VOLUME 82, NUMBER 12 PHYSICAL REVIEW LETTERS 22 MRcH 1999

Generation of Spin-Wave Envelope Dark Solitons
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We demonstrate that in nonlinear systems with small group velocity any (odd or even) number
of dark solitons can be generated by an input pulse without initially introduced phase modulation.
We propose a theoretical explanation of the earlier reported experimental results on the generation of
magnetic envelope dark solitons. [S0031-9007(99)08768-2]
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Experimental study of nonlinear waves in differentton generation, and both an odd and even number of dark
physical systems is an attractive area of research, not ongolitons can emerge. For the same shape and duration of
from the fundamental point of view, but also for future ap-the input pulse, this effect is determined only by the pulse
plications of nonlinear properties of solids. So far the mosamplitude as observed in [6].
impressive results have been demonstrated in nonlinear First, we discuss the phenomenon of the phase shift
guided-wave optics (see, e.g., Refs. [1,2]). Inasharp coraccumulated during the pulse generation. We consider
trast, the experimental study of nonlinear waves in solidthe evolution of a slowly varying wave envelopéz, 1)
state systems has demonstrated much slower progreskescribed by the nonlinear Schrodinger (NLS) equation,
in particular due to dissipative losses that make the ob- 9A 9A 1 924
servation of large nonlinear effects in real systems dif- z( ) + —D— — NIAPA=0, (1)
ficult. Neverthelessspin-wave bright envelope solitons
have been observed in magnetic films, for different ori-where v, is the wave group velocity calculated at the
entations of the magnetic field and propagation directiortarrier wave numberk = ko, and the relative signs
[3,4]. Similar results have been reported for other type®f the dispersion,D, and nonlinearity,N, coefficients
of nonlinear waves in solids, e.qcoustic envelope soli- correspond to two different types of solitary waves, bright
tonsgenerated in a quartz crystal [5]. (ND < 0) or dark(ND > 0) solitons.

The first observation ofnicrowave magnetic-envelope Let us discuss the case when a localized wave is excited
dark solitonswas reported by Cheet al. [6], who gener-  at a certain point = zo by a finite-duration input signal
ated spin waves propagating perpendicularly to the direcwith no intentional phase modulation. When such a wave
tion of a bias magnetic field in a tangentially magnetizedof amplitudeA,, propagates for the timg in a nonlinear
single-crystal yttrium iron garnet (YIG) film. For such a dispersive medium described by the NLS equation (1), the
geometry, the dispersion and nonlinear coefficients havphase of its envelope changes by the amount
the same sign [7] and, therefore, dark solitons can be gen- ~ 1
erated. The experimental results reported in Ref. [6] re- 2¢ = (ng + EDKZ + NIAm|2> f, 2)
vealed unusual features of the soliton generation when the
number of generated solitons was changing with the inpuivhere K = (k — ko) < ko is the characteristic wave
power from even to odd. number of the wave envelope. By the moment when the

The purpose of this Letter is twofold. First, we demon-whole input signal of the full lengtly = v,#, excited at
strate that in the case when an input pulse without any = zo entered the medium, its leading edge had spent
phase modulation enters a nonlinear dispersive medium &itne 7, longer in the medium than its trailing edge.
a certain point, the generated localized wave acquires Thus, the pulse accumulatas induced spatial phase shift
induced spatial phase shificcumulated during its gener- which can be estimated with the help of Eq. (2).
ation, the phase shift being inversely proportional to the This phase shift can be easily evaluated for a rectangu-
wave group velocity. Such a phase shiftrisgligible lar (or boxlike) dark input pulse of duratiofi. Such a
for large group velocities, e.qg., for optical solitons in fibers.pulse has the length = v, T and the characteristic wave
However, for wave propagation in solids, the inducednumber of its envelope i¥ = 27 /L. The full length
phase is no longer small, and its effect becomes importanef the input signal can be estimated/gs= bL = bTv,,
as in the case of spin waves. Second, based on this genevehereb > 1 is a phenomenological parameter that takes
concept, we shed light on the experimental results reporteidto account the influence of the cw background on the
in Ref. [6]. We show that an arbitrary small phase shiftprocess of the phase shift generation. The resulting phase
across the initial pulse can change the character of the solshift ¢ is then given by the expression

| — + vo—
t 8 az

0031-900799/82(12)/2583(4)$15.00 © 1999 The American Physical Society 2583



VOLUME 82, NUMBER 12 PHYSICAL REVIEW LETTERS 22 MRcH 1999

- T 1 (So), continuous wave (cw) solutiofu(x, t)] = uy of Eqg. (5)
¢=¢ - 2m= Tp 1+ o\7/) I G s modulationally stable, and localized waves exist on a

