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We demonstrate that in nonlinear systems with small group velocity any (odd or even) numbe
of dark solitons can be generated by an input pulse without initially introduced phase modulation
We propose a theoretical explanation of the earlier reported experimental results on the generation
magnetic envelope dark solitons. [S0031-9007(99)08768-2]
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Experimental study of nonlinear waves in differen
physical systems is an attractive area of research, not o
from the fundamental point of view, but also for future ap
plications of nonlinear properties of solids. So far the mo
impressive results have been demonstrated in nonlin
guided-wave optics (see, e.g., Refs. [1,2]). In a sharp co
trast, the experimental study of nonlinear waves in soli
state systems has demonstrated much slower progr
in particular due to dissipative losses that make the o
servation of large nonlinear effects in real systems d
ficult. Nevertheless,spin-wave bright envelope solitons
have been observed in magnetic films, for different o
entations of the magnetic field and propagation directi
[3,4]. Similar results have been reported for other typ
of nonlinear waves in solids, e.g.,acoustic envelope soli-
tonsgenerated in a quartz crystal [5].

The first observation ofmicrowave magnetic-envelope
dark solitonswas reported by Chenet al. [6], who gener-
ated spin waves propagating perpendicularly to the dire
tion of a bias magnetic field in a tangentially magnetize
single-crystal yttrium iron garnet (YIG) film. For such a
geometry, the dispersion and nonlinear coefficients ha
the same sign [7] and, therefore, dark solitons can be g
erated. The experimental results reported in Ref. [6] r
vealed unusual features of the soliton generation when
number of generated solitons was changing with the inp
power from even to odd.

The purpose of this Letter is twofold. First, we demon
strate that in the case when an input pulse without a
phase modulation enters a nonlinear dispersive medium
a certain point, the generated localized wave acquiresan
induced spatial phase shiftaccumulated during its gener-
ation, the phase shift being inversely proportional to th
wave group velocity. Such a phase shift isnegligible
for large group velocities, e.g., for optical solitons in fiber
However, for wave propagation in solids, the induce
phase is no longer small, and its effect becomes importa
as in the case of spin waves. Second, based on this gen
concept, we shed light on the experimental results repor
in Ref. [6]. We show that an arbitrary small phase sh
across the initial pulse can change the character of the s
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ton generation, and both an odd and even number of d
solitons can emerge. For the same shape and duratio
the input pulse, this effect is determined only by the pul
amplitude as observed in [6].

First, we discuss the phenomenon of the phase s
accumulated during the pulse generation. We consi
the evolution of a slowly varying wave envelopeAsz, td
described by the nonlinear Schrödinger (NLS) equation

i

µ
≠A
≠t

1 yg
≠A
≠z

∂
1

1
2

D
≠2A
≠z2 2 N jAj2A ­ 0 , (1)

where yg is the wave group velocity calculated at th
carrier wave numberk ­ k0, and the relative signs
of the dispersion,D, and nonlinearity,N , coefficients
correspond to two different types of solitary waves, brig
sND , 0d or darksND . 0d solitons.

Let us discuss the case when a localized wave is exc
at a certain pointz ­ z0 by a finite-duration input signal
with no intentional phase modulation. When such a wa
of amplitudeAm propagates for the timet0 in a nonlinear
dispersive medium described by the NLS equation (1), t
phase of its envelope changes by the amount

2f̃ ­

µ
ygK 1

1
2

DK2 1 N jAmj2
∂

t0 , (2)

where K ­ sk 2 k0d ø k0 is the characteristic wave
number of the wave envelope. By the moment when t
whole input signal of the full lengthl0 ­ ygt0 excited at
z ­ z0 entered the medium, its leading edge had spe
time t0 longer in the medium than its trailing edge
Thus, the pulse accumulatesan induced spatial phase shif
which can be estimated with the help of Eq. (2).

