homodyne detection. Re
number readoutn of this detection gives the outcome o
the measurement. The probe light is initially prepared
a coherent state with amplitudea ­ jaje2iu, and the set
of operatorshÂsndj describing this measurement is writte
as [9]

Âsnd ­

√
2
p

!1y4 X̀
n­0

exph2fjaj sinskn 2 ud 2 ng2j

3 eiun jnl knj , (16)

where jnl are the Fock states of the signal light andun

are the unimportant phase factors. It is easy to verify t
closure relation:Z `

2`

ÂysndÂsnd dn ­ 1̂ . (17)

For the range of signal photon numbersn satisfying
jkn 2 uj ø 1, the QND measurement gives an estima
of n with a resolution (the length of the error bar) o
the order of s

p
jajk d21. The resolution and range of

the measurement thus depend on the nonlinearityk.
Substituting Eq. (16) into Eq. (9), we obtain

Bsnd ­

s
2
p

expf22sjaj 1 jnjd2g , (18)

which shows that the background,Bsnd, for outcomen

depends on parametera of the measuring apparatus, an
does not depend on the coupling constant,k, between
the system and the apparatus. Substituting Eq. (18) i
Eq. (14), we find that the degree of physical reversibilit
2600
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Prev , of the measurement is given by

Prev ­
Z `

2`

s
2
p

expf22sjaj 1 jnjd2g dn

­
2

p
p

Z `

p
2 jaj

e2x2

dx ; erfcs
p

2 jajd . (19)

This is a function of the amplitude of the probe light alone
and is independent of the nonlinearityk. Provided that
amplitudea of the probe light is held constant, changing
strength k of the Kerr effect changes the resolution
of the measurement, but keeps the degree of physic
reversibility unaltered. This is a good example of ou
general result, that is, the degree of physical reversibili
is determined by the fraction of the background alon
and is not directly related to the other measureme
parameters, such as the resolution of the measurement.

Next, we discuss how our knowledge on the initia
state is influenced by the reversing operations. Consid
a measured system and a measuring apparatus as a si
quantum system, and suppose that a quantum correlat
between the measured system and the measuring app
tus has been established, but that the outcome has not
been read out. At this stage, one can, in principle, co
struct a unitary evolution operator that brings the state
the measured system and that of the apparatus back
their respective initial states. In this case, the informa
tion about the measured state is erased by obliterating
throwing out the chance to read out) the measurement
sult itself. On the other hand, once the outcome has be
read out, it can no longer be “forgotten.” There is, how
ever, still a way to erase the information about the initia
state (even from one’s mind, presumably): rather than fo
getting the results, one can attempt to extract more info
mation about the measured state by performing a seco
measurement. The trick here is to suitably tailor the se
ond measurement so that one of the outcomes gives
inference about the measured state that is exactly oppos
to the inference given by the first measurement. If such
counterbalancing outcome is obtained in the second me
surement, the bias formed about the measured state on
basis of the first measurement is neutralized. Reversi
measurement̂Rsnd has this effect, as seen in Eq. (5).

This technique for erasing information utilizes only
(classical) statistical inference. There is no need to invok
quantum mechanics. It would be interesting to find ou
what happens if, instead of applying reversing measur
mentR̂snd, we apply an arbitrary measurementQ that has
the information-erasing property after the first measure
ment, M0. Suppose that the first measurement yielde
outcomen1, and the second one,Q, yielded “successful”
outcomem0. ConsiderM0 andQ as one single measure-
ment M, and denote the combination of the outcome
hn1, m0j by a single indexn. Then, complete erasure of the
information meansDsn, r̂d ­ TrfÂnr̂Ây

ng 2 Bsnd ­ 0
for these M and n. Substituting this into Eq. (13)
yields Prevjn ­ 1. This implies that the state after
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measurementQ can be restored to the initial state by
unitary operation. This result indicates thatanymeasure-
ment that has a nonzero probability of erasing the info
mation obtained by the first measurement can work as
reversing measurement.

The reversibility of a measurement has recently a
tracted considerable attention in the context of qua
tum computation. This is because unwanted decohere
caused by the coupling between quantum registers and
environment can be regarded as the backaction of a m
surement performed on the Hilbert subspace of the qu
tum registers. A reversing operation that possibly resto
the initial state from the postmeasurement state and fr
the outcome of the measurement offers a means of er
correction, which cancels the effect of the decoheren
An example of such a restoration scheme was propos
by Mabuchi and Zoller [13]. Their scheme complemen
the error correction schemes that use redundant cod
[14–17] in the sense that while the mechanism of dec
herence must be known and some information must
collected from the environment, no overhead of qub
is necessary. Their scheme, however, works only
the decoherence process is unitarily reversible, and a
failure to obey this stringent requirement leads to a
imperfect error correction and hence to an unreliable co
putation result. In such situations our reversing measu
ment scheme can be applied as a scheme ofprobabilistic
quantum error correction.

To illustrate this, consider the case in which Mabuc
and Zoller’s system [13] has an imbalance,d . 0, in
the nominally half beam splitter, which is part of the de
tection system, with transmissivityT ­ s1 1 ddy2. The
qubit is initially in the statejcilm ­ c0j0lm 1 c1j1lm,
and undergoes the decoherence [18]. The original err
correcting procedure leaves the qubit in the statejcclm ­
N sc0

p
1 2 d j0lm 1 c1

p
1 1 d j1lmd, where N is a

normalization constant. This state neither is the same
the initial state, nor can be converted to the initial sta
by a unitary operation. This is due to the fact that th
decoherence process here is not unitarily reversible. It
however, physically reversible, and a reversing measu
ment can be constructed. In this example, an optimum
versing measurement can be made by using an additio
working qubit prepared inj0lw , a few gate operations,
and a reading-out of the working qubit. The gate oper
tions consist of three processes: a single-bit rotation on
working qubit, R:hj0lw ! cosuj0lw 1 sinuj1lw, j1lw !
cosuj1lw 2 sinuj0lwj, a controlled-NOT operation that
exchangesj1lmj0lw and j1lmj1lw , and another single-
bit rotation, R21. These processes convert the sta
jcclmj0lw into

N fc0

p
1 2 d j0lmj0lw 1 c1

p
1 1 d j1lmssin2uj0lw

1 cos2uj1lwdg . (20)

By settingu to sin2u ­
p

1 2 dy
p

1 1 d, the first qubit
precisely returns to its original state,jcilm, if the readout
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of the working qubit isj0lw . This error-correcting scheme
works probabilistically, and it is not difficult to see that
the overall probability of success is1 2 d.

The error-correcting scheme described above does
necessarily increase the probabilityp of obtaining the cor-
rect answer in a single run of computation, in compariso
with the imperfect unitary scheme. The distinct advan
tage of our scheme, however, is that it allows us to b
sure whether or not the correction is successful. With o
scheme, after repeating the computationk times, the prob-
ability of obtaining the correct result is1 2 s1 2 pdk. If
we do not know whether the error correction was succes
ful in each run, we must take a majority vote of all the
answers, which results in a smaller probability of obtain
ing the correct answer. The advantage of our scheme
particularly prominent in decision problems for which the
output is “yes” or “no”. If we do not know whether the
error correction was successful in such problems, increa
ing the number of runs does not help at all forp , 1y2.
If we can know for sure, we obtain the right answer in
p21 runs on average.
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