VOLUME 82, NUMBER 12 PHYSICAL REVIEW LETTERS 22 MRcH 1999

Reversing Measurement and Probabilistic Quantum Error Correction
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We consider a probabilistic reversing operation that returns the measured system to its original
state by means of a physical process, and derive a trade-off relation between the unsharpness of the
measurement and the best efficiency of the reversing operation. Such a reversing operation is shown to
serve as a probabilistic quantum error correction, which will be useful when the numbers of qubits and
gate operations are limited. [S0031-9007(99)08786-4]
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A striking difference between quantum and classical mew is obtained. The postmeasurement sgatés given by

chanics is that, in quantum mechanics, one cannot freely A, pAT
measure a system without disturbing its state. As a con- Py, = fiAff ) Q)
sequence, one cannot measure the wave function of a Tr{A,pAr]

single system, or equivalently, an arbitrary unknown quan©On this postmeasurement state, we perform reversing
tum state cannot be cloned [1,2]. With the growing in-measuremenk”) = {R}f)} such that if a particular out-
terest in the field of quantum information theory, muchcome, sayu = 0, is obtained, the postmeasurement state
effort has been devoted to characterizing this restrictiomf R is identical to initial statgp. We will call u = 0

in more detail. One approach has been to identify thos¢éhe “successful outcome.” To put it mathematically,

restrictions on the initial state that allow deterministic A2 ﬁA’fie(V”
cloning [1-5]. Very recently, the probabilistic cloning ? V)f fT?(V)T =p. 2
condition was also discussed, and its best efficiencies were Tr[Ry A pAvRy ]

derived [6]. Another approach is to start with an arbi-\we impose no constraints on initial stgieother than the
trary initial state, and then to find those restrictions on theestriction that its support is included #. We assume
measurement that allow the postmeasurement state to ligat reversing measuremeRt”) restores any initial state
reversed to its original state. For “measurements” thaWhen the outcomes of successive measurem&htznd
allow deterministic reversal (namely, reversal with UnitR(V) are v and 0, respective|y_ We call a measurement
probability), general conditions have recently been deprocess described by operatby physically reversiblef
rived by Nielsen and Caves [7]. Other cases have beeifihas a reversing measuremeRt”’.

reported [8,9] in which the postmeasurement state can when A, is physically reversible and the reversing
be reversed only with a nonzero probability of success,,arator is given byfeé”), Eq. (2) by definition should
Since a sharp measurement (i.e., one v_vith no measuremer|q for any pure statg = |®)(®|. This means that
error) allows no lchance of reversal, it is natural to expec!any state vectot®) in H is an eigenvector of operator
a trade-off relation between the unsharpness of a meas()~ .

surement and the degree of physical reversibility—the™° Ay, thatis, f)n .

maximum probability of the premeasurement state being RyA, Py = WPy, (3)

reproduced from the postmeasurement state by means ofgere 2, is the projection operator onté, andc® is a

physical process. , o nonzero complex number. This implies that a necessary
_ Inthis Letter, we generally characterize syebbabilis- (¢t not necessarily sufficient) condition for the physical
tically reversible measuremenasid show that among the eyersipility ofA,, is thatA, has left inversei’ such that
many indices characterizing the unsharpness of a measure- NP N

AVAVPH - PH . (4)

ment, the degree of physical reversibility is determined

by one particular index, the fraction of the background,This condition is equivalent to requiring to belogically

which is defined as the fraction of the outcomes that areeversible,that is, initial statep can be calculated (but

independent of the measured state. We also propose tha¢ed not be restored by means of a physical process) from

such probabilistic reversal serves as a means of error cosutcomer and from postmeasurement stgate[9,10].

rection in guantum computation, which would be particu- Using Eqg. (3), we obtain