This phase shift can be easily evaluated for a rectan
lar (or boxlike) dark input pulse of durationT . Such a
pulse has the lengthL ­ ygT and the characteristic wave
number of its envelope isK ­ 2pyL. The full length
of the input signal can be estimated asl0 ­ bL ­ bTyg,
whereb . 1 is a phenomenological parameter that tak
into account the influence of the cw background on t
process of the phase shift generation. The resulting ph
shift f is then given by the expression
© 1999 The American Physical Society 2583
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f ­ f̃ 2 2p ­
2T
TD

∑
1 1

1
2

µ
S0

p

∂
2

∏
, (3)

where we tookb ­ 2, and introducedTD, the dispersion
time defined as

TD ­
y2

gT2

p2jDj
. (4)

In Eq. (3) we subtracted a constant phase2p resulting
from the first term in Eq. (2), and also introduced th
dimensionless input pulse areaS0 ­ jAmjL

p
sNyDd.

As follows from Eqs. (3) and (4), the induced phas
shift f, for a given durationT of the input dark
rectangular pulse, isinversely proportionalto the square
of the wave group velocityyg, and it grows with the
input pulse areaS0. For example, the typical duration
of the input pulse in optical fibers is much smalle
than the dispersion time,T ø TD, so that in optics
the accumulated phase shift is practically zero. To s
the importance of this effect in solids, we calculate th
phase shift (3) for the parameters of the experiment [
i.e., T ­ 15 ns, yg ­ 4.5 3 106 cm s21, D ­ 27.8 3

103 cm2 s21, and N ­ 21.0 3 1010 s21. As a result,
the accumulated phase varies from0.16p to 0.4p when
the area of the input pulseS0 increases from0 to 2p.
A qualitative difference between optical and magnet
systems was first pointed out by Boardmanet al. [8].

Generally speaking, the soliton generation by a loca
ized source is a rather complicated problem, and so far
analytical solution has been found. Application of the in
verse scattering transform (IST), based on the idea of
inversion of time and space, requires additional inform
tion about the field derivatives at the generation point [
which are not knowna priori. The solution of a forced
NLS model (similar to that carried for some other mod
els [10]) also meets a lot of difficulties. Here, to estima
qualitatively the effect of the accumulated phase on t
process of dark soliton generation, we employ the IS
technique, where the phase shift (3) is introduced into t
boxlike input. This procedure seems to be only qua
tatively correct, but it captures the basic physics of th
underlying problem. Moreover, many examples of da
soliton generation [2] demonstrate the crucial importan
of the phase rather than amplitude variation of the inp
pulse. Thus, we expect other effects (e.g., pulse amp
tude distortions) to be small or/and less important for th
process of dark soliton generation.

Below we consider the normalized form of the NLS
equation (1) forND . 0 in the form

i
≠u
≠t

2
≠2u
≠x2 1 2juj2u ­ 0 , (5)

where u is the normalized complex envelope,x is a
normalized coordinate in the reference frame moving wi
group velocity, andt is the normalized time calculated
from the moment of the pulse generation,t ­ T . The
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continuous wave (cw) solutionjusx, tdj ­ u0 of Eq. (5)
is modulationally stable, and localized waves exist on
stable cw background of the amplitudeu0 in the form of
dark solitons [2].

According to Zakharov and Shabat [11], in orde
to investigate which type of initial input pulseusx, 0d
generates solitons and to find their parameters, we h
to analyze the eigenvalue problem for the auxiliary two
component eigenfunctionc ­ sc1, c2dT ,

≠c1

≠x
­ ilc1 2 iusx, 0dc2 ,

≠c2

≠x
­ 2ilc2 1 iupsx, 0dc1 ,

(6)

where the asterisk stands for the complex conjuga
and nonvanishing boundary conditions,jusx, 0dj ! u0,
are assumed.