] ] ] stable cw background of the amplitudg in the form of
where we tookb = 2, and introduced’p, the dispersion vk solitons 2].
time defined as According to Zakharov and Shabat [11], in order
ngz to investigate which type of initial input pulse(x,0)
2D (4)  generates solitons and to find their parameters, we have

to analyze the eigenvalue problem for the auxiliary two-
In Eqg. (3) we subtracted a constant phase resulting  component eigenfunctiop = (i1, ¢,),

from the first term in Eq. (2), and also introduced the

TD=

dimensionless input pulse ar§a = |A,,|L\/(N /D). W _ iAgy — iu(x,0),,

As follows from Egs. (3) and (4), the induced phase dx
shift ¢, for a given durationT of the input dark dir . . (6)
rectangular pulse, igwersely proportionako the square oy Mt iu (x, 0,

of the wave group velocity,, and it grows with the
input pulse area,. For example, the typical duration
of the input pulse in optical fibers is much smaller ;.o Jssumed.

than the dispersion time] < Tp, SO that in OptCS  1hg gpectral problem (6) may possess a discrete spec-
the accumulated phase shift is practically zero. To Seg,m with real eigenvalued\,| < uo; the discrete spec-

the importance of this effect in solids, we calculate they, q, s invariant inr when the time evolution is included.
phase shift (3) for the parameters ojlthe experiment [B]gch real eigenvalug, corresponds to a dark soliton with
ey {nz: 15 ns,dvg =45 X 10" ems ., DA: —7.8 XI amplitude x, = (ud — A2)/2 moving with the velocity
107cnmis 7, and N = —1.0 X107 s As a result, ) " 11,5 the asymptotic evolution of the input pulse

the accumulated phase varies frém6m 10 0.4 When s gescrined by the discrete eigenvalues of the scattering
the area of the input puls§, increases from) to 2. problem (6)

A qualitative difference between optical and magnetic™ + analyze the dark-soliton generation by an input

systems was first p.ointed out t.)y Boardrmetr_al. (8] pulse with an induced phase shift, we consider a sym-
Generally speaking, the soliton generation by a local;

. . ; metric boxlike initial condition with the total phase shift
ized source is a rather complicated problem, and so far n % in the formu(x,0) = uo(x) = uo exgisgn(x)e], for
analytical solution has been found. Application of the in-lxl > /2, and u(x’ 0) = uye'®, for |x| = L2 Wi,th a
verse scattering transform (IST), based on the idea of the - o \minimum at the center; < up, ander _ 26 /L
inversion of time and space, requires additional informaTOr the phase continuity. To solve th’e eigenvalue equa-
tion about the field derivatives at the generation point [g]tions for s and ¢, we notice that from Egs. (6) we can
which are not knowra priori. The solution of a forced &4 the equivalent’ equation fa;,

NLS model (similar to that carried for some other mod- ) ) ,

els [10]) also meets a lot of difficulties. Here, to estimate 0741 _ u d¢n (/\2 — ul? +iA u—>¢1 —0, (7)
qualitatively the effect of the accumulated phase on the dx?2 u ox u ’
process of dark soliton generation, we employ the ISTynere the prime stands for the derivativexin Then, the

technique, where the phase shift (3) is introduced into th@jgenvalue problem (6) can be solved exactly in the three
boxlike input. This procedure seems to be only quali-gitferent regions, i.e., fox > L/2,

tatively correct, but it captures the basic physics of the

underlying problem. Moreover, many examples of dark W(x,0) = Q( up )efo (8)
soliton generation [2] demonstrate the crucial importance ’ up \(A —ik)e ¢ ’

of the phase rather than amplitude variation of the input

2 .2 _ )2 .
pulse. Thus, we expect other effects (e.g., pulse amplivN€rex” = ug — A% > 0; for el < L/2,
et ui inx + &( ui > —inx
up \ A —77>e w \A +n)¢

tude distortions) to be small or/and less important for the c,
process of dark soliton generation. #(x,0) <

Below we consider the normalized form of the NLS (9)
equation (1) foND > 0 in the form

where the asterisk stands for the complex conjugate,
and nonvanishing boundary conditionlg(x,0)| — uo,

5 52 wheren is defined as a solution of the algebraic equation,
L du u

iR olPu =0, (5) n?>=an + (A2 — ad — |u;|?); and forx < —L/2,
ar  dx?
. . . . g( uo ) KX
where u is the normalized complex envelope, is a ¥(x,0) = o VA +ik)ei® e, (20)

normalized coordinate in the reference frame moving with
group velocity, andr is the normalized time calculated Matching the solutions (8) to (10) at = *+L/2, we
from the moment of the pulse generatian= T. The obtain an eigenvalue equation far We present it here
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in a simplified form, taking formallyx = 0, arbitrary ¢ (0 < ¢ < ) is shown in Fig. 1 on the
plane (¢, Sy). The dotted linesgp = #M * So (M =
(¢ — v)[vsin¢ + @) + S5 — v2 codé + ¢)] 0,=*1,...), separate the domains with different numbers
of dark solitons. The maimualitatively new resuliof
+ 28508 siné = (¢ + v)[vsin(é — ¢) our analysis is that any nonzero value of the phase shift
¢ # 0 can lead to the consecutive generation of both odd
— /8% — v2 cod¢é — ¢)], (11) and even number of dark solitons, when the asgaof

the input dark pulse grows. Thus, the cages= 0 and
¢ = /2 are degenerate.