I:rgylil::i?géil.\,vhen the numbers of qubits and gate operations |2 = Tr[R(()”)AVﬁAIR(()”)T _ pr(é’v) 5)
Suppose that we perform measurem#ht= {4,} on  This means that™ introduced in Eq. (3) gives joint

a state represented by density operafordefined on probability pr(é’v) such that the first measurement vyields

subspacdd of the entire Hilbert space and that outcomeoutcomer and the subsequent one gives rise to successful
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reversal. Note that this probability is independent of H(v) = NB(v) + N[TH[A,pAl] — B(»)]
initial statep. We are interested in an upper bound for — NB(v) + ND(v. p). (10)

pier, which is obtained as follows. Because $B1)} . o
represents a measurement, the following closure relatioyhere the first termVB(»), is independent of measured

must hold: state p. Definition (9) ensures that among the decom-
positions of H(v) into p-independent ang-dependent
ZR;(LMRLV) =1 (6) nonnegative terms, i.e.H(v) = NB'(v) + ND'(v, p),
" choice B'(v) = B(v) gives the largestB’(v). This
51T 5 () implies that the signal componeMD (v, p) containing

This requires that — Ry 'R, be a positive semidefinite

. the information on the measured state is formed on top
operator, or equivalently,

of fixed componentVB(v). Because of this property, we

<\I’|IA€("H1§(”)|‘P> call B(v) thebackgroundof measuremen¥.
sup—— 2 =1. @) The necessary condition for the physical reversibility
[¥) (W | ¥) of A, we have derived so far, i.eB(v) > 0, is also

a sufficient condition. This can be seen by explicitly
constructing reversing measurem@t):

S(1)T 5 (v) NN A A (v
qup VIR R CvIR R ) R (/B ALP,(= R,
v () w-aley (V1)

(@IATRYTRY A, |1®)

On the other hand, for arbitrary state vectpbs in H,

VB, — BuP,AYTALE, 1 - B}, (11)

= su . whereP; is the projection onto the image af,P5. Since
lwern  (PlAvA, D) pied is equal toB(v) in this exampleB(») is actually the
. (DIATA,|D) - least upper bound fqmr(eyv), namely,
— |C(V)|2 inf ——xvl 7/ , »)
loyen (D | ®) maxp,, = B(v). (12)
(8) Let P, be the maximum conditional probability that

where we used Eq. (5) to derive the last equality. Comthe second measuremes”, yields a successful rever-
bining Egs. (5), (7), and (8), we find that an upper boundsal, on condition that the outcome of first measurenint
for pr(e”v) is given by wasv. This probability depends on initial stageand is
(BIALAL () written as
ATA -1
) < jnf V170 = B(y). 9 max @) D(v,p
Prev |d)eH <(I) | CI)> (V) ( ) Prevlv = A—pr,e\‘;- = (V,P) . (13)
Ti[A, pAs] B(v)
For measurement proceds to be physically reversible, Wwe can say thaP,.,|, decreases as the signal-to-noise
pr(eyv) >0 so thatBA(y) > ( is necessary. This is equiv- ratio(D/B) improves.
alent to requiringd, to have a bounded left inverse be-  Taking the summation of\es over », we find that the

cause the norm of the left inverse is given $8(»)"!.  total probability of successful reversal is given by
When subspacé/ has a finite dimension, the condition

B(v) > 0 is equivalent to the logical reversibility of, Py = > maxp) = > B(v). (14)
because a linear operator in a Hilbert subspace with a fi- v v