The spectral problem (6) may possess a discrete sp
trum with real eigenvaluesjlnj , u0; the discrete spec-
trum is invariant int when the time evolution is included.
Each real eigenvalueln corresponds to a dark soliton with
amplitudekn ­ su2

0 2 l2
nd1y2 moving with the velocity

2ln. Thus, the asymptotic evolution of the input puls
is described by the discrete eigenvalues of the scatter
problem (6).

To analyze the dark-soliton generation by an inp
pulse with an induced phase shift, we consider a sy
metric boxlike initial condition with the total phase shif
2f in the formusx, 0d ; u0sxd ­ u0 expfisgnsxdfg, for
jxj . Ly2, and usx, 0d ­ u1eiax, for jxj # Ly2, with a
nonzero minimum at the center,u1 , u0, anda ­ 2fyL
for the phase continuity. To solve the eigenvalue equ
tions for c1 andc2, we notice that from Eqs. (6) we can
find the equivalent equation forc1,

≠2c1

≠x2 2
u0

u
≠c1

≠x
1

µ
l2 2 juj2 1 il

u0

u

∂
c1 ­ 0 , (7)

where the prime stands for the derivative inx. Then, the
eigenvalue problem (6) can be solved exactly in the thr
different regions, i.e., forx . Ly2,

csx, 0d ­
C1

u0

µ
u0

sl 2ikde2if

∂
e2kx , (8)

wherek2 ­ u2
0 2 l2 . 0; for jxj , Ly2,

csx, 0d ­
C2

u1

µ
u1

l 2h

∂
eihx 1

C3

u1

µ
u1

l 1h

∂
e2ihx ,

(9)

whereh is defined as a solution of the algebraic equatio
h2 ­ ah 1 sl2 2 al 2 ju1j

2d; and forx , 2Ly2,

csx, 0d ­
C4

u0

µ
u0

sl 1ikdeif

∂
ekx . (10)

Matching the solutions (8) to (10) atx ­ 6Ly2, we
obtain an eigenvalue equation forl. We present it here
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in a simplified form, taking formallya ­ 0,

sj 2 nd fn sinsj 1 fd 1

q
S2

0 2 n2 cossj 1 fdg

1 2S0S1 sinj ­ sj 1 nd fn sinsj 2 fd

2

q
S2

0 2 n2 cossj 2 fdg , (11)

where S0 ­ u0L, S1 ­ u1L, n ­ lL, and j ­p
n2 2 S2

1 . Real solutionsnn of Eq. (11) satisfying the
condition S1 , n , S0 correspond to dark solitons with
ln ­ nnyL. Equation (11)includes all known resultson
the generation of dark solitons. Whenu1 ­ f ­ 0, this
problem predicts only pairs of dark solitons [11,12]. I
general, Eq. (11) describes generation of both even a
odd numbers of dark solitons, depending on the values
the parameters.

In most experiments, including the case of magne
solitons [6], the input dark pulse is generated by switchin
off the cw signal almost completely for the time interva
T ­ Lyyg. In such a caseu1 ø 0, S1 ø 0, andS0 is the
total dimensionless area of the input dark pulse. Then,
eigenvalue equation, even fora fi 0, simplifies to

n sinsn 2 fd ­
q

S2
0 2 n2 cossn 2 fd , (12)

and its solutions can be investigated analytically. W
present the number of real solutions of Eq. (12) on t
parameter planesf, S0d. When f ­ 0, Eq. (12) has
only pairs of real solutions, so that forpN , S0 ,

psN 1 1d, whereN is an integer,2sN 1 1d dark solitons
are generated [11]. In the casef ­ py2, when the
total phase jump2f ­ p, the solutions are similar to
those discussed earlier for the initial conditionusx, 0d ­
u0 tanhsaxd, i.e., for pNy2 , S0 , psN 1 1dy2 there
exist exactly s1 1 2Nd dark solitons, one fundamenta
soliton with zero intensity at the center andN symmetric
pairs [2]. The number of dark solitons in the case