Now, to see how many solitons are generated when the
input power varies, we define the phase shift by Eq. (3)
and show it as a solid line in Fig. 1. As follows from
Fig. 1, if the spatial phase shift is described by Eg. (3),

problem predicts only pairs of dark solitons [11,12]. Iny,e yariation of the amplitude of the cw background can
general, Eq. (11) describes generation of both even a ange the number of solitons from 1 to 5.

odd numbers of dark solitons, depending on the values of provide a clearer comparison of our theory with

the parameters. _ _ _the experimental results on the generation of dark soli-
In most experiments, including the case of magnetic o [6], we assume a linear relatibty,|> = BP;,, where

solitons [6], Fhe input dark pulse is generated_by s'witchingpin is the experimental input power and,,| is the am-
off the cw signal almost completely for the time interval it de of the excited magnetostatic wave normalized to

T = L/v,. Insuchacase, = 0,5, =0,andSisthe ipe satyration magnetization [4]. We choose the coeffi-
total dimensionless area of the input dark pulse. Then, thgiani g = 85 x 10-3 W-! to obtain a typical value of

where Sy = ugl, S;=uL, v= AL, and ¢ =
Vv? — 57, Real solutionsy, of Eq. (11) satisfying the
condition §; < v < §, correspond to dark solitons with
An = v,/L. Equation (11)ncludes all known resultsn
the generation of dark solitons. Whan = ¢ = 0, this

eigenvalue equation, even far # 0, simplifies to the amplitude|A] = 7 X 1072 (see, e.g., Ref. [13]) for
: _ _ |2 _ o _ the maximum input poweP;, = 580 mW used in the ex-
vsiny = ¢) So — v2codr = ¢), (12) periment [6]. The dashed vertical lines in Fig. 1 show

and its solutions can be investigated analytically. Wethe values of the input pulse aréa corresponding to the
present the number of real solutions of Eqg. (12) on thesxperimental input powers. The positions of the crossing
parameter plangé,Sy). When ¢ =0, Eq. (12) has points of the dashed lines with the solid curie= 7 (S,)
only pairs of real solutions, so that forN < Sy < indicate the number of dark solitons that are expected to
m(N + 1), whereN is an integer2(N + 1) dark solitons  pe generated from the input pulse at a given power.

are generated [11]. In the cask = /2, when the  Eigenvalues), and corresponding amplitudes, of
total phase jum@¢ = , the solutions are similar to the generated dark solitons have been calculated for the
those discussed earlier for the initial conditiatx,0) =  parameters from [6], and the amplitudes are presented

uptanhiax), i.e., for aN/2 < Sy < w(N + 1)/2 there in Fig. 2. As follows from Fig. 2, aP;, = 30 mW we
exist exactly(1 + 2N) dark solitons, one fundamental expect to obtain an asymmetric pair of dark solitons,
soliton with zero intensity at the center adsymmetric  \whereas atP;,, = 130 mW a similar pair with larger
pairs [2]. The number of dark solitons in the case ofamplitudes and a very small third soliton should emerge.
At the largest powerP;, = 580 mW [6], our theory

omwW 130 mW 580 mW . ; . X .
0 predicts a dark soliton withalmost zero intensity at
T |
; L |
< 12T 4 1.0
2 ] | o
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FIG. 1. Number (shown in the domains marked by dotted 0.0 0.5 1.0 15 20
lines) of dark solitons generated by the initial pulgéx). The Normalized input pulse area Sy/x

solid line is the phase shift (3) calculated for the experimental

data from Ref. [6]. The vertical dashed lines give the values oFIG. 2. Normalized amplitudesc, of the generated dark
the input pulse are§, corresponding to the input powers used solitons as calculated from Eq. (11) for the parameters of the
in the experiment. experiment [6].
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0.15 nonlinearity-induced spatial phase shift during the process
P = 580 mW (d) : S ! ) ; :
01 of its generationin a dispersive nonllnear mepllum._ Such a
) phase shift can be large for nonlinear waves in solids (e.qg.,
0.05 for spin waves), leading to the generation of different

numbers of dark solitons by a pulse of the same shape
0.0 and duration at different input powers. The results allow
us to explain the specific features of the magnetic dark

P =130 mW (c) soliton generation reported earlier. They can be useful
—_ 0.1 for interpreting experiments on the generation of solitons
< in other solid-state systems.
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