nite dimension is always bounded. When the dimensioThis is the primary result of this Letter. Note that this
is infinite, the conditionB(v) > 0 is more stringent than result still holds even ifB(v) = 0 for some values of
that of logical reversibility. v. The left-hand side of Eq. (14P.v, represents the
The quantity(®|AA,|®)/(D | ®) gives the proba- maximum probability of successfully reversing the post-
bility that measuremend yields outcomer for state measurement state #f back to its initial state, regardless
|®)/\/{(® | ®). The definition ofB(v) in Eq. (9) there- of the outcome of the measurement. We can interpret this
fore implies that in measuremeM, outcomewr is ob- quantity as the degree of physical reversibility of mea-
tained with a probability not less tha(v) for any state. surementi. Unlike conditional reversibilityP;.y|,, total
We thus find that fractioB(») of the outcome provides reversibility P.., is independent of initial stat¢. The
no information on the measured system. This is the priceight-hand side of Eq. (14) represents the total fraction
we have to pay to make the measurement process,of of the background off. We thus conclude that back-
physically reversible. To gain further insight into quan- action, or disturbance, caused by a measurement on the
tity B(v), suppose that we have a source that prodi¢es measured state can be canceled with a probability equal
identical quantum states represented by the same density (and never larger than) the fraction of the background
operator p, and that we conduct measureméfit={A,})  of the measurement. We can say that an unknown initial
on each state. Histogram(») for the outcome will, on quantum state can be restored with a probability equal to
average, be given by the sum of two nonnegative parts: the degree of our in-principle ignorance of that state.
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If Py OF Prey|, IS UNity, the postmeasurement state of P..,, of the measurement is given by
M can be returned to its original state by means of a .
unitary process, hence with unit probability. Such a mea- J— f \Eex
surement process is called a unitarily reversible quan- e o\
tum operation [7]. Substituting’,., = 1 into Eq. (14) ’ w
gives an equivalent condition for a measurement to be = —
unitarily reversible in terms of the background, that is, V7 V2ol
>, B(v) = 1. This means that all outcomes belong to theThis is a function of the amplitude of the probe light alone
background, which is independent of the measured statand is independent of the nonlineariky Provided that
An alternative but equivalent condition for a measuremenamplitudea of the probe light is held constant, changing
process to be unitarily reversible was derived by Nielserstrength k of the Kerr effect changes the resolution
and Caves [7]. of the measurement, but keeps the degree of physical

As an illustration of our general result, Eg. (14), reversibility unaltered. This is a good example of our
we now consider a quantum nondemolition (QND)general result, that is, the degree of physical reversibility
photon-number measurement using the optical Keris determined by the fraction of the background alone
effect [9,11,12]. Here, a signal light (the system to beand is not directly related to the other measurement
measured) is coupled to a probe light (the measuringarameters, such as the resolution of the measurement.
apparatus) via the unitary evolution of the Kerr effect: Next, we discuss how our knowledge on the initial

N ikheh state is influenced by the reversing operations. Consider
U=emm, (15) a measured system and a measuring apparatus as a single

where « is the strength of the optical Kerr effect, which guantum system, and suppose that a quantum correlation
is proportional to the third nonlinear susceptibility andbétween the measured system and the measuring appara-
to the interaction lengthi, is the signal photon-number tus has been established, but that the outcome has not yet
operator, andh, is the probe photon-number operator. been read out. At this stage, one can, in principle, con-
After this interaction, a quadrature amplitude of theStruct a unitary evolution operator that brings the state of
probe light is measured using homodyne detection. Reaf’€ measured system and that of the apparatus back to
number readout of this detection gives the outcome of their respective initial states. In this case, the informa-
the measurement. The probe light is initially prepared irfion about the measured state is erased by obliterating (or
a coherent state with amplitude = |a|e %, and the set throwing out the chance to read out) the measurement re-

d—2(al + [v])*]dv

e ¥ dx = erfo2al). (19)

read out, it can no longer be “forgotten.” There is, how-
as [9] | ) 3 nov
14 ever, still a way to erase the information about the initial
son [ 2 c B . N T state (even from one’s mind, presumably): rather than for-
Alv) = ( ) goex"’{ [alsinkn = 0) = v} getting the results, one can attempt to extract more infor-
X e |n)(nl, (16) mation about the measured state by performing a second

measurement. The trick here is to suitably tailor the sec-
where |n) are the Fock states of the signal light afd ond measurement so that one of the outcomes gives an
are the unimportant phase factors. It is easy to verify thénference about the measured state that is exactly opposite
closure relation: to the inference given by the first measurement. If such a
" counterbalancing outcome is obtained in the second mea-
f AtWAw)dv = 1. (17)  Surement, the bias formed about the measured state on the
—oo basis of the first measurement is neutralized. Reversing
measuremenk”) has this effect, as seen in Eq. (5).