FIG. 1. Number (shown in the domains marked by dotte
lines) of dark solitons generated by the initial pulseu0sxd. The
solid line is the phase shift (3) calculated for the experimen
data from Ref. [6]. The vertical dashed lines give the values
the input pulse areaS0 corresponding to the input powers use
in the experiment.
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arbitrary f s0 , f , pd is shown in Fig. 1 on the
plane sf, S0d. The dotted lines,f ­ pM 6 S0 sM ­
0, 61, . . .d, separate the domains with different number
of dark solitons. The mainqualitatively new resultof
our analysis is that any nonzero value of the phase sh
f fi 0 can lead to the consecutive generation of both od
and even number of dark solitons, when the areaS0 of
the input dark pulse grows. Thus, the casesf ­ 0 and
f ­ py2 are degenerate.

Now, to see how many solitons are generated when t
input power varies, we define the phase shift by Eq. (3
and show it as a solid line in Fig. 1. As follows from
Fig. 1, if the spatial phase shift is described by Eq. (3
the variation of the amplitudeA of the cw background can
change the number of solitons from 1 to 5.

To provide a clearer comparison of our theory with
the experimental results on the generation of dark so
tons [6], we assume a linear relationjAmj2 ­ BPin, where
Pin is the experimental input power andjAmj is the am-
plitude of the excited magnetostatic wave normalized t
the saturation magnetization [4]. We choose the coeffi
cient B ­ 8.5 3 1023 W21 to obtain a typical value of
the amplitudejAj ­ 7 3 1022 (see, e.g., Ref. [13]) for
the maximum input powerPin ­ 580 mW used in the ex-
periment [6]. The dashed vertical lines in Fig. 1 show
the values of the input pulse areaS0 corresponding to the
experimental input powers. The positions of the crossin
points of the dashed lines with the solid curvef ­ fsS0d
indicate the number of dark solitons that are expected
be generated from the input pulse at a given power.

Eigenvaluesln and corresponding amplitudeskn of
the generated dark solitons have been calculated for t
parameters from [6], and the amplitudes are present
in Fig. 2. As follows from Fig. 2, atPin ­ 30 mW we
expect to obtain an asymmetric pair of dark solitons
whereas atPin ­ 130 mW a similar pair with larger
amplitudes and a very small third soliton should emerg
At the largest powerPin ­ 580 mW [6], our theory
predicts a dark soliton withalmost zero intensity at

FIG. 2. Normalized amplitudeskn of the generated dark
solitons as calculated from Eq. (11) for the parameters of th
experiment [6].
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FIG. 3. Results of numerical simulations of dark soliton
generated in a dissipative medium due to the nonlineari
induced phase shift. The four cases correspond to the in
powers from Ref. [6], as marked in the plots. The input boxlik
pulse is shown in (a).

its center and two pairs of slightly asymmetric grey
solitons. These results are in a good qualitative agreem
with the experimental output envelopes presented
Fig. 1(a) of Ref. [6] for the corresponding values of th
input power. To provide further confirmation of this
correspondence, in Fig. 3 we present the results of
numerical simulations carried out for the dissipative NL
equation with the parameters taken directly from th
experiment. A remarkable similarity between our Fig.
and Fig. 1(a) of Ref. [6] can be noticed, especially for th
cases (a) to (c), thus providing a strong justification of o
concept of the accumulated nonlinear phase.

In conclusion, we have shown that a localized nonline
wave excited by a source at a fixed location acquires
2586
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nonlinearity-induced spatial phase shift during the proce
of its generation in a dispersive nonlinear medium. Suc
phase shift can be large for nonlinear waves in solids (e
for spin waves), leading to the generation of differe
numbers of dark solitons by a pulse of the same sha
and duration at different input powers. The results allo
us to explain the specific features of the magnetic da
soliton generation reported earlier. They can be use
for interpreting experiments on the generation of solito
in other solid-state systems.
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