This technique for erasing information utilizes only
classical) statistical inference. There is no need to invoke
quantum mechanics. It would be interesting to find out
what happens if, instead of applying reversing measure-
mentR"), we apply an arbitrary measuremadtthat has
the information-erasing property after the first measure-

2 ) ment, My. Suppose that the first measurement yielded
B(v) = p exd —2(la| + [v])7], (18) outcomewr, and the second on@), yielded “successful”
outcomeuy. ConsiderM, andQ as one single measure-
which shows that the backgrounst(v), for outcomer  ment M, and denote the combination of the outcomes
depends on parameter of the measuring apparatus, and {v, uo} by a single index. Then, complete erasure of the
does not depend on the coupling constant,between information meansD(v, p) = Ti[A,pA}] — B(v) =0
the system and the apparatus. Substituting Eq. (18) intfor these M and ». Substituting this into Eq. (13)
Eq. (14), we find that the degree of physical reversibility,yields P.,, = 1. This implies that the state after
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For the range of signal photon numbeis satisfying
|[kn — 6] < 1, the QND measurement gives an estimate
of n with a resolution (the length of the error bar) of(
the order of(y/|a|x)~!'. The resolution and range of
the measurement thus depend on the nonlineakity
Substituting Eq. (16) into Eq. (9), we obtain
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measuremen) can be restored to the initial state by a of the working qubit i§0),,. This error-correcting scheme
unitary operation. This result indicates tlzaty measure- works probabilistically, and it is not difficult to see that
ment that has a nonzero probability of erasing the inforthe overall probability of success Is— §.
mation obtained by the first measurement can work as a The error-correcting scheme described above does not
reversing measurement. necessarily increase the probabilityof obtaining the cor-

The reversibility of a measurement has recently atrect answer in a single run of computation, in comparison
tracted considerable attention in the context of quanwith the imperfect unitary scheme. The distinct advan-
tum computation. This is because unwanted decoheren¢age of our scheme, however, is that it allows us to be
caused by the coupling between quantum registers and ttseire whether or not the correction is successful. With our
environment can be regarded as the backaction of a meaeheme, after repeating the computatiaimes, the prob-
surement performed on the Hilbert subspace of the quarability of obtaining the correct result is— (1 — p)*. If
tum registers. A reversing operation that possibly restores/e do not know whether the error correction was success-
the initial state from the postmeasurement state and frorful in each run, we must take a majority vote of all the
the outcome of the measurement offers a means of err@nswers, which results in a smaller probability of obtain-
correction, which cancels the effect of the decoherenceng the correct answer. The advantage of our scheme is
An example of such a restoration scheme was proposeqghrticularly prominent in decision problems for which the
by Mabuchi and Zoller [13]. Their scheme complementsoutput is “yes” or “no”. If we do not know whether the
the error correction schemes that use redundant codirgyror correction was successful in such problems, increas-
[14-17] in the sense that while the mechanism of decoing the number of runs does not help at all for< 1/2.
herence must be known and some information must b& we can know for sure, we obtain the right answer in
collected from the environment, no overhead of qubitsp~! runs on average.
is necessary. Their scheme, however, works only if M.U. acknowledges financial support by the Core Re-
the decoherence process is unitarily reversible, and arsearch for Evolutional Science and Technology (CREST)
failure to obey this stringent requirement leads to arof the Japan Science and Technology Corporation (JST).
imperfect error correction and hence to an unreliable com-
putation result. In such situations our reversing measure-
ment scheme can be applied as a schen@rathabilistic
guantum error correction

To illustrate this, consider the case in which Mabuchi
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